
Setting up GitHub Version Control with Qt Creator*

 *This tutorial is assuming you already have an account on GitHub. If you don’t, go to

www.github.com and set up an account using your buckeyemail account. It will also require you

to install Git for your OS. You can check to see if you already have it installed by entering “git –

version” into your command prompt, as shown below. You can find the install for your OS

through a simple search if you need it.

Setting up Qt Creator for Git

 You’ll first need to point Qt to the location of the Git commands. This should be located

at “C:\Program Files\Git\bin”, where you’ll find the application entitled “git” along with 2 other

files as shown on the next page.

 Once you’ve located the file, copy the file location. Open Qt and navigate to Options

under the Tools menus. As shown below, navigate to Version Control and select Git. Paste the

file location from earlier into the text box labeled “Prepend to PATH:”. Once this is done, you’ll

be able to use Git in Qt Creator.

Starting a New Project with Git in Qt Creator

 Now that Qt Creator is configured for Git, it’s time to start a new project. You’ll first

want to create your remote repository on GitHub. Once you’ve logged in, click “New

repository”. Make sure to initialize it with a README and to add a Qt .gitignore, as shown

below BEFORE creating the repository. To add the .gitignore, click “Add .gitignore” and type in

“Qt”.

 Once you’ve created your repository, you’ll need to clone it to your computer. Open the

command line. For Mac users, you can open the normal terminal. For Windows users, you’ll

need to open “Git CMD”. Make sure your working directory is where you intend to put the

project. To clone the repository, type “git clone repository_url” as shown on the next page.

 If you navigate to the working directory, you should now see a folder matching the

repository name. The final step is to create the project in Qt Creator. Create the project as you’ve

done previously, selecting “FEH Proteus SD”. Make sure you create it in the same directory that

you cloned the repository to. Name the project the exact same as the repository. Don’t worry

about the warning of the project existing. Under Summary, make sure the option “Add to version

control:” is set to “Git”. You’ll get a warning about the Makefile not being added to the version

control; open the project anyways.

Using Version Control in Qt Creator

 Your project is now set up and ready to go. You can even build it to be sure. As with

other files, it is important to constantly save them. With version control, you’ll be committing

your changes locally and pushing those changes to the remote repository. There will be a brief

overview of this here. You can find more thorough “best practices” elsewhere online.

 To commit your changes, or add files to the repository, go to Tools >> Git >> Local

Repository >> Commit. You’ll see a list of files with changes or those yet to be added to the

remote repository, as well as a description text box. Be sure to have descriptive comments about

the changes being made to help you if you need to revert to older code. Commit Information is

optional but useful if multiple people are working on your code. Once you’ve selected your files

to commit and added a description, click “Commit”. If you’ve done it correctly, you’ll see

“Committed x file(s).” in the bottom of your screen.

 To push your changes, go to Tool >> Git >> Remote Repository >> Push. If you made

your repository Private, you’ll get a prompt for your username and password. You’ll see the push

command at the bottom of the screen. You can confirm the push by reloading the repository in a

browser. If it didn’t push and you get a timeout error after a minute, you pointed Qt to the wrong

place for the Git commands.

 If multiple people are working on your code or you’re working on multiple computers, it

is a good idea to pull the current repository down. To do so, go to Tools >> Git >> Remote

Repository >> Pull. If you’re up-to-date, you’ll be notified. Otherwise, your workspace will be

updated with the changes. If a new file didn’t appear to be added, right-click on the project and

select “Add Existing Files”.

