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1.3. Complementation Theorems. 
 
Recall the Complementation Theorem from section 1.1. It 
first appeared in print in [Fr92], Theorem 3, p. 82, (in a 
slightly different form), where we presented some 
precursors of BRT. 
 
The Complementation Theorem is closely related to the 
standard Contraction Mapping Theorem. We discuss the 
connection below. 
 
The Complementation Theorem is also closely related to a 
well known theorem, due to von Neumann in [VM44], and 
subsequent developments in graph theory. We discuss this at 
the end of this section. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
COMPLEMENTATION THEOREM (with uniqueness). For all f ∈ SD 
there exists a unique A ⊆ N with fA = N\A. Moreover, A ∈ 
INF.  
 
Before giving the proof of the Complementation Theorem 
(with uniqueness), we discuss some alternative 
formulations. 
 
The Complementation Theorem (without uniqueness) is written 
above as a statement of EBRT in A,fA on (SD,INF). Strictly 
speaking, we cannot express the uniqueness within BRT. 
 
DEFINITION 1.3.1. A ∪. B is the disjoint union of A and B, 
and is defined as A ∪ B if A,B are disjoint; undefined 
otherwise. E.g., A ∪. B = C if and only if A ∪ B = C ∧ A ∩ 
B = ∅. 
 
Note that there are other equivalent ways of writing fA = 
N\A. E.g., we can write 
 

fA = N\A. 
A = N\fA. 

A ∪. fA = N. 
 
The first evaluates the action of f on A.  
 
The second asserts that A is a fixed point (of the operator 
that sends each B to N\fB. 



 2 

 
The third asserts that N is partitioned into A and fA.  
 
Proof: Let f ∈ SD. Note that for all A ⊆ N, n ∈ fA if and 
only if n ∈ f(A ∩ [0,n)).  
 
We inductively define a set A ⊆ N as follows. Suppose n ≥ 0 
and we have defined membership in A for all 0 ≤ i < n. We 
then define n ∈ A if and only if n ∉ f(A ∩ [0,n)). Since f 
∈ SD, we have for all n, n ∈ A ↔ n ∉ fA as required.  
 
Now suppose fB = N\B. Let m be least such that A,B differ. 
Then m ∈ B ↔ m ∉ fB ↔ m ∉ f(B ∩ [0,m)), and m ∈ A ↔ m ∉ 
f(A ∩ [0,m)). Since A ∩ [0,m) = B ∩ [0,m), we  have m ∈ A 
↔ m ∈ B. This is a contradiction. Hence A = B.   
 
If A is finite then fA is finite and N\A is infinite. Hence 
A is infinite. QED 
 
It will be convenient to use the following terminology. Let 
f:Xk → X.  
 
DEFINITION 1.3.2. Let f be a multivariate function with 
domain X (see Definitions 1.1.8 - 1.10). A complementation 
of f is a set A ⊆ X such that fA = X\A.  
 
Thus we can restate the Complementation theorem (with 
uniqueness) as follows.  
 
COMPLEMENTATION THEOREM (with uniqueness). Every f ∈ SD has 
a unique complementation.  
 
Note that we have proved the Complementation Theorem (with 
uniqueness) within the base theory RCA0 of Reverse 
Mathematics. See [Si99]. 
 
The Complementation Theorem is obviously a particularly 
simple way of encapsulating the essence of recursion along 
the natural numbers. It appears to have significant 
educational value.  
 
We now state a Complementation Theorem for well founded 
relations. We will be using this generalization in section 
4.2.  
 
DEFINITION 1.3.3. A binary relation is a set R of ordered 
pairs. We place no restriction on the coordinates of the 
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elements of R. We write fld(R) = {x: (∃y ∈ R)(x is a 
coordinate of y)}.  
 
DEFINITION 1.3.4. We say that a binary relation R is well 
founded if and only if for all nonempty S ⊆ fld(R), there 
exists y ∈ S such that for all x ∈ S, (x,y) ∉ R. Thus well 
founded relations are irreflexive.  
 
DEFINITION 1.3.5. We say that f:fld(R)k → fld(R) is 
strictly dominating if and only if for all x ∈ fld(R)k, 
(x1,f(x)),...,(xk,f(x)) ∈ R.  
 
DEFINITION 1.3.6. We write SD(R) for the set of all 
strictly dominating functions whose domain is a Cartesian 
power of fld(R) and whose range is a subset of fld(R).  
 
THEOREM 1.3.1. COMPLEMENTATION THEOREM (for well founded 
relations, with uniqueness). If R is a well founded 
relation, then every f ∈ SD(R) has a unique 
complementation.  
 
Proof: We want to be particularly careful because we are 
not assuming that R is transitive. Let the arity of f be k ≥ 
1.  
 
For all b ∈ fld(R), define b* to be the set of all x which 
ends a backward R chain of length ≥ 1 that starts with b. 
Thus b ∈ b*. 
 
We first make a coherence claim. Let b,b’ ∈ fld(R), and S,T 
⊆ fld(R), where  
 

S ⊆ b* ∧ (∀c ∈ b*)(c ∈ S ↔ c ∉ fS). 
T ⊆ b’* ∧ (∀c ∈ b’*)(c ∈ T ↔ c ∉ fT). 

 
Then  
 

(∀c ∈ b* ∩ b’*)(c ∈ S ↔ c ∈ T). 
 
Suppose this is false. By well foundedness, fix c such that  
 

c ∈ b* ∩ b’* ∧ (c ∈ S ↔ c ∉ T) 
(∀d)(R(d,c) → ¬(d ∈ b* ∩ b’* ∧ (d ∈ S ↔ d ∈ T))) 

 
and obtain a contradiction.  
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We now claim that c ∈ fS ↔ c ∈ fT. For the forward 
direction, let c = f(d1,...,dk), d1,...,dk ∈ S. By f ∈ 
SD(R), we have R(d1,c),...,R(dk,c). Hence d1,...,dk ∈ T, and 
so c ∈ fT. The reverse direction is proved in the same way.  
 
Since c ∈ S ↔ c ∉ T, we have c ∉ fS ↔ c ∈ fT. This 
contradicts the above claim, and the coherence claim is 
established.  
 
We now claim that for all b ∈ fld(R), there exists Sb ⊆ b* 
such that (∀c ∈ b*)(c ∈ Sb ↔ c ∉ f(Sb)). To see this, 
suppose this is false, and fix b ∈ fld(R) such that  
 

(∀x)(R(x,b) → (∃S ⊆ x*)(∀c ∈ x*)(c ∈ S ↔ c ∉ fS)). 
¬(∃S ⊆ b*)(∀c ∈ b*)(c ∈ S ↔ c ∉ fS). 

 
By the coherence claim, for each x such that R(x,b), there 
is a unique set Sx ⊆ x* such that (∀c ∈ x*)(c ∈ Sx ↔ c ∉ 
f(Sx)).  
 
Furthermore, by the coherence claim, we have  
 

(∀x,y)((R(x,b) ∧ R(y,b)) →  
(∀c ∈ x* ∩ y*)(c ∈ Sx ↔ c ∈ Sy)). 

 
Let V be the union of the Sx such that R(x,b). We claim that  
 

(∀c ∈ b*\{b})(c ∈ V ↔ c ∉ fV). 
 
To see this, let c ∈ b*\{b}. First assume c ∈ V, c ∈ fV. 
Fix x such that c ∈ Sx, R(x,b). Let c = f(d1,...,dk), 
d1,...,dk ∈ V. Then R(d1,c),...,R(dk,c). Hence d1,...,dk ∈ 
x*. By coherence, d1,...,dk ∈ Sx, since d1,...,dk ∈ V. Hence 
c ∈ Sx, c ∈ f(Sx), which contradicts the definition of Sx.  
 
Now assume c ∉ fV. Since c ∈ b*\{b}, let c ∈ x*, R(x,b). 
Then c ∈ Sx ↔ c ∉ f(Sx). Now c ∉ f(Sx). Hence c ∈ Sx. 
Therefore c ∈ V.  
 
The set V is not quite the same as the set Sb that we are 
looking for. We let Sb = V if b ∈ fV; V ∪ {b} otherwise. 
Then  
 

¬(∃S ⊆ b*)(∀c ∈ b*)(c ∈ S ↔ c ∉ fS). 
 
and so we have a contradiction. Hence the claim is 
established.  
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To complete the proof, let S be the union of all Sb, b ∈ 
fld(R). By the same argument, we see that  
 

(∀c ∈ fld(R))(c ∈ S ↔ c ∉ fS). 
 
and so S is a complementation of f. S is unique by the 
argument given above for the coherence claim. QED 
 
DEFINITION 1.3.7. Let (V,K) be a BRT setting (see 
Definition 1.11). The Complementation Theorem for (V,K) 
asserts that (∀f ∈ V)(∃A ∈ K)(fA = U\A). The 
Complementation Theorem for (V,K) (with uniqueness) asserts 
that (∀f ∈ V)(∃!A ∈ K)(fA = U\A).  
 
We use POW(E) for the power set of E.  
 
Let < be a binary relation. Then (SD(<),POW(fld(<))) is a 
BRT setting, and its universal set U = fld(<). See 
Definition 1.13 for the definition of U.  
 
THEOREM 1.3.2. Let < be an irreflexive transitive relation 
with the upper bound condition (∀x,y)(∃z)(x,y < z). The 
following are equivalent. 
1. The Complementation Theorem holds on 
(SD(<),POW(fld(<))). 
2. The Complementation Theorem (with uniqueness) holds on 
(SD(<),POW(fld(<))).  
3. < is well founded 
 
Proof: Obviously 3 → 2 → 1 follows immediately from 
Theorem 1.3.1, even for arbitrary relations <. Thus we have 
only to assume that < is non well founded, and give a 
counterexample to 1. 
 
Since < is irreflexive and transitive, < has no cycles. 
Since < is non well founded, < must have an infinite 
descending sequence. 
 
Let x1 > x2 > x3 > ... be an infinite descending sequence. 
Let f ∈ SD(<) have arity 2, where for all 0 < i < j, 
f(x2i,x2j-1) = x2i-1. For all other pairs y,z ∈ fld(<), let 
f(y,z) > x1,y,z. Then f ∈ SD(<). Let A ⊆ fld(<), fA = 
fld(<)\A. 
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Clearly each x2i ∉ fA, and so each x2i ∈ A. Hence for all i 
> 0, x2i-1 ∈ fA ↔ (∃j > i)(x2j-1 ∈ A). Hence for all i > 0, 
x2i-1 ∈ A ↔ (∀j > i)(x2j-1 ∉ A).  
 
Let i > 0. Suppose (∀j > i)(x2j-1 ∉ A). Then (∀j > i+1)(x2j-1 
∉ A), and so x2i+1 ∈ A. This is a contradiction, using j = 
i+1.  
 
Hence for all i > 0, x2i-1 ∉ A. But then x1 ∉ fA, x1 ∈ A. 
This is a contradiction. Hence fA ≠ fld(<)\A. QED 
 
Transitivity cannot be removed from the hypotheses of 
Theorem 1.3.2, as indicated by the following example. 
 
THEOREM 1.3.3. Let R be the non well founded irreflexive 
binary relation on Z with the upper bound condition, given 
by x R y ↔ (x+1 = y ∨ (x < y ∧ y ≥ 0)). Then every f ∈ 
SD(R) has a complementation.  
 
Proof: Let f ∈ SD(R). We first define A ∩ Z- as follows. 
Let B = Z-\rng(f). We first put B ⊆ A.  
 
Now define membership in A in the open interval between any 
two numerically successive elements of B by induction. 
I.e., if n < m are two numerically successive elements of 
B, then for all 1 ≤ i ≤ m-n-1, put n+i in A if and only if 
n+i ∉ fA. This is well defined because the truth value of 
n+i ∈ fA depends only on the truth value of n+i-1 ∈ A.  
 
If max(B) < 0 then define membership in A in the open 
interval between max(B) and 0 by induction in the same way.  
 
Now suppose that B has a least element, t. Put t-1 ∉ A, t-2 
∈ A, t-3 ∉ A, ..., alternating in the obvious way. If B = 
∅, put -1 ∉ A, -2 ∈ A, -3 ∉ A, ... .  
 
This completes the definition of A ∩ Z-. Note that for all n 
< 0, n ∈ A ↔ n ∉ fA.  
 
We can now define A ∩ N recursively as follows. For n ∈ N, 
take n ∈ A if and only if n ∉ fA. Then for all n ≥ 0, n ∈ A 
↔ n ∉ fA. Since for all n < 0, n ∈ A ↔ n ∉ fA, A is a 
complementation of f. QED 
 
We now consider the structure of the unique 
complementations, for various simple f ∈ SD. 
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From examination of the construction of the unique 
complementation A, given in the proof of the 
Complementation Theorem above, we see that as more numbers 
are placed in A, more numbers appear in fA, and so fewer 
numbers are placed in A later. And as fewer numbers are 
placed in A later, fewer numbers appear in fA, and so more 
numbers are placed in A latter. So there is a tension 
between numbers going in and numbers staying out. 
 
There is the expectation that even for very simple f ∈ SD, 
the unique complementation A of f can be very complicated - 
and have an intricate structure well worth exploring.  
 
Let us consider some very basic examples.  
 
DEFINITION 1.3.8. We define Res(n,m) as the residue of n 
modulo m ≥ 1.   
 
THEOREM 1.3.4. Let f:Nk → N be given by f(n1,...,nk) = 
n1+...+nk+c, where c is a constant ≥ 1. Then the 
complementation of f is {n ≥ 0: Res(n,k(c-1)+c+1) < c}. Thus 
A is periodic with period k(c-1)+c+1.  
 
Proof: Let k,f,c be as given. Let A = {n ≥ 0: Res(n,k(c-
1)+c+1) < c}. Suppose n1,...,nk ∈ A. Then Res(n1,k(c-
1)+c+1),...,Res(nk,k(c-1)+c+1) < c. Hence 
Res(n1+...+nk+c,k(c-1)+c+1) ∈ [c,k(c-1)+c], because when we 
add the residues of n1,...,nk,c, we stay below the modulus 
k(c-1)+c+1. Therefore n1+...+nk+c ∉ A. 
 
Suppose n ∉ A, n ≥ 0. Then p = Res(n,k(c-1)+c+1) ∈ [c,k(c-
1)+c] and n ≥ c. Hence p-c ∈ [0,k(c-1)], and so write p-c 
as a sum of k elements of [0,c-1]. Hence write p = 
t1+...+tk+c, where t1,...,tk ∈ [0,c-1]. Write n = (n-
p+t1)+t2+...+tk+c.  
 
By the definition of p, we have p ≤ n, and so n-p+t1 ≥ 0 and 
Res(n-p+t1,k(c-1)+c+1),Res(t1,k(c-1)+c+1),...,Res(tk,k(c-
1)+c+1) ∈ [0,c-1]. Hence n-p+t1,t2,...,tk ∈ A. QED 
 
We now come to a basic example where the function is unary 
and one-one. This is a very special case, and it lends 
itself to a general result of independent interest.  
 
Let f:X → X be one-one and k be an integer. For k ≥ 0 and x 
∈ X, let fk(x) = f...f(x), where there are k f's. Let f-k(x) 
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be the unique y such that fk(y) = x, if y exists; undefined 
otherwise.  
 
LEMMA 1.3.5. Let f:X → X be one-one. Assume that for all x 
∈ X there exists k ≥ 1 such that f-k(x) does not exist. Then 
the unique complementation of f is X\fX ∪ f2(X\fX) ∪ 
f4(X\fX) ∪ ... .  
 
Proof: Let f be as given. We first claim that every x ∈ X 
can be written as fi(y), where i ≥ 0 and y ∈ X\fX. Suppose 
this is false for x. We show that by induction on i ≥ 1 that 
for all i ≥ 1, f-i(x) exists, contrary to the hypothesis on 
f. Clearly x ∈ fX, and so the case i = 1 is verified.  
 
Suppose f-i(x) exists. If f-i-1(x) does not exist then f-i(x) 
∈ X\fX, and so x ∈ fi(X\fX). This is a contradiction. Hence 
f-i-1(x) exists, completing the induction argument.  
 
We next claim that X is partitioned by the infinite 
disjoint union 
 

1) X\fX ∪. f(X\fX) ∪. f2(X\fX) ∪. ... . 
 
We have just shown that the union is X. To see that these 
sets are disjoint, let fi(x) = fj(y), where 0 ≤ i < j, and 
x,y ∈ X\fX. Since f is one-one, we have x = fj-i(y), and so 
x ∈ fX. This is a contradiction. 
 
We now see that X is partitioned by the two disjoint sets  
 

X\fX ∪. f2(X\fX) ∪. f4(X\fX) ∪. ... . 
f(X\fX) ∪. f3(X\fX) ∪. f5(X\fX) ∪. ... . 

 
Also note that the forward image of f on the first set is 
the second set. Therefore the first set is a 
complementation of f.  
 
For uniqueness, suppose E is a complementation of f. Then 
obviously X\fX ⊆ E. Hence f(X\fX) ⊆ X\E. Therefore f2(X\fX) 
⊆ X. Continue in this way. This determines membership in X 
for all of 1), which is all of X. QED 
 
THEOREM 1.3.6. Let f:N → N be given by f(n) = an+b, where a 
≥ 2 and 0 < b < a. Then the unique complementation of f is a 
finite union of ranges of two variable expressions 
involving addition, subtraction, multiplication, unnested 
base a exponentiation, and constants. In particular, the 
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unique complementation of f is {(an+k)a2i + b(a2i–1)/(a-1): 
n,i ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 
 
Proof: Let f,a,b be as given. Note that f is one-one. We 
apply Lemma 1.3.5.  
 
Let S = N\fN. Note that S = {an+k: n ≥ 0 ∧ k ∈ [0,a-
1]\{b}}. 
 
We claim that for all i ≥ 0,  
 

fiS = {(an+k)ai + b(ai–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
We prove this by induction. For i = 0, we must verify that  
 

f0S = S = {an+k: n ≥ 0 ∧ k ∈ [0,a-1]\{b}} 
 
which is obvious. Suppose  
 

fiS = {(an+k)ai + b(ai–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
Then  
 

fi+1S = {a[(an+k)ai + b(ai–1)/(a-1)] + b:  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}} = 

 
{(an+k)ai+1 + ab(ai–1)/(a-1) + b:  

n ≥ 0 ∧ k ∈ [0,a-1]\{b}} = 
 

{(an+k)ai+1 + b(a(ai–1)/(a-1) + 1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}} = 

 
{(an+k)ai+1 + b(ai+1–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
Obviously, the first disjoint union from Lemma 1.3.5, which 
is the unique complementation of f, is  
 

{(an+k)ai + b(ai–1)/(a-1):  
n ≥ 0 ∧ k ∈ [0,a-1]\{b} ∧ i ∈ 2N} = 

 
{(an+k)a2i + b(a2i–1)/(a-1):  
n,i ≥ 0 ∧ k ∈ [0,a-1]\{b}}. 

 
QED  
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We would like to consider any affine function f from a 
Cartesian power of N into N. The problem is that affine 
functions may not be in SD.  
 
DEFINITION 1.3.9. Let f be a multivariate function and A be 
a set. We define the “upper image” of f on A by 
 

f<A = {f(x1,...,xk):  
f(x1,...,xk) > max(x1,...,xk) and x1,...,xn ∈ A} 

 
where f has arity k. Obviously, if f ∈ SD then f<A = fA.  
 
DEFINITION 1.3.10. Let < be a binary relation and f be a 
multivariate function with domain fld(R). An upper 
complementation of f is a set A ⊆ X such that f<A = 
fld(R)\A.  
 
For upper complementations of f ∈ MF, it is understood that 
< is the usual ordering on N. 
 
UPPER COMPLEMENTATION THEOREM. Every f:Nk → Z has a unique 
upper complementation. This unique upper complement is 
infinite.  
 
In fact, this was the first form of the Complementation 
Theorem in print. See [Fr92], Theorem 3, p. 82. 
 
We continue with two more examples. 
 
THEOREM 1.3.7. Let f:Nk → N be given by f(n1,...,nk) = 
n1+...+nk, k ≥ 2. Then the unique upper complementation of f 
is {n ≥ 0: Res(n,k) = 1} ∪ {0}. Thus the unique upper 
complementation is periodic with period k. If k = 1 then 
the unique upper complementation is N.  
 
Proof: Let k,f be as given. Let A = {n ≥ 0: Res(n,k) = 1} ∪ 
{0}. Let n = f<(n1,...,nk), n1,...,nk ∈ A. Then 
Res(n1+...+nk,k) = 0, and so n = f<(n1,...,nk) has residue 0 
mod k and is > 0 if defined. Hence n ∉ A if defined. 
 
Suppose n ∉ A, n ≥ 0. Then n > 1. Let p be largest such 
that p < n and Res(p,k) = 1. Since Res(n,k) ≠ 1, we have 0 
< n-p ≤ k-1. Let n1,...,nk-1 ∈ {0,1} be such that n1 + ... + 
nk-1 = n-p. Then n = p + n1 + ... + nk-1, and p,n1,...,nk-1 ∈ 
A. Also n > p,n1,...,nk-1. Hence n ∈ f<(p,n1,...,nk). 
Therefore n ∈ f<A. QED 
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Robert Lubarsky considered the case of binary 
multiplication (private communication). Here is his result. 
 
THEOREM 1.3.8. Let f:N2 → N be given by f(n,m) = nm. Then 
the unique upper complementation of f is {n: n = 0 ∨ n = 1 
∨ n is the product of an odd number of primes}.  
 
Proof: Let f be as given. Let A = {n: n = 0 ∨ n = 1 ∨ n is 
the product of an odd number of primes}. Let n ∈ A, n ∈ 
f<A. Write n = mr, m,r ∈ A, n > m,r. Then m,r ≥ 2, and so 
m,r are each the product of an odd number of primes. 
Therefore n = mr is the product of an even number of 
primes, and hence n = mr ∉ A. This establishes that (∀n ∈ 
N)(n ∈ f<A → n ∉ A). 
 
Now let n ∉ A, n ≥ 0. Then n ≥ 2 and n is not the product 
of an odd number of primes. Hence n is the product of an 
even number, 2t, of primes, t ≥ 1. We can obviously write n 
= mr, where m,r are each the product of t primes. Hence we 
have written n = mr, where m,r ∈ A, and m,r ≥ 2. Therefore 
n ∈ f<A. QED 
 
To understand the complementation of a function like nm+1 
appears to be difficult. 
 
A challenge would be to understand the structure of the 
unique upper complementation of every affine function f:Nk 
→ Z with integer coefficients. In particular, can we 
estimate the number of elements below n of these unique 
upper complementations? Can we algorithmically determine 
whether there are arbitrarily long blocks? 
 
Can we algorithmically determine the cardinalities of all 
finite Boolean combinations of the unique upper 
complementations of these f’s?  
 
We now wish to generalize the Complementation Theorem (for 
SD) in a different direction that will be used in section 
2.4. Recall the definition of BRT term in Definition 1.1.5.  
 
Note that one of the three forms of fA = N\A is A = N\fA, 
which converts the Complementation Theorem into a fixed 
point theorem.  
 
BRT FIXED POINT THEOREM. Let t be a BRT term in several set 
variables and several function variables, in which all 
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occurrences of the set variable A lie within the scope of a 
function variable. Let us assume that the function 
variables have been assigned elements of SD, and the set 
variables other than A have been assigned subsets of N. 
Then there is a unique set A ⊆ N such that the BRT equation 
A = t holds.  
 
Proof: We first claim that if t is any BRT term, and an 
assignment for t is as stated, and A,A’ ⊆ N agree on [0,n), 
then n ∈ t(A) ↔ n ∈ t(A’). This claim is proved by 
induction on the BRT term t. We now follow the proof given 
above of the Complementation Theorem, building sets A0 ⊆ A1 
⊆ ... by induction, and setting A = ∪nAn. We use the claim 
to verify that A = t holds. Uniqueness is easily verified 
as before. QED 
 
The BRT fixed point theorem is closely associated with the 
standard contraction mapping theorem.  
 
CONTRACTION MAPPING THEOREM. Let (X,d) be a compact metric 
space, c ∈ [0,1), and T:X → X be continuous. Assume that 
for all x,y ∈ X, d(T(x),T(y)) ≤ c•d(x,y). Then T has a 
unique fixed point. 
 
We can apply the Contraction Mapping Theorem to prove the 
BRT Fixed Point Theorem, using the usual compact metric 
space on POW(N). This metric is given by  
 

d(B,C) = 2-min(BΔC) if B ≠ C; 0 otherwise. 
 
The claim in the proof of the BRT Fixed Point Theorem 
establishes the required inequality for the mapping t(A) 
with constant c = 1/2. 
 
We now present a useful sufficient condition on f:Xk → X so 
that f has a unique complementation. The sufficiency of the 
criterion follows immediately from the Complementation 
Theorem (for well founded relations, with uniqueness) 
proved earlier in this section. 
 
DEFINITION 1.3.11. Define the relation R(f) on X by  
 

R(f)(x,y) if and only if 
y is the value of f at some arguments that include x. 

 
THEOREM 1.3.9. Every f:Xk → X, where R(f) is well founded, 
has a unique complementation. 
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Proof: Let f:Xk → X, where R(f) is well founded. We claim 
that f ∈ SD(R). To see this, note that for all 1 ≤ i ≤ k, 
f(x1,...,xk) is the value of f at some arguments that 
include xi. Hence f has a unique complementation by Theorem 
1.3.1. QED 
 
Note that in Lemma 1.3.5, the f has a (very) well founded 
R(f). Hence the existence of a unique complementation in 
Lemma 1.3.5 follows immediately from Theorem 1.3.9.  
 
We now prove a Continuous Complementation Theorem.  
 
We say that f:Ek → ℜ, E ⊆ ℜ, is strictly dominating if and 
only if for all x ∈ Ek, |f(x)| > |x|. Here we take | | to be 
the sup norm. 
 
CONTINUOUS COMPLEMENTATION THEOREM (with uniqueness). Every 
strictly dominating continuous f:Ek → E, where E ⊆ ℜ is 
closed, has a unique complementation.  
 
Proof: Let f be as given. By Theorem 1.3.9 it suffices to 
prove that R(f) is well founded. Let ... x3 R(f) x2 R(f) x1 
be an infinite backwards chain living in E. Then |x1| > |x2| 
> ... . Let w1,w2,... ∈ Ek, where for all i ≥ 1, xi = f(wi) 
and xi+1 is a coordinate of wi. Then for all i ≥ 1, |xi| > 
|wi| ≥ |xi+1|. In particular, |w1| > |w2| > ... . Note that 
the |xi| = |f(wi)| and the |wi| are both strictly decreasing 
and have the same inf, α. Note that α is the unique limit 
point of the |f(wi)| and of the |wi|. Since the wi are 
bounded, let w be a limit point of the wi. Since E is 
closed, w ∈ Ek. Clearly |w| = α. By continuity, f(w) is a 
limit point of the f(wi). Hence |f(w)| is a limit point of 
the |f(wi)|. Therefore |f(w)| = α. I.e., |f(w)| = |w| = α. 
This violates that f is strictly dominating. QED 
 
If we strengthen strictly dominating, then we no longer 
need continuity.  
 
DEFINITION 1.3.12. We say that f:Ek → ℜ, E ⊆ ℜ, is shift 
dominating if and only if there exists a constant c > 0 
such that for all x ∈ Ek, |f(x)| > |x| + c.  
 
SHIFT DOMINATING COMPLEMENTATION THEOREM (with uniqueness). 
Every shift dominating f:Ek → E, E ⊆ ℜ, has a unique 
complementation.  
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Proof: Let f be as given. A backwards chain in R(f) creates 
vectors x1,x2,... such that each |xi| > |xi+1| + c. This is 
obviously impossible. Hence R(f) is well founded. Apply 
Theorem 1.3.9. QED 
 
The Complementation Theorem is closely related to an 
important development in digraph theory.  
 
DEFINITION 1.3.13. A digraph (directed graph) is a pair G = 
(V,E), where V = V(G) is a set of vertices and E = E(G) is 
a set of edges. E(G) ⊆ V2 is required. We say that x is G 
connected to y if and only if (x,y) ∈ E(G).  
 
The key definition is that of a kernel (see [Be85]) and its 
dual notion, dominator.  
 
DEFINITION 1.3.14. A kernel K of G is a subset of V(G) such 
that  
 
i. There is no edge connecting any two elements of K. In 
particular, there is no loop with vertex from K. 
ii. Every element of V(G)\K is G connected to an element of 
K. 
 
DEFINITION 1.3.15. A dominator D of G is a subset of V(G) 
such that  
 
i. There is no edge connecting any two elements of D. In 
particular, there is no loop with vertex from D. 
ii. Every element of D is G connected to an element of 
V(G)\D. 
 
It is obvious that K is a kernel of G if and only if the 
following holds: 
 

x ∈ K if and only if  
x is not G connected to any element of K. 

 
Also D is a dominator of G if and only if the following 
holds: 
 

x ∈ D if and only if 
no element of D is G connected to x. 

 
Also let G be a digraph and G* be the dual of G; i.e., the 
same digraph with the arrows reversed. Then the kernels of 
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G are the same as the dominators of G*, and the dominators 
of G are the same as the kernels of G*. 
 
Dominators are explicitly connected with the 
Complementation Theorem in the unary case f:X → X. We can 
think of f as a graph G whose vertex set is X and whose 
edges are the (x,f(x)). Then the complementations of f are 
the same as the dominators of G.   
 
DEFINITION 1.3.16. A dag is a directed acyclic graph. I.e., 
a digraph with no cycles. A cycle (in a digraph) is a 
finite path which starts and ends at the same place.  
 
The following is due to von Neumann in [VM44]. Also see 
[Be85].  
 
THEOREM 1.3.10. Every finite dag has a unique kernel and a 
unique dominator.  
 
Proof: Since the dual of an acyclic graph is acyclic, it 
suffices to prove that there is a unique kernel. 
 
Let (V,G) be a finite dag. We can assume that V(G) is 
nonempty. We inductively define V0,V1,V2,..., where for 
every i, Vi is the set of vertices outside V0 ∪ ...∪ Vi-1 
which G connect only to vertices in V0 ∪ ... ∪ Vi-1. In 
particular, V0 is the set of vertices that do not G connect 
to any vertex. Since G is a dag, V0 is nonempty. Obviously 
the V’s are eventually empty, and are pairwise disjoint. So 
we write V0,V1,...,Vn, n ≥ 0, where these V’s are nonempty 
and Vn+1 = ∅.  
 
We claim that V(G) = V0 ∪ ... ∪ Vn. Otherwise, let x ∉ V0 ∪ 
... ∪ Vn. Since x ∉ Vn+1, x G connects to some y ∉ V0 ∪ ... 
∪ Vn. We can continue this process, obtaining an infinite 
chain of G connections. This contradicts that V(G) is 
finite. 
 
Now define K ∩ Vi by induction on i = 0,...,n. Take x ∈ K ∩ 
Vi if and only if x is not G connected to any element of V0 
∪ ... ∪ Vi-1. By the construction of the V’s, we see that x 
∈ K if and only if x is not G connected to any element of 
K. QED    
 
This is not true for arbitrary dag’s (as is well known). 
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THEOREM 1.3.11. There is a countable dag without a kernel 
and without a dominator.  
 
Proof: We first construct a countable dag G without a 
kernel.  
 
Let G be the digraph with V(G) = N and whose edges are the 
(n,m) where n < m. Let K be a kernel of G. We have n ∈ K ↔ 
n is not connected to any element of K ↔ K has no element > 
n. If K is empty then 0 ∈ K. Hence K is nonempty. Let n ∈ 
K. Then K has no elements > n. In particular, n+1 ∉ K. 
Hence n+1 is G connected to some element of K. Therefore K 
has an element > n+1. This is a contradiction.  
 
For the final claim, let G* be the dual of G. Then G* has 
no dominator. Let H be the disjoint union of G and G*. 
I.e., V(H) = V(G) ∪ V(G*) and E(H) = E(G) ∪ E(G*), where we 
assume V(G) ∩ V(G*) = ∅. Then any kernel of H intersected 
with G is a kernel of G, and any dominator of H intersected 
with G* is a dominator of G. Therefore H is a countable dag 
without a kernel and without a dominator. QED 
 
We mention an old but rather striking result of [Ri46]. 
 
THEOREM 1.3.12. Every finite graph without cycles of odd 
length has a kernel and a dominator. 
 
Here we do not have uniqueness since the two vertex digraph 
with each vertex connected to the other, has no cycles of 
odd length, and two obvious kernels - the singletons – 
which are also dominators.   
 
The book [HHS98a] has an extensive bibliography that 
includes many papers on kernels in graphs. Also see 
[HHS98b], [GLP98]. 
 
Theorem 1.3.10 has the following known extension to 
infinite digraphs. 
 
THEOREM 1.3.13. Every digraph without an infinite walk x0 → 
x1 → ...  has a unique kernel.  
 
Proof: We can either give a proof analogous to that of 
Theorem 1.3.1 (as a referee has done), or we can 
conveniently derive this from Theorem 1.3.1. Let G be a 
digraph with no infinite walk x0 → x1 → ... . Let R be the 
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binary relation R(x,y) ↔ (y,x) ∈ E(G); i.e., y → x in G. 
Then R is well founded.  
 
In fact, we need to use an extension R' of R. We introduce 
a new copy of every vertex in G, and make all of these 
copies R' predecessors of every vertex in G. These copies 
have no R' predecessors. Also introduce new points 
∞,∞+1,∞+2,..., each an R' predecessor of the next, all of 
which are R' successors of all vertices in G and their 
copies. Note that any two elements of fld(R') have a common 
successor.  
 
Define f:fld(R')2 → V(G) by cases. 
 
case 1. x ∈ V(G), y is a copy of some z ∈ V(G) with R(x,z). 
Then define f(x,y) = z. 
 
case 2. otherwise. Define f(x,y) to be any R' successor of 
x,y.   
 
By Theorem 1.3.1, let A be a complementation of f. Note 
that all of the copies of vertices in G lie in A. Hence if 
x is G connected to an element of A then x ∈ fA, x ∉ A.  
 
On the other hand, suppose x ∈ V(G) is not G connected to 
any element of A. Then x ∉ fA, x ∈ A. This establishes that 
A ∩ V(G) is a kernel of G.  
 
To show that all kernels of G are the same, let K,K' be 
kernels of G. Assume that K Δ K' is nonempty, and choose x 
∈ K Δ K' such that x is not G connected to any element of K 
Δ K'. By symmetry, we can assume that x ∈ K, x ∉ K'. Then x 
is not G connected to any element of K, and x is G 
connected to some element y of K'. Clearly y ∉ K Δ K', y ∈ 
K. This is a contradiction. QED  


