APPENDIX A

PRINCIPAL CLASSES OF FUNCTIONS AND SETS

N is the set of all nonnegative integers. |x| is max(x).

MF is the set of all functions whose domain is a subset of some N^k and whose range is a subset of N.

SD is the set of all $f \in MF$ such that for all $x \in dom(f)$, f(x) > |x|.

EVSD is the set of all $f \in MF$ such that for all but finitely many $x \in dom(f)$, f(x) > |x|.

ELG is the set of all $f \in MF$ such that there exist c, d > 1 obeying the following condition. For all but finitely many $x \in dom(f)$, $c|x| \le f(x) \le d|x|$.

LB is the set of all $f \in MF$ such that there exists d obeying the following condition. For all $x \in dom(f)$, $|x| \le d|x|$.

EXPN is the set of all $f \in MF$ such that there exists c > 1 obeying the following condition. For all but finitely many $x \in dom(f)$, $c|x| \le f(x)$.

BAF is the set of all $f \in MF$ which can be written using $0,1,+,-,\bullet,\uparrow,\log$, where $x-y=\max(x-y,0)$, $x\uparrow=2^x$, $\log(x)=f\log(\log(x))$ if x>0; 0 otherwise. Closure under definition by cases, using <,=, is derived in section 5.1.

INF is the set of all infinite subsets of N.

PRINCIPAL FORMAL SYSTEMS

The systems RCA0, WKL0, ACA0 , ATR0, Π^1_1 -CA0 of Reverse Mathematics (see section 0.4).

The systems ACA', ACA $^+$ (Definitions 1.4.1, 6.2.1).

The systems ZFC, MAH, SMAH, MAH⁺, SMAH⁺. MAH = ZFC + {there exists an n-Mahlo cardinal}_n. SMAH = ZFC + {there exists a strongly n-Mahlo cardinal}_n. MAH⁺ = ZFC + (\forall n < ω) ($\exists \kappa$) (κ is an n-Mahlo cardinal). SMAH⁺ = ZFC + (\forall n < ω) ($\exists \kappa$) (κ is a strongly n-Mahlo cardinal). (Definitions 4.1.1, 4.1.2).

INDEPENDENT PROPOSITIONS

PROPOSITION A. For all f,g \in ELG there exist A,B,C \in INF such that

A U. $fA \subseteq C$ U. gBA U. $fB \subseteq C$ U. gC.

PROPOSITION B. Let f,g \in ELG and n \geq 1. There exist infinite $A_1 \subseteq \ldots \subseteq A_n \subseteq N$ such that i) for all $1 \leq i < n$, $fA_i \subseteq A_{i+1} \cup \ldots gA_{i+1}$; ii) $A_1 \cap fA_n = \emptyset$.

PROPOSITION C. For all f,g \in ELG \cap SD \cap BAF, there exist A,B,C \in INF such that

A U. fA \subseteq C U. gB A U. fB \subseteq C U. gC.

U. is disjoint union. Its presence indicates that its left and right sides are disjoint sets.

Trivial implications: $B \rightarrow A \rightarrow C$.

Proposition A is the Principal Exotic Case, which arises in Chapter 3 (see section 3.13). Proposition B is proved in Chapter 4 in ACA' + 1-Con(SMAH). Proposition C is shown in Chapter 5 to imply 1-Con(SMAH) in ACA'.

In section 6.1, we treat the following five Propositions.

PROPOSITION D. Let $f \in LB \cap EVSD$, $g \in EXPN$, $E \subseteq N$ be infinite, and $n \ge 1$. There exist infinite $A_1 \subseteq \ldots \subseteq A_n \subseteq N$ such that

- i) for all 1 \leq i < n, fA_i \subseteq A_{i+1} U. gA_{i+1};
- ii) $A_1 \cap fA_n = \emptyset$;
- iii) $A_1 \subseteq E$.

PROPOSITION E. For all f,g \in ELG \cap SD \cap BAF there exist A \subseteq B \subseteq C \subseteq N, each containing infinitely many powers of 2, such that

fA ⊆ B U. qB

PROPOSITION F. For all f,g \in ELG \cap SD \cap BAF there exist A \subseteq B \subseteq C \subseteq N, each containing infinitely many powers of 2, such that

 $fA \subseteq C \cup gB$ $fB \subseteq C \cup gC$

PROPOSITIOIN G. For all f,g \in ELG \cap SD \cap BAF there exist A,B,C \subseteq N, whose intersection contains infinitely many powers of 2, such that

 $fA \subseteq C \cup gB$ $fB \subseteq C \cup gC$

PROPOSITIOIN H. For all f,g \in ELG \cap SD \cap BAF there exist A,B,C \subseteq N, where A \cap B contains infinitely many powers of 2, such that

 $fA \subseteq C \cup gB$ $fB \subseteq C \cup gC$

Each of these seven Propositions are shown in ACA' to be equivalent to 1-Con(SMAH).

Trivial implications: D \rightarrow B \rightarrow A \rightarrow C, and D \rightarrow E \rightarrow F \rightarrow G \rightarrow H.

In section 6.2, we treat the following arithmetic forms.

PROPOSITION C[prim]. For all f,g \in ELG \cap SD \cap BAF, there exist A,B,C \in INF with primitive recursive enumeration functions, such that

A U. fA \subseteq C U. gB A U. fB \subseteq C U. gC.

PROPOSITION E[prim]. For all f,g \in ELG \cap SD \cap BAF there exist A \subseteq B \subseteq C \subseteq N with primitive recursive enumeration functions, each containing infinitely many powers of 2, such that

 $fA \subseteq B \cup gB$ $fB \subseteq C \cup gC$

PROPOSITION F[prim]. For all f,g \in ELG \cap SD \cap BAF there exist A \subseteq B \subseteq C \subseteq N with primitive enumeration functions, each containing infinitely many powers of 2, such that

 $fA \subseteq C \cup gB$ $fB \subseteq C \cup gC$ PROPOSITION G[prim]. For all f,g \in ELG \cap SD \cap BAF there exist A,B,C \subseteq N with primitive recursive enumeration functions, whose intersection contains infinitely many powers of 2, such that

 $fA \subseteq C \cup gB$ $fB \subseteq C \cup gC$

PROPOSITION H[prim]. For all f,g \in ELG \cap SD \cap BAF there exist A,B,C \subseteq N with primitive enumeration functions, where A \cap B contains infinitely many powers of 2, such that