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CHAPTER 1 
INTRODUCTION TO BRT 
 
1.1. General Formulation. 
1.2. Some BRT Settings. 
1.3. Complementation Theorems.  
1.4. Thin Set Theorems. 
 
1.1. General Formulation. 
 
Before presenting the precise formulation of Boolean 
Relation Theory (BRT), we give two examples of assertions 
in BRT that are of special importance for the theory. 
 
DEFINITION 1.1.1. N is the set of all nonnegative integers. 
A\B = {x: x ∈ A ∧ x ∉ B}. For x ∈ Nk, we let max(x) be the 
maximum coordinate of x. 
 
THIN SET THEOREM. Let k ≥ 1 and f:Nk → N. There exists an 
infinite set A ⊆ N such that f[Ak] ≠ N. 
 
COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk → N. Suppose 
that for all x ∈ Nk, f(x) > max(x). There exists an infinite 
set A ⊆ N such that f[Ak] = N\A. 
 
These two theorems are assertions in BRT. In fact, the 
complementation theorem has the following sharper form. 
 
COMPLEMENTATION THEOREM (with uniqueness). Let k ≥ 1 and 
f:Nk → N. Suppose that for all x ∈ Nk, f(x) > max(x). There 
exists a unique set A ⊆ N such that f[Ak] = N\A. 
Furthermore, A is infinite. 
 
We will explore the Thin Set Theorem and the 
Complementation Theorem in sections 1.3, 1.4. At this point 
we analyze their logical structure.  
 
DEFINITION 1.1.2. A multivariate function on N is a 
function whose domain is some Nk and whose range is a subset 
of N. A strictly dominating function on N is a multivariate 
function on N such that for all x ∈ Nk, f(x) > max(x). We 
define MF as the set of all multivariate functions on N, SD 
as the set of all strictly dominating functions on N, and 
INF as the set of all infinite subsets of N.   
 



 2 

DEFINITION 1.1.3. Let f ∈ MF, where dom(f) = Nk. For A ⊆ N, 
we define fA = f[Ak].  
 
The notation fA is very convenient. It avoids the 
unnecessary use of explicit mention of arity or dimension. 
It is used throughout this book.  
 
Using this notation, we can restate our two theorems as 
follows.  
 
THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
Note that in the Thin Set Theorem, we use the family of 
multivariate functions MF, and the family of sets INF. In 
the Complementation Theorem, we use the family of 
multivariate functions SD, and the family of sets INF. 
 
In BRT terminology this will be expressed by saying that 
the Thin Set Theorem is an instance of IBRT (inequational 
BRT) on the BRT setting (MF,INF), and the Complementation 
Theorem is an instance of EBRT (equational BRT) on the BRT 
setting (SD,INF).  
 
Note that we can regard the condition fA ≠ N as a Boolean 
inequation in fA,N. We also regard the condition fA = N\A 
as a Boolean equation in fA,N.  
 
Here N plays the role of the universal set in Boolean 
algebra. From this perspective, fA ≠ N is a Boolean 
inequation in fA, and fA = N\A is a Boolean equation in 
A,fA.  
 
The fact that N should play the role of the universal set 
can be read off from the BRT settings (MF,INF) and 
(SD,INF). See “Full BRT Semantics” below. 
 
EBRT stands for “equational Boolean relation theory”. IBRT 
stands for “inequational Boolean relation theory”.  
 
Thus we say that  
 
i. The Thin Set Theorem is an instance of: IBRT in fA on 
(MF,INF). 
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ii. The Complementation Theorem is an instance of: EBRT in 
A,fA on (SD,INF). 
 
We now fully explain what we mean by such phrases as “IBRT 
in fA on (MF,INF)” and “EBRT in A,fA on (SD,INF)”. 
 
The principal BRT environments are  
 

IBRT 
EBRT 

 
defined below. We will mention one other (much richer) BRT 
environment below (PBRT), but in this book we stay within 
the environments IBRT and EBRT. 
 
We call the lists  
 

fA 
A,fA 

 
BRT signatures. In general, the BRT signatures will be 
substantially richer than the above two examples.  
 
We have already called the pairs 
 

(MF,INF) 
(SD,INF) 

 
BRT settings. One other BRT setting plays a particularly 
important role in this book. This is the BRT setting 
(ELG,INF). See Definition 2.1.  
 
We are now prepared for the formal presentation of BRT.  
 

 
FULL BRT SYNTAX 

 
DEFINITION 1.1.4. The BRT set variables are the symbols 
A1,A2,... . The BRT function variables are the symbols 
f1,f2,... .  
 
In practice, we will use appropriate upper case and lower 
case letters without subscripts for these BRT variables.  
 
DEFINITION 1.1.5. The BRT terms are defined by  
 
i) every BRT set variable is a term; 
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ii) ∅,U are BRT terms (U represents the universal set); 
iii) if s,t are BRT terms then (s ∪ t),(s ∩ t),(s\t) are 
BRT terms;  
iv) if f is a BRT function variable and t is a BRT term 
then ft is a BRT term. 
 
DEFINITION 1.1.6. The BRT equations are of the form s = t, 
where s,t are BRT terms. The BRT inequations are of the 
form s ≠ t, where s,t are BRT terms. The BRT inclusions are 
of the form s ⊆ t, where s,t are BRT terms.  
 
DEFINITION 1.1.7. The BRT formulas are defined by  
 
i) every BRT equation is a BRT formula; 
ii) if ϕ,ψ are BRT formulas then (¬ϕ),(ϕ ∨ ψ),(ϕ ∧ ψ),(ϕ → 
ψ),(ϕ ↔ ψ) are BRT formulas. 
 
We routinely omit parentheses when no ambiguity arises. We 
also adhere to the usual precedence table  
 

¬ 
∨ ∧ 

→  ↔ 
 
 

FULL BRT SEMANTICS 
 
DEFINITION 1.1.8. A multivariate function is a pair (f,k), 
where  
 
i) f is a function in the standard sense of a univalent set 
of ordered pairs; 
ii) if k ≥ 2, then every element of dom(f) is a k-tuple. 
 
DEFINITION 1.1.9. We say that the arity of (f,k) is k. The 
domain of (f,k) is taken to be dom(f). 
 
We rely on the fact that for all 1 < i < j, no i-tuple is a 
j-tuple.  
 
Let f be a function (in the standard sense). Note that if f 
is empty then for all k ≥ 1, (f,k) is a multivariate 
function. Also, if f is nonempty then  
 
i) (f,1) is a multivariate function; 
ii) there is at most one k ≥ 2 such that (f,k) is a 
multivariate function. 
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The explicit mention of k is intended to avoid the 
following type of ambiguity. A function f:N2 → N could be 
viewed as either a 1-ary multivariate function with domain 
N2, or a 2-ary multivariate function with domain N2. In our 
notation, the former would be written (f,1), and the latter 
would be written (f,2). Note that (f,3) is not a 
multivariate function. 
 
In practice, the intended arity k of functions is clear 
from context, and we generally ignore the above definition 
of multivariate function. However, we need the above 
definition for full rigor. 
 
DEFINITION 1.1.10. Let f = (f,k) be a multivariate function 
and E be a set. We define fE = f[Ek]) = {f(x1,...,xk): 
x1,...,xk ∈ E} = {y: (∃x1,...,xk ∈ E)(y = f(x1,...,xk)}. 
 
DEFINITION 1.1.11. A BRT setting is a pair (V,K), where V 
is a nonempty set of multivariate functions and K is a 
nonempty family of sets.  
 
DEFINITION 1.1.12. The BRT assertions are the assertions of 
the form (∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(ϕ) 
 
where n,m ≥ 1, B1,...,Bm are distinct BRT set variables, 
g1,...,gn are distinct BRT function variables, and ϕ is a 
BRT formula involving at most the variables 
B1,...,Bm,g1,...,gn.  
 
Every BRT assertion gives rise to an actual mathematical 
statement provided we are also given a BRT setting (V,K). 
Specifically,  
 
DEFINITION 1.1.13. ∩ is interpreted as intersection, ∪ as 
union, \ as set theoretic difference, and ∅ as the empty 
set. ft is interpreted as the image of f on the 
interpretation of t, using Definition 1.10. U is 
interpreted as the least set U such that  
 
i) for all A ∈ K, A ⊆ U; 
ii) for all f ∈ V, fU ⊆ U. 
 
Note that U may or may not lie in K. 
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An important special kind of BRT is obtained by requiring 
that the relevant sets form a tower under inclusion. 
Specifically,  
 
DEFINITION 1.1.14. The BRT,⊆ assertions are the assertions 
of the form 
(∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(ϕ) 
 
where n,m ≥ 1, B1,...,Bm are distinct BRT set variables, 
g1,...,gn are distinct BRT function variables, and ϕ is a 
BRT formula involving at most the variables 
B1,...,Bm,g1,...,gn. 
 
Here B1 ⊆ ... ⊆ Bm ∈ K means  
 

B1 ⊆ ... ⊆ Bm ∧ B1,...,Bm ∈ K. 
 
DEFINITION 1.1.15. We say that a BRT formula is BRT valid 
if and only if it is true on all BRT settings (V,K) under 
any assignment of elements of V to the function variables, 
and any assignment of elements of K to the set variables.  
 
DEFINITION 1.1.16. We say that a BRT formula is BRT,⊆ valid 
if and only if it is true on all BRT settings (V,K) under 
any assignment of elements of V to the function variables, 
and any assignment of elements of K to the set variables 
such that for all i ≤ j, the assignment to Ai is a subset of 
the assignment to Aj.  
 
DEFINITION 1.1.17. Let ϕ,ψ be BRT formulas. We say that ϕ,ψ 
are BRT (BRT,⊆) equivalent if and only if ϕ ↔ ψ is BRT 
(BRT,⊆) valid. This definition is extended to sets of BRT 
formulas in the obvious way.  
 
 

BRT FRAGMENTS 
 
Obviously there are infinitely many BRT formulas. Results 
concerning all BRT formulas, even in very basic BRT 
settings, have been entirely inaccessible to us. The book 
will only be concerned with very modest fragments of BRT.  
 
DEFINITION 1.1.18. The BRT fragments are written  
 

[Environment] in [Signature] on [Setting]. 
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It remains to say what the BRT Environments and Signatures 
are. The BRT Settings have already been defined.  
 
DEFINITION 1.1.19. There are three BRT environments: 
 
i) EBRT (equational BRT); 
ii) IBRT (inequational BRT); 
iii) PBRT (propositional BRT).  
 
DEFINITION 1.1.20. A core BRT term is a BRT term that is 
either a BRT set variable or begins with a BRT function 
variable. For example, f3(A1 ∪ A4) is a core BRT term, and A1 
∪ A4 is not a core BRT term. 
 
DEFINITION 1.1.21. A BRT signature is   
 
i) a finite list of one or more distinct core BRT terms; or 
ii) a finite list of one or more distinct core BRT terms, 
followed by the symbol ⊆. 
 
DEFINITION 1.1.22. The entries of a BRT signature are just 
its core BRT terms.  
 
Let α be a BRT fragment. I.e., let α = "[Environment] in σ 
on [Setting]" be a BRT fragment, where σ is a BRT 
signature.  
 
DEFINITION 1.1.23. The signature of α is σ. The α terms are 
defined by  
 
i) every entry of σ is an α term; 
ii) U,∅ are α terms; 
iii) if s,t are α terms then (s ∪ t),(s ∩ t),(s\t) are α 
terms. 
 
The α terms are to be distinguished from the entries of σ, 
since we are closing the entries of σ under Boolean 
operations.  
 
DEFINITION 1.1.24. The α equations are the equations 
between α terms. The α inequations are the inequations (≠) 
between α terms. The α inclusions are the inclusions 
between α terms. 
 
DEFINITION 1.1.25. The α formulas are inductively defined 
by  
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i) every α equation is an α formula; 
ii) if ϕ,ψ are α formulas, then (¬ϕ),(ϕ ∨ ψ),(ϕ ∧ ψ),(ϕ → 
ψ),(ϕ ↔ ψ) are α formulas. 
 
DEFINITION 1.1.26. The α basics are the α equations if the 
environment of α is EBRT; the α inequations if the 
environment of α is IBRT; the α formulas if the environment 
of α is PBRT. 
 
Suppose first that the signature σ of α does not end with 
⊆. Let the BRT setting of α be (V,K).  
 
DEFINITION 1.1.27. An α assignment is an assignment of an 
element of V to each function variable appearing in σ, and 
an element of K to each set variable appearing in σ.  
 
DEFINITION 1.1.28. The α assertions are assertions of the 
form  
 

(∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(ϕ) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and ϕ is an α basic. 
 
Now assume that σ ends with ⊆.  
 
DEFINITION 1.1.29. An α assignment is an assignment of an 
element of V to each function variable appearing in σ, and 
an element of K to each set variable appearing in σ, where 
if Ai,Aj appear in σ and 1 ≤ i ≤ j, then the set assigned to 
Ai is included in the set assigned to Aj.  
 
DEFINITION 1.1.30. The α assertions are assertions of the 
form  
 

(∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(ϕ) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and ϕ is an α basic. 
 
Thus if the environment of α is EBRT, then the α assertions 
are based on α equations ϕ. If the environment of α is 
IBRT, then the α assertions are based on α inequations ϕ. 
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If the environment of α is PBRT, then the α assertions are 
based on α formulas ϕ. These hold regardless of whether the 
signature of α ends with ⊆.  
 
DEFINITION 1.1.31. We say that an α formula is α valid if 
and only if it holds for all α assignments. 
 
DEFINITION 1.1.32. Let ϕ,ψ be α formulas. We say that ϕ,ψ 
are α equivalent if and only if ϕ ↔ ψ is α valid. This 
definition is extended to sets of α formulas in the obvious 
way. 
 
This concludes the definition of BRT fragments, and their 
assertions. 
 
The above treatment of BRT fragments, α =  
 

[Environment] in [Signature] on [Setting] 
 
fully explains the titles of the Classification sections 
2.4  - 2.7. 
 
DEFINITION 1.1.33. The standard BRT signatures have the 
form  
 

A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn 
A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn,⊆ 

 
and are referred to as  
 

m functions and n sets. 
m functions and n sets/⊆. 

 
where n,m ≥ 1. A flat BRT signature is a BRT signature where 
every entry is either some Ai, or some fiAj, or some fiU. 
 
DEFINITION 1.1.34. A standard BRT fragment is a BRT 
fragment whose environment is EBRT or IBRT, and whose 
signature is a standard BRT signature. A flat BRT fragment 
is a BRT fragment, with environment EBRT or IBRT, whose 
signature is flat.  
 
The BRT fragments considered in sections 2.2, 2.4-2.7, and 
Chapter 3, are all standard. In section 2.3, we work with 
the flat signature A,fA,fU. In Chapter 3, we are successful 
in analyzing a small part of the standard BRT fragment (see 
Definition 2.1) 
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EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 

 
For example, in this book we do not consider such 
interesting BRT signatures as  
 

A,fA,ffA. 
A,fA,f(U\A). 

A,B,fA,fB,f(A∪B),⊆. 
 
none of which are flat. 
 
Let α be a standard BRT fragment with m functions and n 
sets, whose signature does not end with ⊆. Then the number 
of entries of the signature is n(m+1). So the number of α 
terms is 22^n(m+1) up to Boolean identities. Therefore the 
number of α basics is also 22^n(m+1) up to formal Boolean 
equivalence. This is also the number of α assertions up to 
formal Boolean equivalence. 
 
The number of α assertions, up to formal Boolean 
equivalence, grows very rapidly. For 1 function and 1 set, 
we have 22^2 = 16. For 1 function and 2 sets, we have 22^4 = 
216 = 65,536. For 1 function and 3 sets, we have 22^6 = 264. 
For 2 functions and 2 sets, we have 22^6 = 264. For the 
second, third, and fourth of these cases, we do not know if 
the α assertions on the basic BRT settings considered here 
include assertions independent of ZFC. We believe that they 
do not.  
 
The number of α assertions grows less rapidly, up to BRT 
equivalence, if the signature ends with ⊆. This reduction 
of complexity allows us to work successfully with EBRT in 
A,B,fA,fB,⊆ on various basic settings, in Chapter 2. 
 
For standard BRT fragments with 2 functions and 3 sets, 
without ⊆ in the signature, we have 22^9 = 2512 assertions. 
The so called Principal Exotic Case lives in EBRT in the 
standard signature with 2 functions and 3 sets, on the BRT 
setting (ELG,INF). The Principal Exotic Case is Proposition 
A from Appendix A, and is the focus of Chapters 4 and 5 
where it is shown to be independent of ZFC (assuming SMAH = 
ZFC augmented with the existence of strongly Mahlo 
cardinals of each finite order, is consistent).  
 
The Principal Exotic Case lies formally in the standard BRT 
fragment  
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EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 

 
In fact, the Principal Exotic Case lives in the 
considerably reduced flat BRT fragment  
 

EBRT in A,C,fA,fB,gB,gC on (ELG,INF). 
 
In fact, we can strengthen the Principal Exotic Case with A 
⊆ B ⊆ C, which now lives in the further reduced flat BRT 
fragment  
 

EBRT in A,C,fA,fB,gB,gC,⊆ on (ELG,INF). 
 
In Chapters 4 and 5, we show that both of these statements 
are provable using large cardinals, but not in ZFC 
(assuming ZFC is consistent). 
 
It is important to have a useful format for presenting BRT 
assertions. For the purposes of Chapter 2, this amounts to 
creating a useful format for presenting BRT equations. The 
most useful format is a set of pre elementary inclusions, 
or a set of elementary inclusions, defined below.  
 
Let α be a flat BRT fragment, with signature σ.  
 
DEFINITION 1.1.35. The α pre elementary inclusions are of 
the form  
 
i) t1 ∩ ... ∩ tn = ∅, where n ≥ 1, t1,...,tn are the entries 
of σ, in order of their appearance in σ; 
ii) t1 ∪ ... ∪ tn = U, where n ≥ 1, t1,...,tn are the 
entries of σ, in order of their appearance in σ; 
iii) r1 ∩ ... ∩ rp ⊆ s1 ∪ ... ∪ sq, where p,q ≥ 1, and 
r1,...,rp,s1,...,sq are a listing of all of the entries of σ 
without repetition, and r1,...,rp and s1,...,sq are both in 
order of their appearance in σ. 
 
Note that if there are n entries of σ, then there are 2n α 
pre elementary inclusions.  
 
DEFINITION 1.1.36. Suppose σ does not end with ⊆. The α 
elementary inclusions are obtained from the σ pre 
elementary inclusions in the following way. If fU and some 
fAi appears in an intersection, then remove fU there. If fU 
appears in a union, then remove all fAi there. In order to 
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be an elementary inclusion, we require that for every fA on 
the left, fU must not be on the right.  
 
Note that if fU is not an entry of the signature of α, then 
the elementary inclusions are just the pre elementary 
inclusions.  
 
Now suppose the signature of α ends with ⊆.  
 
DEFINITION 1.1.37. Suppose σ ends with ⊆. The α elementary 
inclusions are obtained from the α pre elementary 
inclusions in the following way. For any A appearing in an 
intersection, retain only the Ai where i is least. For any A 
appearing in a union, retain only the Ai where i is 
greatest. For any f appearing in an intersection, retain 
only the fAi where i is least (if only fU appears, then 
retain fU). For any f appearing in a union, retain the fAi 
where i is greatest (if fU appears, then retain only fU). 
In order to be an elementary inclusion, we require that for 
every fAi on the left, fU must not be on the right, and 
every fAj, j ≥ i, must not be on the right.  
 
DEFINITION 1.1.38. An α format is a set of α elementary 
inclusions.  
 
In case σ does not end with ⊆, our α formats take advantage 
of the fact that fAi ⊆ fU. In case σ ends with ⊆, our α 
formats take advantage of the fact that Ai ⊆ Aj and fAi ⊆ 
fAj ⊆ fU, for i < j.  
 
We need to verify that our reduction to α formats is valid; 
i.e., covers what we want. This amounts to verifying that 
every α equation is α equivalent to an α format. In fact, 
we show that every set of α inclusions is α equivalent to 
an α format.  
 
THEOREM 1.1.1. Let α be a flat BRT fragment. Every α 
inclusion is α equivalent to an α format. Every set of α 
inclusions is α equivalent to an α format. Every α format 
is α equivalent to an α inclusion, and an α equation. 
 
Proof: We first assume that the signature of α does not end 
with ⊆. 
 
For the first claim, let s ⊆ t be an α inclusion. Using 
standard Boolean algebra, write s as a union of 
intersections of entries and complements of entries of the 
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signature σ. Write t as an intersection of unions of 
entries and complements of entries of σ. Here the 
complements are taken with respect to the universal set U. 
We allow the degenerate case where s is ∅,U, and t is ∅,U. 
Of course, intersections and unions of cardinality 1 are 
also allowed. 
 
We then obtain a set of inclusions s’ ⊆ t’, where the s’ 
are intersections of entries and complements of entries 
from σ, and the t’ are unions of entries and complements of 
entries of σ. Again, we allow the degenerate case of s’,t’ 
= ∅,U. We can remove all such degenerate cases except U ⊆ 
∅. 
 
We can now arrange for each of these inclusions to be of 
the forms  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm. 
U ⊆ ±t1 ∪ ... ∪ ±tm. 
±s1 ∩ ... ∩ ±sn ⊆ ∅. 

U ⊆ ∅. 
 
And then of the forms  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm. 
±t1 ∪ ... ∪ ±tm = U 
±s1 ∩ ... ∩ ±sn = ∅. 

U = ∅. 
 
Here n,m ≥ 1, and the s’s and t’s are entries in σ. We write 
+t for t and –t for U\t. We must allow for the possibility 
that there are no inclusions. This corresponds to the case 
where we have only U = U.  
 
We can also require that in each of these clauses, each si 
can appear only once, each –si can appear only once, and we 
cannot have si and –si appear. This is because of the 
Boolean equivalence 
 

X ∩ Y ⊆ Z ∪ -Y ↔ X ∩ Y ⊆ Z. 
 
We now replace each of the above five forms with an 
equivalent set of inclusions in which all entries of σ 
appear (or their complement). Thus suppose  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm 
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is missing ±r1,...,±rk. Then replace it with the set of all  
 

±s1 ∩ ... ∩ ±sn ⊆ ±t1 ∪ ... ∪ ±tm ∪ β1 ∪ ... ∪ βk 
 
where each βi is ri or –ri.  
 
Suppose   
 

±t1 ∪ ... ∪ ±tm = U 
 
is missing entries ±r1,...,±rk. Then replace it with the set 
of all  
 

±t1 ∪ ... ∪ ±tm ∪ β1 ∪ ... ∪ βk = U 
 
where each βi is ri or –ri. 
 
Suppose  
 

±s1 ∩ ... ∩ ±sn = ∅. 
 
is missing entries ±r1,...,±rk. Then replace it with the set 
of all  
 

±s1 ∩ ... ∩ ±sn ⊆ β1 ∪ ... ∪ βk 
 
where each βi is ri or –ri.  
 
Replace U = ∅ with  
 

β1 ∪ ... ∪ βk = U 
 
where each βi = ri or –ri and r1,...,rk is a list without 
repetition of all entries of σ. 
 
We now have a set of what would be α pre elementary 
inclusions except for the fact that complements are 
present. However, we can eliminate the complements by 
shifting from one side to the other according to the 
following Boolean equivalences.  
 

X ⊆ Y ∪ U\Z ↔ X ∩ Z ⊆ Y. 
X ∩ U\Y ⊆ Z ↔ X ⊆ Y ∪ Z. 

X ⊆ U\Z ↔ X ∩ Z = ∅. 
U\Y ⊆ Z ↔ Y ∪ Z = U. 
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Thus we are left with a set (possibly empty) of α pre 
elementary inclusions.  
 
Recall the process of converting any α pre elementary 
inclusion to an α elementary inclusion. The given α pre 
elementary inclusion is obviously α equivalent to the 
resulting α elementary inclusion. Thus we are left with an 
α format.  
 
This establishes the first claim. The second claim follows 
immediately from the first claim since a finite set of α 
inclusions can be written as a single α inclusion.  
 
For the final claim, let {s1 ⊆ t1,...,sn ⊆ tn} be an α 
format, n ≥ 0. If n = 0, then take A ⊆ A, A = A, where A is 
an entry of σ. Suppose n > 0. Then use the Boolean 
equivalence  
 

s1 ⊆ t1 ∧ ... ∧ sn ⊆ tn ↔ 
s1\t1 ∪ ... ∪ sn\tn = ∅ ↔ 
s1\t1 ∪ ... ∪ sn\tn ⊆ ∅. 

 
We now assume that the signature of α does end with ⊆. Let 
α be α'⊆. For the first claim, let s ⊆ t be an α inclusion. 
As before, we obtain an equivalent set of pre elementary 
inclusions for α'. At this point, we perform the reductions 
that create an equivalent set of pre elementary inclusions 
for α. We then proceed as above to create an equivalent set 
of elementary inclusions for α.  
 
The second and third claims are proved as before. QED 
 
We will use Theorem 1.1.1 as follows. Let α be a flat BRT 
fragment with signature σ and BRT setting (V,K).  
 
Suppose the environment of α is EBRT, and α does not end 
with ⊆. By Theorem 1.1.1, the α assertions can be put into 
the form 
 

(∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and S is an α format, interpreted 
conjunctively.  
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Suppose the environment of α is EBRT, and σ ends with ⊆. By 
Theorem 1.1.1, the α assertions can be put into the form 
 

(∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and S is an α format, interpreted 
conjunctively.  
 
Suppose the environment of α is IBRT, and σ does not end 
with ⊆. To avoid considering the very awkward negated 
formats, we work with the dual. Thus the inequation becomes 
an equation, so that we can apply Theorem 1.1.1. By Theorem 
1.1.1, the α assertions can be put into the form  
 

¬(∃g1,...,gn ∈ V)(∀B1,...,Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and S is an α format, interpreted 
conjunctively.  
 
Suppose the environment of α is IBRT, and σ does end with 
⊆. By Theorem 1.1.1, the α assertions can be put into the 
form  
 

¬(∃g1,...,gn ∈ V)(∀B1 ⊆ ... ⊆ Bm ∈ K)(S) 
 
where n,m ≥ 1, B1,...,Bm are the BRT set variables mentioned 
in σ with strictly increasing subscripts, g1,...,gn are the 
BRT function variables mentioned in σ with strictly 
increasing subscripts, and S is an α format, interpreted 
conjunctively.  
 
As indicated above, Theorem 1.1.1 tells us that we need 
only work with  
 

1) (∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(S). 
2) (∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(S). 

3) (∃g1,...,gn ∈ V)(∀B1,...,Bm ∈ K)(S). 
4) (∃g1,...,gn ∈ V)(∀B1 ⊆ ... ⊆ Bm ∈ K)(S). 
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where the g’s and B’s are as indicated earlier, and S is an 
α format. It will be seen to be very convenient to drop the 
negation signs in front of the last two of the above.  
 
DEFINITION 1.1.39. Let α be a flat BRT fragment. The α 
statements (rather than the α assertions) are statements of 
form 1) above if the environment of α is EBRT and the 
signature of α does not end with ⊆; 2) above if the 
environment of α is EBRT and the signature of α ends with 
⊆; 3) above if the environment of α is IBRT and the 
signature of α does not end with ⊆; 4) above if the 
environment of α is IBRT and the signature of α ends with 
⊆.   
 
DEFINITION 1.1.40. Let α be a flat BRT fragment. An α 
format S is said to be correct if and only if the α 
statement using S is true; incorrect otherwise. 
 
Informally speaking, a classification of a BRT fragment α 
amounts to a determination of all α correct α formats.   
 
As discussed earlier, the number of pre elementary 
inclusions in the standard signature  
 

A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn 
 
with m functions and n sets is 2n(m+1), and the number of 
formats is therefore 22^n(m+1).  
 
THEOREM 1.1.2. The number of elementary inclusions in 
A1,...,An,f1A1,...,f1An,...,fmA1,...,fmAn,⊆ is (n+1)m+1. 
Therefore the number of formats (or statements) is 2(n+1)^m+1. 
In the case of A,B,C,fA,fB,fC,gA,gB,gC,⊆, we have 64 and 
264. In the case of A,C,fA,fB,gB,gC,⊆, we have 27 and 227. In 
the case of A,B,fA,fB,⊆, we have 9 and 29.   
 
Proof: Let us first focus on the pattern of A's in 
elementary inclusions. Recall that the elementary 
inclusions are the immediate simplifications of the pre 
elementary inclusions, using A1 ⊆ ... ⊆ An. 
 
i. Ai on left, Ai-1 on right. 
ii. A1 on left, no Aj on right. 
iii. No Ai on left, An on right.  
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There are n+1 among i-iii. The same count holds for the 
other m groups. So we obtain a total of (n+1)m+1 elementary 
inclusions. QED 
 
For PBRT in σ on (V,K), where σ is based on m functions and 
n sets, we cannot specify the assertions by a single 
format. Instead, what is relevant is the number of all α 
formulas up to propositional and Boolean equivalence. The 
number of α equations, up to Boolean equivalence, is 
2^2^n(m+1), and so the number of α formulas up to 
propositional and Boolean equivalence is 2^2^2^2^n(m+1). 
This quantity is quite frightening. Even in one function 
and one set, this is 2^2^2^2^2 = 265,536. For one function 
and two sets, this is 2^2^2^2^4 = 22^65,636. These numbers do 
not address, say, two functions and three sets. We do not 
tackle PBRT in this book.  
 
In Chapter 2, we focus on the five basic BRT settings, 
(SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), and 
(MF,INF).  
 
In section 2.2, we classify EBRT/IBRT in A,fA on the five 
basic BRT settings, where the number of assertions is 22^2 = 
16. This is of course completely manageable, but still 
turns out to be substantial. Already, the significant Thin 
Set Theorem and Complementation Theorem appear among the 
16.  
 
In section 2.3, we classify EBRT/IBRT in A,fA,fU on the 
five basic BRT settings, where the number of statements is 
22^3 = 256, with considerable duplication due to equivalence 
on all BRT settings. This is still manageable.  
 
For EBRT/IBRT in A,B,fA,fB, the number of statements is 22^4 
= 216 = 65,536. This is rather daunting, but within 
manageability with a few years of effort. This optimism is 
based on the expectation that there will be a large 
proportion of trivial cases, and lots of relations between 
cases. This has been the experience with sections 2.4 and 
2.5.  
 
In sections 2.4 and 2.5, we classify EBRT in A,B,fA,fB,⊆ on 
the five basic settings excluding (MF,INF), where the 
number of statements is 29 = 512 (according to Theorem 
1.1.2). As can be seen from sections 2.6 and 2.7, we can go 
much further in the fifth basic BRT setting, (MF,INF), as 
well as in IBRT on all five basic settings.  
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In sections 2.2 and 2.3, we make a brute force enumeration 
of cases. However, in sections 2.4 - 2.7, we prefer to use 
a treelike methodology. This treelike methodology is 
presented in section 2.1, where we also develop the 
relevant theory.  
 
We see that all of the BRT statements that arise from the 
EBRT classifications in Chapter 2 are decided in RCA0, and 
all of the BRT statements that arise from the IBRT 
classifications in Chapter 2 are decided in ACA'.  
 
ZFC incompleteness arises somewhat later in the development 
of BRT, with EBRT in A,B,C,fA,fB,fC,gA,gB,gC on the BRT 
setting (ELG,INF). The Principal Exotic Case, also known as 
Proposition A in this book, lies within this BRT fragment 
(see Appendix A). Here we have 22^9 = 2512 statements. This 
is entirely unmanageable. It would take several major new 
ideas to make this manageable in any sense of the word. The 
same is true even for A,B,C,fA,fB,fC,gA,gB,gC,⊆, since by 
Theorem 1.1.2, this involves 264 statements. There is a lot 
of simplification coming from ⊆, but there does not seem to 
be nearly enough for manageability. 
 
However, the Principal Exotic Case lies within the much 
smaller fragment EBRT in A,C,fA,fB,gB,gC,⊆ on (ELG,INF). We 
expect to get enough substantive simplification from ⊆ to 
make A,C,fA,fB,gB,gC,⊆ as a manageable decade long project. 
According to Theorem 1.1.2, the relevant count is 227 before 
substantive simplifications. 
 
In section 3, we give a classification for a very 
restricted subclass of the statements for EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on the BRT setting (ELG,INF). The 
Principal Exotic Case lies within this very restricted 
subclass with 38 = 6561 statements.  
 
The Principal Exotic Case is shown in Chapters 4,5 to be 
provable using strongly Mahlo cardinals of all finite 
orders, yet not provable in ZFC (assuming ZFC is 
consistent).  
 
We have given only an informal account of what we mean by a 
classification for a BRT fragment. We now seek to be more 
formal. 
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DEFINITION 1.1.41. Let α be a BRT fragment. A tabular 
classification for α is a table of the correct α formats.  
 
However, this definition does not take into account the 
background theory needed to document the table, which is of 
importance for BRT. 
 
Let T be a formal system with an adequate definition of the 
BRT fragment α.  
 
DEFINITION 1.1.42. We say that an α format S is α,T correct 
if and only if the α statement using S is provable in T. We 
say that S is α,T incorrect if and only if the α statement 
using S is refutable in T.  
 
DEFINITION 1.1.43. We say that α is T secure if and only if 
every α format is α,T correct or α,T incorrect.  
 
DEFINITION 1.1.44. A tabular α,T classification consists of 
a table of all α formats, together with a proof or 
refutation of each of the corresponding α statements, 
within T. This is a rather direct demonstration that α is T 
secure.  
 
In sections 2.2, 2.3, we provide what amounts to a tabular 
α,T classification for some simple BRT fragments α, where T 
is RCA0 or a weak extension of RCA0. 
 
In Chapter 3, we provide what amounts to a tabular α,SMAH+ 
classification for a very limited subclass of the EBRT 
formats α in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). (For 
SMAH+, see Appendix A). 
 
But for some α, it is not reasonable to present such large 
tables. How do we show that α is T secure? What then do we 
mean by a classification of the α statements in T?  
 
In sections 2.4 - 2.7, we do not present tables, but 
instead use a treelike methodology. In section 2.1, we 
develop the theory of this methodology, showing how the 
analyses in sections 2.4 - 2.7 demonstrate that α is T 
secure, for various α,T.  
 
To give a classification of the α statements in T, it 
suffices to give a listing of the maximally α,T correct α 
formats; i.e., the α,T correct α formats that are not 
properly included in any other α,T correct format.  
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In section 2.1, we define the T classifications, TREE, for 
α. We prove that there is a T classification for α if and 
only if α is T secure. We also give an algorithm for 
generating the maximally α,T correct α formats from TREE. 
We show that the number of maximally α,T correct α formats 
is at most the number of vertices in TREE.  
 
In sections 2.4 - 2.7, T classifications for the relevant α 
are actually given in a style prescribed in section 2.1, 
where T = RCA0 and ACA'. 
 
The classifications given in Chapters 2 and 3 are rather 
limited in scope. For instance, we conjecture that  
 
i. EBRT in A,B,fA,fB,fN on any of the five basic BRT 
settings is RCA0 secure. 
 
ii. IBRT in A,B,fA,fB,fN on any of the five basic BRT 
settings is ACA’ secure. 
 
iii. EBRT/IBRT in A,B,C,fA,fB,fC,gA,gB,gC,fN,gN on any of 
the five basic BRT settings is SMAH+ secure. 
 
These conjectures are wide open. In fact, we have not even 
established any of i-iii for A,B,fA,fB. We have established 
i-iii for A,B,fA,fB,⊆.  


