APPENDIX A

PRINCIPAL CLASSES OF FUNCTIONS AND SETS

N is the set of all nonnegative integers. |x| is max(x).
MF is the set of all functions whose domain is a subset of some N^{k} and whose range is a subset of N.

SD is the set of all $f \in M F$ such that for all $x \in \operatorname{dom}(f)$, $f(x)>|x|$.

EVSD is the set of all $f \in M F$ such that for all but finitely many $x \in \operatorname{dom}(f), f(x)>|x|$.

ELG is the set of all $f \in M F$ such that there exist c,d > 1 obeying the following condition. For all but finitely many $x \in \operatorname{dom}(f), c|x| \leq f(x) \leq d|x|$.

LB is the set of all $f \in \operatorname{MF}$ such that there exists d obeying the following condition. For all $x \in \operatorname{dom}(f),|x| \leq$ d|x|.

EXPN is the set of all $f \in M F$ such that there exists $c>1$ obeying the following condition. For all but finitely many $x \in \operatorname{dom}(f), c|x| \leq f(x)$.

BAF is the set of all $f \in M F$ which can be written using $0,1,+,-, \cdot \uparrow, \log$, where $x-y=\max (x-y, 0), x \uparrow=2^{x}, \log (x)=$ floor(log(x)) if $x>0 ; 0$ otherwise. Closure under definition by cases, using <,=, is derived in section 5.1.

INF is the set of all infinite subsets of N .
PRINCIPAL FORMAL SYSTEMS

The systems $\mathrm{RCA}_{0}, W K L_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}, \Pi_{1}^{1}-\mathrm{CA}_{0}$ of Reverse Mathematics (see section 0.4).

The systems ACA', ACA $^{+}$(Definitions 1.4.1, 6.2.1).

The systems ZFC, MAH, SMAH, MAH ${ }^{+}$, SMAH ${ }^{+}$. MAH $=$ZFC + \{there exists an n -Mahlo cardinal\}n. SMAH $=$ ZFC + \{there exists a strongly n -Mahlo cardinal\}n. $\mathrm{MAH}^{+}=$ZFC $+(\forall \mathrm{n}<\omega)(\exists \kappa)(\kappa$ is an n -Mahlo cardinal). SMAH ${ }^{+}=\mathrm{ZFC}+(\forall \mathrm{n}<\omega)(\exists \kappa)(\kappa$ is a strongly n-Mahlo cardinal). (Definitions 4.1.1, 4.1.2).

INDEPENDENT PROPOSITIONS

PROPOSITION A. For all $f, g \in E L G$ there exist $A, B, C \in I N F$ such that

A $\cup . f A \subseteq C \cup . g B$
$A \cup . f B \subseteq C \cup . g C$.
PROPOSITION B. Let $f, g \in$ ELG and $n \geq 1$. There exist infinite $A_{1} \subseteq \ldots \subseteq A_{n} \subseteq N$ such that
i) for all $1 \leq i<n, f A_{i} \subseteq A_{i+1} \cup . g A_{i+1}$; ii) $A_{1} \cap f A_{n}=\varnothing$.

PROPOSITION C. For all f,g $\in E L G \cap \operatorname{SD} \cap$ BAF, there exist $A, B, C \in I N F$ such that
$A \cup . f A \subseteq C \cup . g B$
$A \cup . f B \subseteq C \cup . g C$.
U. is disjoint union. Its presence indicates that its left and right sides are disjoint sets.

Trivial implications: $B \rightarrow A \rightarrow C$.
Proposition A is the Principal Exotic Case, which arises in Chapter 3 (see section 3.13). Proposition B is proved in Chapter 4 in ACA' + 1-Con(SMAH). Proposition C is shown in Chapter 5 to imply 1 -Con (SMAH) in ACA'.

In section 6.1, we treat the following five Propositions.
PROPOSITION D. Let $f \in \operatorname{LB} \cap$ EVSD, $g \in E X P N, E \subseteq N$ be infinite, and $n \geq 1$. There exist infinite $A_{1} \subseteq \ldots \subseteq A_{n} \subseteq N$ such that
i) for all $1 \leq i<n, f A_{i} \subseteq A_{i+1} \cup$. $g A_{i+1}$;
ii) $A_{1} \cap f A_{n}=\varnothing$;
iii) $A_{1} \subseteq E$.

PROPOSITION E. For all f,g $\in \operatorname{ELG} \cap \operatorname{SD} \cap$ BAF there exist $A \subseteq$ $B \subseteq C \subseteq N$, each containing infinitely many powers of 2 , such that

$$
f A \subseteq B \cup . g B
$$

$f B \subseteq C \cup . g C$
PROPOSITION F. For all f,g $\in E L G \cap \operatorname{SD} \cap$ BAF there exist $A \subseteq$ $B \subseteq C \subseteq N$, each containing infinitely many powers of 2 , such that
$f A \subseteq C \cup . g B$
$f B \subseteq C \cup . g C$
PROPOSITIOIN G. For all f,g \in ELG \cap SD \cap BAF there exist $A, B, C \subseteq N$, whose intersection contains infinitely many powers of 2 , such that
$f A \subseteq C \cup . g B$
$f B \subseteq C \cup . g C$
PROPOSITIOIN H. For all f,g \in ELG \cap SD \cap BAF there exist $A, B, C \subseteq N$, where $A \cap B$ contains infinitely many powers of 2 , such that

$$
f A \subseteq C \cup . g B
$$

$f B \subseteq C \cup . g C$
Each of these seven Propositions are shown in ACA' to be equivalent to 1 -Con (SMAH).

Trivial implications: $D \rightarrow B \rightarrow A \rightarrow C$ and $D \rightarrow E \rightarrow F \rightarrow G$ $\rightarrow \mathrm{H}$.

In section 6.2, we treat the following arithmetic forms.

PROPOSITION C[prim]. For all f,g $\in E L G \cap S D \cap B A F, ~ t h e r e$ exist $A, B, C \in I N F$ with primitive recursive enumeration functions, such that
$A \cup . f A \subseteq C \cup . g B$
$A \cup . f B \subseteq C \cup . g C$.
PROPOSITION E[prim]. For all f,g \in ELG \cap SD \cap BAF there exist $A \subseteq B \subseteq C \subseteq N$ with primitive recursive enumeration functions, each containing infinitely many powers of 2 , such that
$f A \subseteq B \cup . g B$
$f B \subseteq C \cup . g C$
PROPOSITION F[prim]. For all f,g $\in \operatorname{ELG} \cap \mathrm{SD} \cap$ BAF there exist $A \subseteq B \subseteq C \subseteq N$ with primitive enumeration functions, each containing infinitely many powers of 2 , such that
$f A \subseteq C \cup . g B$
$f B \subseteq C \cup . g C$

PROPOSITION G[prim]. For all f,g \in ELG \cap SD \cap BAF there exist $A, B, C \subseteq N$ with primitive recursive enumeration functions, whose intersection contains infinitely many powers of 2 , such that
$f A \subseteq C \cup . g B$
$f B \subseteq C \cup . g C$
PROPOSITION H[prim]. For all f,g \in ELG \cap SD \cap BAF there exist $A, B, C \subseteq N$ with primitive enumeration functions, where $A \cap B$ contains infinitely many powers of 2 , such that
$f A \subseteq C \cup . g B$
$f B \subseteq C \cup . g C$

