Robot Design Project

Engineering 1282.01H
Spring, 2016

Team B5: Leeroy Jenkins
Paul Harshbarger
Benjamin Higgins

Jonathan Liew
Logan Meyer

E. Helber/R. Freuler MWEF 8:00 AM

Start Date: 01/29/16
Date of Submission: 04/25/16

Team B5 — Executive Summary

The Fundamentals of Engineering for Honors Space Administration required a fully
autonomous robot to complete missile launch preparations at the spaceport. It was important that
this robot was created as the safety zone around the launch site contained materials hazardous to
human personnel. FEHSA commissioned the Ohio State University Research and
Engineering Development team to select a prototype presented by our company and competitors.

A team of four engineers was brought together to design several potential prototypes that
could successfully navigate OSURED's scale model spaceport. After evaluating three potential
designs, the team settled upon a robot that would utilize omnidirectional wheels for holonomic
drive. On top of the chassis were two mechanical arms for toggling the communications, a servo
motor arm for manipulating supplies, and two offset trunnions for pressing the fuel buttons.
Utilizing the omnidirectional drive, the robot would be able to more efficiently move around the
course, and would reliably align with its tasks. With almost entirely mechanical means of
accomplishing objectives, the robot's design was kept simple and low-cost.

Exhaustive testing has proven the design to be reliable and efficient. The robot is capable
to consistently accomplishing all objectives set by FEHSA and within the constraints set by the
agency. In official FEHSA testing, the robot scored one prefect run out of three in individual
competitions, and seven perfect runs out of seven in head to head competitions.

Future changes could be made to the robot to increase efficiency for the full scale robot.
Larger diameter wheels could be pursued to allow the robot to go up the main ramp. This would
cut a significant amount of time from preparations. Secondly, more durable materials could be
pursued. Prototype materials such as paper and rubber bands were used to great effect in the scale
model; however, these materials would not do for full scale production.

Contents

Team B5 — EXECULIVE SUMMAIYccviiieiieic ettt te e ta e e raeaeanaesteesneaneesnaenneas I
ISR 101 1 oo [F T { [o PSRRI 1
1.1 Problem Statement — General OVEIVIEWcccoiiiiiiieiieie e 1
1.2 The Team and Project Datesccciiiiiiiiiiiiiieiee s 1
1.3 Roadmap for Remainder Of REPOIT.........coiiiiiiiiieieee s 2
2. Preliminary CONCEPLSccveiieieee ettt et e e st e s te e e e s te e beeneesneesreenee e 3
2.1 Project Requirements and CONSIIAINTSccccverieiieiieie e 3
0 S - T o I T | USSP 4
2.1.2 Air Purification System SUPPIIES........ccoveiiiiiiicie e 4
2.1.3 Launch SWItCh SEQUENCEcoiiieiiiciteret e 5
2.14 FUBIDEIIVEIY ..ot 6
2.1.5 Final LaunCh BULIONoooiiiiiie et 7
2.1.6 RAMP NAVIGATION ..ouviiiiiitiiiieiieieee ettt bbb 8
217 PENAITIES ..ottt et bbb ne e 8

2.2 BraiNStOIMING PrOCESS.......cviitiiitieieiteeite e st e steetesteeste et ste e teestesseesteentesreesteesesraesneenee e 8
2.2.1 INAIVIAUAL THRAS.c.viiviiiiiiiciieieee et et 9
2.2.2 Group BrainStormMiNgc.ccceeiueiieiieie sttt sre e ena s 13

2.3 Generating a Preliminary DESIGNcccuiiiiiiiiiieene et 17
2.3. 1 TR TRIEE TURAS. ... ceiueeeeeiie ettt ettt sneenneeneenneeneas 17
2.3.2 THe SCOMNG MALIIX ..c.viiiiiiiieiieieie ettt 20
2.3.3 IMOCKUP CrEALION ..ottt 21
2.3.4 Flowcharts and PSEUAOCOUE..........ccveuieiiiieeee et 22

3. Analysis, Testing, and ReFINEMENTScoviiiiiiiicce s 24
3.1 Performance Test 1 REfINEMENTScccoiiiiiiiiiieee e 24
3.2 Performance Test 2 REfINEMENTScccoiiiiiiiieieee e 27
3.3 Performance Test 3 REFINEMENTSccveiiiiiiieiecie e 28
3.4 Performance Test 4 REFINEMENTScocveiuiiieiieii e 30
3.5 Additional Refinements before Individual Competition..............ccoovvvieienenincniiens 32
4. Individual COMPETITIONc.eiiiiiii i 34
O R -1 (<] 0 T TP PP PSPPI PRSPPI 34

O N @ [B 0 T £ IS 1 - L=T 0 | ST 35

4.1.2 Pre-RUN Preparationsc.ooioiiiieiieiesie sttt nae s 36

4.1.3 IN-RUN STFAEEQY ..ottt et ne e 37
4.1.4 BEIWEEN RUNS ..ottt nr e 38
4.2 PEITOIMMANCEooviiiiie ettt bbbttt ettt bbb beenes 38
4.2.1 First RUN — INStructor’s CROICE.......veiuiiieiieiii e seeste e see et 38
4.2.2 Second Run — Random ASSIGNMENTcceiviieiieeieee e sie e 39
4.2.3 Third RUN — TAM ChOICE.......eiiiieiiieiie st 39
4.3 Analysis 0f REASONS FOr SUCCESS........coviiiiiiiriiiiiiieiei e 39
4.4 Analysis of Reasons for Fallure ... 40
4.5 Potential IMPrOVEMENTS.coiiiiieiece e 41
FINAI DBSIGN ...ttt bbbt e bbb bbb 42
70 A = 10 To o 1= SRS 43
5.1.1 BUAQEL OVEF TIIMIE ..eiiieiiieieiieeie ettt ettt re e taete e e sreenneenee e 43
5.1.2 Budget Breakdown by Part TYPE......cccvceiiiii e 44
5.2 Final Design of Chassis and DIiVELIaiN..........c.cccveieiieie e 45
521 Navigation and DIIVING.......cccoeieiiiiniiiiesiseeie e 46
5.2.2 C0SE i b bbb e b b e ba et e nree e 46
5.3 Final Design of EIeCtrical SYSIEMScccoiiiiiiiieee e 47
5.4 Final Design of MECRANISIMS........cc.oiiiiiiiiiiiieeee e 48
54.1 SWItCh TOQQIING AMMSuoiiiiiiiiiee et 49
5.4.2 Air Filtration SUPPHES........coieiiiieie ettt 49
5.4.3 FUel DEIVErY APPAratUScc.ecviiieeiieiiesieeiteetesteeste e seesre e s e sreeste e e e sre e 50
5.5 Final Design of QR COde IMOUNLccociuiiiiiicie e 51
5.6 FINAICOU ...ttt bbb eneas 51
5.6.1 SOFtWAIE STIUCIUIEeeveieiieiieeie ettt e st enneeneenneeneas 52
5.6.2 COUE FUNCLIONSveeiieieeiiesieeie ettt ee et e steeneesneesreeneesneenneeneenneeneas 53
TGRS B Y= 63 To] o @0 011 (o] ISR 54
5.7 Final Schedule and TIMe ..o 54
FINAI COMPETITION ...ttt bbb eneas 55
0.1 SHIAIEOY . ettt 56
T T 0] 1= o o PSSR 56

6.3 Analysis Of REASONS TOI SUCCESS.......ccueiuiriiriiiiieiieieie ettt 57

6.4 Analysis 0f ReasoNns fOr FAIUIEcoovoiiiiiiiei s 58

7. SUMMary and CONCIUSIONSccuiiiiiieiecie ettt sa e ne e e 59
T.1 SUIMIMEBEY oottt ettt sttt ettt e bb e et e e s hb e et e e shb e e m bt e eb e e e ab e e sabeebeesbeeenbeenaneenes 59
7.2 CONCIUSIONS ...ttt bbb bbbttt b e b st et st st et e beebeanean 61

8. RETEIBNCES ...ttt bbbttt bbb ene s 63

APPENDIX A: The Course and SCOMNGc.cciueiierieiieiieieseesieeseeseeste e sae e aseesreesseensesseesseens Al

APPENDIX B: Brainstorming ldeas and Design CONCEPLSccvevverveiieiiverieiieseese e Bl

APPENDIX C: DECISION IMALICES........eeitieiieiiieiiieiesieesie e siiesie e siee st sseesseeste et steesbesneesreeneesnee e C1

APPENDIX D: MOCKUD TMAGES ...ttt D1

F N o = D T b G =l =W o [0 £ OSSPSR El

APPENDIX F: Final Design and TIME.......ccooiiiiiiiiiiieieieie ettt F1

APPENDIX G: DIaWING SEL......ciuiiiiiiieiiieiteete sttt ste et ste et e te e ae e steene e steeeesnnenneas Gl

APPENDIX H: FINAI COUE ..ottt H1

List of Tables

Table 1: Constraints for Robot Design Project [1]cccevvveriiieieeie e 3
Table 2: Pseudocode Header FIlES ... 23
Table 3:Key CdS Readings and Thresholdscccvovviieiieiiiicceccce e 25
Table 4: Member Roles During Individual COmpPetition............cccoeiiiiiiiininieieese e 36
Table 5: Breakdown of Hours Spent by Categoryc.oiveiioiiieieeisie e 52
Table 6: Description of Runs at Final Competitioncooeiiieniiiiieee e 57
Table AL: SCOMNG SYSEIM .. .iiuiiiiiecie ettt te e re e te et e s be e beeneesseenseaneesreenneens A2
Table A2: Locations and Corresponding RPS ValUEs............cccocveieiieii e, A8
Table C1: Drivetrain SCreeNiNgG IMALIIXcooviveiiiieiie e C2
Table C2: Chassis SCreeniNg IMALIIX........ceiiriiieierieiesiese e C2
Table C3: Switch Toggling SCreening IMatriXccoeieiiiiiiiiiie s C3
Table C4: FUel DelIVErY IMAIIIX........ociiiiiiieiieieiee bbb C3
Table C5: FiNal BULLON MAaLIIX........cveiiiieiieieeiesiese ettt snee et aneesreenseanee e C4
Table CB: SUPPIIES IMALIIXeevieeieiieeiieeie ettt ta e ereesbeenae s e nreenaeanee e C4
Table C7: FINal SCOMNG IMALIIXoviiiiiiiiiiiieieee et C5
Table EL: FINAI BUAGELc.eoiieeeceece ettt ettt te e nre e neenn e E2
Table E2: Cost Breakdown of Budget by Part TYPE........cccoveiiiieiieiecc e E3
Table F1: GPIO INFOIMALION......c.iiieieeiecie ettt anee e F7
Table F2: Motor Electrical INfOrmation............ccoooveieiiiiieiiee e F8
Table F3: Condensed Final Design Schedule ... F9

Table F4: Outline of Different Funcitons Used in FiNal COdeuvveeeeeeeieeiieiiiieiiiineeens F10

List of Figures

Figure 1: Starting Area for RODOt COUISE [3] ...oveiieiiieieiieie e 4
Figure 2: Storage Bin for Air Purification System [3]......ccccceie e 5
Figure 3: Receptacle Bin for Air Purification System [3]cccooeviiiiiienieeie e 5
Figure 4: Launch Sequence Activation SWItChes [3].........ccooiiiiiiiiiieee e 6
Figure 5: FUEI DEIIVEIY [3] ...t 7
Figure 6: Final Launch BULtON [3]ooiiiiiiieieeiese e 7
Figure 7: Orthographic Projections Of First DeSIgN.........ccooviieieieieicieseseeeee e 18
Figure 8: Second Potential Preliminary DeSIgN.........ccccuiiiiiiiiiieiesc e 19
Figure 9: Third Potential Design for Preliminary CONCEPL.........cccoveiiriiiniiieieee e 20
Figure 10: Completed PhysSical MOCKUP.........ccciiiiiiiiiiic e 21

Figure 11:

Direct Drive, FOUr MOEOr DESIGNc.coiuiiieiieieeie sttt 22

Figure 12: Course Strategy for Individual COmMPetitioncccooviiiiiinininiecee e 36
Figure 13: Final Image of BIaCK Baroncccoeiiiiiiiiiiiiceee e 43
Figure 14: Cost Breakdown of Budget by Part TYPe.......cocoovieiiiii i 44
Figure 15: Detailed Breakdown of Budget Allocated to Chassis and Drivetrain.............c...c....... 47
Figure 16: The Structure of the Software was Modular and Tieredccccoevevieiievciiieieenns 52
Figure 17: Sinusoidal Curves of the Motor Percentages as the Heading Changes....................... 53
Figure AL: TOp VIEW OF COUISE [4]...ciiieiiiiiiieieeieiee e A3
Figure A2: Main RAMP [B] «.eeoeeieieieiesesi ettt bbbt A3
Figure A3: Temporary ACCESS RAMP [3] ... iiueiiriiiiieieiieiie s A3
Figure Ad: Weather Ball [3]coooiiiiieiii e A4
Figure A5: Proposed Course Strategy for First DESIGNccocviiiirieiieiiniene e A4
Figure A6: Proposed Course Strategy for Second DeSIgN...........cccvvirieienene e, A5
Figure A7: Proposed Course Strategy for Third DeSIgn...........ccccvririeieienenc i, A5
Figure A8: Performance TeSt 1 Path..........cocoiiiiiiiiiiee e A6
Figure A9: Performance TeSt 2 Path..........ccocoiiiiiiiii e A6
Figure AL10: Performance TeSt 3 Path..........ccooiiiiiiiiiiie e AT
Figure AL11: Key LOoCations fOr RPS.........covoiiie ettt s A7
Figure A12: Peformance TeSt 4 Path..........c.coovoiiiiiii e A8
Figure B1: Train Chassis/Drivetrain Design 1dea...........ccoviiiiiiiiinc it B2
Figure B2: Mecanum Wheel Chassis DESIONccviiiiiiiriiieieiesese e B2
Figure B3: Tread Drivetrain DESIGNcoviieiiiiieiesesie et B2
Figure B4: FOrkIift DeSign THEA..........ccoiiiiiiiieiee e B3
Figure B5: Supply Mechanism Proposal ... B3
Figure B6: ViCe Grip MECNANISIM ..ottt bbbt B3
Figure B7: T-Shaped HOOK TUEA..........ciiiiiiiieieie e B4
Figure B8: Double Sided HOOK TUEA...........coiiieiiieie e B4

Figure B9: Vertically Moving SWitch Arm 1d€acoovviiiiiiee e B4

Figure B10: Retractable SIOtS 1A &cc.ecviiieiicie et B5

Figure BL11: SEESAW LEVEN IUBAcveivieiieieitieite ettt et te e sne e B5
Figure B12: Vertically Moving Front Panel 1deaccccoveiieiiiic i B5
Figure B13: Potential BUMPEr DESIGNccueiieiiiiieiieie e see e ste e sa et ae e e e sne e sneenae s B6
Figure B14: Preliminary FIOWChAItcocoiiiiiic e B6
Figure D1: Physical MOCKUP CRESSISccuiiiiiieieieiiesie ittt D2
Figure D2: Underside of SOlIdWOrks MOdel...........ccooiiiiiiiiiiiiiieccec e D2
Figure D3: Layout Drawing OF MOCKUPcouiiiiiiiiiieic et D3
Figure E1: Line Chart Depiction of Budget OVer TIMEccccveieiieiieie e s E3
Figure F1: SolidWorks Model of Completed RODOL...........cccoveiiiiiiiiiiiiiece e F2
Figure F2: Disassembled ChaSSiSccuiiiiiiiiiieiesesseee e F2
Figure F3: Omnidirectional WNEE ..o F3
Figure F4: Motor and Wheel CONNECLIONcooiiiiiiiiiiiiceee e F3
Figure F5: Long Arm FiNal DESIGNccviiiiiieieie it F4
Figure F6: Short Arm FiNal DESIONcoviiieiicece st sae e F4
Figure F7: Supplies Arm FINal DESIQNc.ciieiiiieiee ittt ve et saa e F5
Figure F8: Trunnion Checkerboard Final DeSIgNcccccoviiieiiiii e F5
Figure F9: QR Code Mount Final DESIGN.......cciiiieiieiieie et sre e F6
Figure F10: Pie Chart Breakdown of Hours Spent by Categorycccccvvveieeveiieiiese e F6

Figure F11: Electrical Wiring DIagramcccciiieiieiiiic e sae e sre e sae e F8

1. Introduction

Autonomous machines allow for safer, more precise, and faster task completion than human
systems. Their motors, sensors, and programs play a major role in attaining these results
consistently. By integrating these systems into an adaptable code that focuses on minimizing error,
maximum efficiency and success can be achieved. Currently, these systems need to be applied to
create an autonomous robot to complete the tasks for the Fundamentals of Engineering for Honors
Space Administration’s, or FEHSA’s, rocket launch site [1]. The robot needs to complete
preparation tasks for rocket launch to ensure the safety of human personnel near the launch zone.
The purpose of this project was to create a scaled prototype of the full robot to secure a working

contract with FEHSA.

1.1 Problem Statement — General Overview

The section serves to more clearly define the specific tasks that FEHSA required for their
rocket launch preparation. The robot needed to transfer air purification system supplies to the space
shuttle from the lower level. Also, it needed to supply liquid hydrogen and oxygen to the rocket
and initialize the communications systems for the launch sequence, weather, and shuttle
electronics stations. Lastly, the robot had to signal the crew once all of the necessary launch

preparation tasks were completed [1].

1.2 The Team and Project Dates
Team B5: Leeroy Jenkins consisted of four members. The members were Paul Harshbarger,
an electrical engineering pre-major; Benjamin Higgins, a materials science pre-major; Jonathan

Liew, a biomedical engineering pre-major; and Logan Meyer, a mechanical engineering pre-major.
1

The project was time sensitive and needed to meet certain timelines set out by FEHSA. Before
February 26, 2016, the robot needed be able to react to a start light and make it to the upper surface
of the launch preparation site. By March 4, 2016, the robot was to toggle the communications
switches forward or backward based on crew input. Prior to March 11, 2016, the robot should have
been able to transport the air purification supplies from the bottom bin to the top receptacle. By
March 25, 2016, the robot needed to press and hold the correct fuel button to transfer either liquid
hydrogen or oxygen to the rocket [2]. On April 1st, the robot competed in an individual competition
viewed by FEHSA for initial design impressions. On April 9, 2016, the robot competed against

other companies to determine who would be awarded the contract with FEHSA [1].

1.3 Roadmap for Remainder of Report

The following section, Preliminary Concepts, highlights the methodology and results of the
team’s initial robot design brainstorming process. The Analysis, Testing, and Refinement section
discusses all of the calculations, tests, and analyses that led to alterations in the physical design,
strategy, and code. The next section, entitled Individual Competition, discusses the strategy going
into the individual competition, the outcomes of the competition, and the changes made following
the competition. The Final Design section explains the full details of the final design including the
final budget, SolidWorks model of the design, code, and electrical systems documentation. The
following section, named Final Competition, describes the strategy for the competition and the
outcomes of the competition. The final section, Summary and Conclusions, summarizes all of the
previous information and analyzes all of the information to make recommendations for what
changes would be made in future, similar projects. Lastly, the Appendices contain all the other
information needed to fully understand the project including figures, tables, budgets, and more.

2

2. Preliminary Concepts

The purpose of this section is to provide detail on the specific requirements and constraints for
the project. Additionally, it will outline the brainstorming process used to translate individual work
into an agreed upon preliminary concept. It will also give detailed sketches, images, flowcharts,

and pseudocodes needed to fully understand the initial design and programming plan.

2.1 Project Requirements and Constraints
In order to best complete the tasks required by the Fundamentals of Engineering Honors Space
Administration, FEHSA placed specific constraints on the robot to ensure that the robot was

economically and physically pursuable. A full list of these constraints are given in Table 1 below.

Table 1: Constraints for Robot Design Project [1].

Constraint Purpose
$160 Budget Ensure that the robot is economically
reasonable for FEHSA
Only FEH Store Approved Parts Ensure guality control and

maintenance assistance with parts
12” Max Height, 9” Max Length, 9” Max | Ensure that robot will fit in the rocket

Width launch preparation site
Self-Propelled Robot Ensure safety for humans by removing
them from launch site
Place QR Code 9” Above Ground Ensure that robot can receive Robot
Positioning System (RPS) data
Performance Tests Deadlines to ensure that robot will be
able to complete all the tasks
No Adhesives on Proteus FEH property must be protected
2 Minute Course Time Limit Rocket preparation is time sensitive

In addition to these constraints, the robot needed to complete a specific set of tasks to earn

points for FEHSA’s prototype testing scoring system. Also, penalties existed to reduce scores for

3

performing tasks that would negatively affect rocket launch preparation. A brief summary of the
points scoring system used is given in Table Al in Appendix A. The following subsections will
contain a more detailed explanation of all of the tasks in the table. A top view of the course can be

found in Figure Al in Appendix A for reference in understanding the course and tasks.

2.1.1 Start Light

Before the robot attempted to complete any of the tasks, it first needed to be given a red light
start signal on a 12” by 12” platform [1]. An image of the starting area is given below in Figure 1.
The start light is the white rectangle at the center of the yellow area, while the start area is the
entire area encompassed by the blue outline. In order to achieve any points, the robot needed to

start on the start light.

Figure 1: Starting Area for Robot Course [3].

2.1.2 Air Purification System Supplies

One of the tasks that the robot needed to perform was to transport the air purification system
supplies from cargo storage bin on the bottom platform to the receptacle on the top platform. The
supplies weighed 77 + 1 grams, and the storage bin was approximately two inches lower than the

receptacle bin on the upper surface [1]. As shown in Table A1, the supplies needed to be removed

4

from the bin to receive the primary points, and correctly placing the supplies in the receptacle bin
allowed for the receipt of additional secondary points [1]. Images of the storage and receptacle
bins are given in Figure 2 and Figure 3 below. See Figure Al to see the bins in relation to each
other on the top course view. The storage bin appears in the bottom right portion of the course,

while the receptacle is in the top left portion of the image.

Figure 2: Storage Bin for Air Purification
System [3].

Figure 3: Receptacle Bin for Air
Purification System [3].

2.1.3 Launch Switch Sequence
The robot needed to flip the switches for the communications systems in the correct direction

to establish communication systems for the launch sequence, weather, and shuttle electronics

stations. To accomplish this task, the robot needed to receive information from the Robot
Positioning System, or RPS, on whether to push the switches forward or pull them backwards [1].
The switches were accessible from both the top and bottom platform of the preparation site.
However, there was a height difference between the ground and switches depending on which side
the switches were approached from, measured to be 3.0 inches. As shown in Table Al, primary
points were awarded for toggling one switch in the correct direction, while full secondary points
were awarded for moving all three switches into the correct positions [1]. An image of these

switches on the course appears below in Figure 4.

Figure 4: Launch Sequence Activation
Switches [3].

2.1.4 Fuel Delivery

A major task was to deliver either liquid hydrogen or liquid oxygen fuel to the rocket for five
seconds depending on what the FEHSA crew needed. To signal for liquid hydrogen, a red light
would shine in front of the buttons used to deliver fuel. To signal for liquid oxygen, a blue light
would shine in front of the buttons used to deliver fuel [3]. As shown in Table Al, primary points
were awarded for pressing the correct fuel button, while additional secondary points were awarded
for holding the button for five seconds [1]. An image of the fuel delivery system is given on the

following page in Figure 5.

Figure 5: Fuel Delivery [3].

2.1.5 Final Launch Button

Lastly, the robot needed to be able to press the final launch button, located on the start platform,
to inform the crew that the rocket was ready for launch. In order for the rocket to actually launch,
all of the primary and secondary tasks needed to be completed. As shown in Table Al there were
only primary points associated with pressing the final button [1]. An image of the final button is

given below in Figure 6.

Figure 6: Final Launch Button [3].

2.1.6 Ramp Navigation

In order to navigate between the upper and lower portions of the course, the robot could use
one of two available ramps. The first possible ramp option was a short, steep ramp with a
construction bump on the top of it. The bump’s diameter was measured to be one inch. The other
possible ramp option was a temporary access ramp that was longer, less steep, and contained two
right angle turns. However, the ramp did not have RPS established because it was only temporary
[1]. Images of the main ramp and the temporary access ramp are given in Figure A2 in Appendix

A and Figure A3 in Appendix A.

2.1.7 Penalties

Lastly, penalties had the ability to impact a robot’s score for the competitions. The punishable
offenses included knocking the weather ball off of the tower, interfering with a competitor’s robot
or objects, and failing to control own robot [1]. Knocking the weather ball off of its location or
interfering with a competitor’s objects resulted in a ten point deduction. An image of the weather
ball is given in Figure A4 in Appendix A. Failing to keep the robot within its current course's
bounds and/or impeding another competitor robot’s task execution resulted in automatic

disqualification.

2.2 Brainstorming Process

This section contains all of the information needed to understand the individual and team
portions of the brainstorming process that were used to generate a preliminary concept. First,
members individually viewed the course to generate ideas for the completion of tasks. Next,
everyone derived and created sketches for their own ideas for the robot chassis, drivetrain,

8

mechanisms for completing all of the tasks, and course path strategy. Then, the team worked as a
group to eliminate poor ideas and generate new ones to arrive at a preliminary concept using
scoring systems. After, physical and SolidWorks mockups of the robot were made. Finally,

pseudocodes and flowcharts were written to plan out the task execution in terms of programming.

2.2.1 Individual Ideas
This section contains all of the individual ideas generated from the brainstorming process. This

information is presented in text with supporting SolidWorks models and hand-drawn sketches.

2.2.1.1 Chassis and Drivetrain ldeas
One of the brainstorming ideas for the chassis involved a square base with rectangular cuts
on the corners for four wheels. The robot was to be rear driven by two motors, with the wheels on
each side connected by a chain and sprockets system. Additionally, a wireframe was to extend
from the chassis base to allow for the mounting of arms and sensors higher up on the robot. An
image of this design is given in Figure B1 in Appendix B.

Another brainstorming idea involved a laser cut chassis design with four Mecanum wheels
driven by four individual motors. This chassis and drivetrain system would allow for the robot to
move in any direction based on motor powers. An image of this design in given in Figure B2 in
Appendix B.

A third idea utilized a rectangular chassis being driven by tread system. There would be three
wheels on each side used to maintain tension in the treads. The top wheels on either side of the
robot would be used as the drive wheels for the entire robot. This idea was proposed by multiple

group members, and an image of this design is given in Figure B3 in Appendix B.

9

A final brainstorming idea for the chassis and drivetrain revolved around a rear-driven two
wheel drivetrain with two front skids. Another idea utilized four omnidirectional wheels driven by
four separate motors. This drivetrain was to be implemented onto a stationary rectangular chassis
with the wheels and motors mounted below the chassis. Other ideas involved similar concepts to
these, with rear wheel drive systems and skids or a different geometry of omnidirectional wheels,

all on a rectangular chassis.

2.2.1.2 Air Purification System Ideas

One idea developed in the brainstorming process for the handling of the supplies involved a
forklift-like design. The forklift would be mounted at a height equal to that of the supplies storage
area. Once the forklift was beneath the supplies, a servo motor would be used to tilt the supplies
in towards the body and secure them. It would then uncurl the forklift to deposit them. An image
of this design is given in Figure B4 in Appendix B.

A different design featured a fixed arm would be extended out and rotate upward once the
Lexan wall had been hit. Then, the arm would rotate downward to release the supplies once the
robot ran into the storage area. A sketch of this design is given in Figure B5 in Appendix B.

A vice grip option was proposed where the two sides of the dumbbell would be grabbed and
carried to the supplies receptacle. A servo motor would be used to clamp onto the sides of the
dumbbell and release when necessary. A sketch of this design is given in Figure B6 in Appendix
B.

Other ideas generated included a retractable pole with mounted magnets inside of a vertical
PVC pipe. To lift up the supplies, a servo motor would be used to lower the apparatus into the

storage bin, while the retracting the pole fully would cause the supplies to fall off into the

10

receptacle bin. A clamp design was discussed where the robot would grab the supplies from the
top and bottom of the center beam to carry them the receptacle. Additionally, a horizontal PVC
design with magnets was proposed. Magnets would line the inside of the PVC pipe, and the pipe

would be raised or lowered to drop off or pick up the supplies.

2.2.1.3 Launch Switch Mechanisms

The first brainstorming idea for toggling the switches involved a T-shaped hook that was
placed at a fixed height. This design would allow the switches to be pushed or pulled from either
the upper or lower platform, preventing the need to change platforms. A sketch of this design is
given in Figure B7 in Appendix B.

Instead of a T-shaped hook at the end of the stationary arm, a slightly different design was
proposed where there would be a double-sided hook that would allow for pushing or pulling. A
servo motor would be used to rotate the head of the arm in the necessary direction to push or pull
the switch. A sketch of this design in Figure B8 in Appendix B.

Another idea that was considered was an arm that moved up and down on a motor via gear and
pinion. The robot would then drive forward as needed to push the launch switches forward from
either the top or bottom portion of the course. An image of this design appears below in Figure B9
in Appendix B.

Additionally, a boxing glove design with two motors was considered. The first motor would
raise and lower the arm, while the second motor would extend and retract the arm. The switches
would only be pushed, not pulled from the top and the bottom. Another idea utilized a clamp
mounted at a height equal to that of the switches. Once the switches are clamped, the robot would

either drive forward or backward to push or pull the switch.

11

2.2.1.4 Fuel Button Ideas

One of the ideas proposed for fuel button management was a square that matched the geometry
of the fuel buttons. Depending on the color of the light, a slot the size of the buttons would be
retracted into the square by a motor. Then, the robot would just drive forward and the correct
button would be hit. An image of this apparatus is given in Figure B10 in Appendix B.

A seesaw lever controlled by a servo motor was proposed. Depending on the color of the fuel
light, the lever would rotate about its center to angle in towards the desired button. Then, the robot
would just drive forward and press the desired button. An image of this design is given in Figure
B11 in Appendix B.

The next idea used a flat panel design that would be raised or lowered by a motor. Depending
on the color of the light, the panel would be raised or lowered, and the robot would drive forward
to press the desired button. An image of this design is given in Figure B12 in Appendix B.

Other ideas considered included a checkerboard design. Based on the light color, the robot
would align itself with the fuel buttons such that the extended part of the checker board would hit
the desired button. Another idea considered was placing two fixed rods on the front and back of
the robot matching the heights of the buttons. Based on the color of the light, the robot would

rotate to align the correct side with the fuel buttons and drive into them.

2.2.1.5 Final Button Mechanism

Essentially, everyone on the team came up with the idea of using any previous mechanism to
press the final button or having a bumper on one side of the robot to prevent damages when running
into the final button. One such example of bumper is given in Figure B13 in Appendix B. All the

bumper ideas were roughly the same as this. Additional options that were considered included

12

launching a catapult projectile at the final button from a distance and using a gear rail to extend

out an arm to press the final button.

2.2.2 Group Brainstorming

This section explains the group portion of the brainstorming process. First, criteria for
drivetrain, chassis, and mechanism success were established. Then, multiple screening matrices
were implemented in order to weed out the weaker concepts and bring the best ideas forward. The
screening matrices functioned by first establishing a reference design. The reference design was
supposed to be neutral in terms of all of the criteria, making it clear which designs were above
average or below average. Positive signs were awarded to designs better than the reference design
in a criterion, negative signs were awarded to designs worse than the reference, and zeros were
awarded to designs comparable to the reference design. These were tallied up to determine the best
few designs that would be further considered.

Next, three full robot layouts were created from these concepts based on what seemed to have
a high success probability. This was a judgement call made collectively by the team based on the
original scoring. A final scoring matrix was then implemented to choose the best possible full
design from these three layouts, using newly established criteria. Additionally, physical and
SolidWorks models of the winning robot from the scoring matrix are provided. Finally, flowcharts

and pseudocode are provided for the robot’s completion of the tasks on the course.

2.2.2.1 Drivetrain Screening Matrix
The screening matrix for the drivetrain focused on a number of key criteria for determining the
viability of idea proposals. These criteria were: balance, minimal blockage, center of gravity,

13

durability, cost, structure, traction, weight, and turning. The balance, tractions, weight, and center
of gravity criteria existed to prevent the robot from tipping over on the ramps or drifting to one
side or the other due to uneven weight distribution. The minimal blockage criteria meant that the
drivetrain system should not interfere with the mounting of other sensors and mechanisms. The
durability and structure criteria were to make sure that the design would be able to withstand
rigorous testing and produce consistent results. Turning was an important criteria because the robot
would be useless if it could not turn. Lastly, cost needed to be included because there was a $160
budget.

All designs were compared to the reference design, which was a two wheel powered drivetrain
with four wheels. After tallying the positive and negative signs, the top designs were a two wheel
drivetrain with front skids, an omnidirectional wheel system on two wheels, and four
omnidirectional wheels on three motors. All of the criteria and the results of this screening process
are given in Table C1 in Appendix C. It should be noted that the “M” in parentheses in the matrix
indicates the number of motors needed for the design. For example, 3M means three drive motors

needed.

2.2.2.2 Chassis Screening Matrix

The screening matrix for the chassis involved some similar and different criteria than that for
the drivetrain. The criteria were balance, minimal blockage, center of gravity, durability, cost,
structure, and weight. The descriptions of these criteria are the same as that for the drivetrain
matrix, so further explanation will not be provided.

The reference design that the ideas were compared to was a rectangular chassis made out of

acrylic with the wheels mounted on the exterior of the chassis. The top chassis designs were a

14

rectangular chassis made out of acrylic with the wheels enclosed and the same design made out of
PVC. The full criteria and results of this screening matrix are provided in Table C2 in Appendix

C.

2.2.2.3 Switch Toggling Screening Matrix

The screening matrix for the switch toggling included balance, minimal blockage, weight,
maintenance, cost, height, extendibility, and motors need as criteria. The new criteria introduced
were height, extendibility, and motors needed. Height and extendibility were important
considerations because whether or not the apparatus could reach the switches would strongly affect
the design’s performance. Motors needed was considered because more motors meant more
moving parts and more that could go wrong. Reducing the amount of motors meted would help
with both consistency and cost. Additionally, maintenance considerations were made for the
design because increased time fixing something old meant less time developing something new.

The five designs in question were compared to a reference design of an arm on a motor that
goes up and down, using the robot’s driving to push the switches from either side. The top designs
were a T-shaped hook at a fixed height and a general fixed stationary arm that each pushed and
pulled the switches from the same side. The full criteria and results of this screening matrix appear

in Table C3 in Appendix C.

2.2.2.4 Fuel Delivery Screening Matrix

The criteria for the fuel delivery screening matrix were minimal blockage, durability, cost,

structure, accuracy, weight, maintenance, and motors. The only new criteria here was accuracy,

15

which is very important in that secondary points were lost for accidentally pressing the wrong
button at any point.

The five designs in question were compared to the reference design of flat panel on a motor
that moves up and down to press the appropriate button. The top designs were a checkerboard
design with a geometry that allows the correct button to be pressed based on robot positioning,
pressing the buttons from the front and back, and a seesaw lever on a motor that tilts in the needed

direction. The full criteria and results of this screening matrix appear in Table C4 in Appendix C.

2.2.2.5 Final Button Screening Matrix

The screening matrix for the final button press included consistency, minimal blockage,
durability, cost, structure, and weight as criteria. The consistency and cost of the design were very
important because if the robot cannot press the final button, then the rocket cannot launch. Also,
this was a good place to try and reallocate cost to other parts of the robot, so minimizing the design
price was a goal.

The reference design was an extending arm to press the final button. The top designs involved
a bumper system that just ran into the final button while protecting the rest of the robot. The full

criteria and results of this screening matrix appear in Table C5 in Appendix C.

2.2.2.6 Air Filtration Supplies Screening Matrix

The criteria for the air filtration matrix were balance, minimal blockage, drop potential,
maintenance, cost, structure, accuracy, and weight. Drop potential was a very important criterion
because if the robot dropped the dumbbell at an undesired location on the course, then full points
would be lost, and it would obstruct the robot’s future motion. Additionally, accuracy was an

16

important consideration in that the robot must be able to pick up the dumbbell in small space and
place it accurately in the final bin.

The reference design that the potential designs were compared to was a forklift running on
one motor. The top designs from the matrix were a design that mounted magnets on a vertical rod
and a horizontal PVC pipe with magnets on the interior surface. The full criteria and results of this

screening matrix appear in Table C6 in Appendix C.

2.3 Generating a Preliminary Design
Using the results from the screening matrices, three potential ideas for a full robot layout were
created and modeled. These designs were later compared in a scoring matrix with different criteria

than the screening matrices to determine the team’s agreed upon preliminary concept.

2.3.1 The Three Ideas

The first full layout design featured four omnidirectional wheels in an X configuration, or a
Killough drive. Two opposite wheels were to be connected by an axle and driven by one motor
using a beveled gear system. The motors were to be mounted to the bottom of the base of the robot,
which was a PVC sheet using laser cut acrylic. The Proteus microcontroller was attached to the
PVC sheet on top. A single servo motor was used to drive a mechanism that raised up and down on
a gear and pinion. At the back of the robot, a rod with a magnet on the end slid through a PVC
pipe to pick up the supplies. When raised to maximum height, the supplies lost contact with the
magnet and dropped into the receptacle bin. In the front of the robot, a flat panel was raised by
the same gear and pinion mechanism to press the correct fuel button. On the left and right sides,
an arm pivoted on the side of the robot when pressed against a wall. This was used to hit the toggles

17

once the robot runs into the correct wall. A sketch of this design is given in Figure 7 below. The

proposed course path for this design is given in Figure A5 in Appendix A.

Figure 7: Orthographic Projections of First Design.

The second full layout design featured a two wheel drive system run on two motors with two
skids on the front. The chassis was a rectangular sheet that enclosed the rear wheels and extended
past the skids. On the front of the robot, a checkerboard design was implemented to handle the
fuel delivery buttons. The robot would line up according to the light color and drive forward to
press the desired button. A T-shaped hook was placed on the top of the robot to push and pull the
communications switches. A horizontal PVC pipe with magnets attached was implemented to pick
up and release the dumbbells. A servo motor would be used to lift the apparatus vertically, and a

rod through the pipe would be used to release the dumbbell at a desired height into the receptacle.

18

A SolidWorks model of this design is given below in Figure 8. The course path is given in Figure

A6 in Appendix A.

Figure 8: Second Potential Preliminary Design.

The third considered design was a tread-based system mounted on a rectangular PVC base.
The treads were powered by a drive wheel placed at the top of each tread, while the bottom wheels
would allow for driving and maintaining necessary tread tension. A vertical lever would be used
to press the correct fuel button. A servo motor would rotate the lever to face the correct button,
and the robot would drive forward to press it. A forklift design would be used to lift the dumbbell
and carry it to the receptacle bin. An arm would be raised vertically through a tube and fall onto
the switches to toggle them. Once the switches were toggled, the arm would retract back into the
tube. A sketch of this design is given on the following page in Figure 9. The proposed course path

for this design is given in Figure A7 in Appendix A.

19

Figure 9: Third Potential Design for Preliminary Concept.

2.3.2 The Scoring Matrix

Once the final preliminary ideas were created, the best choice needed to be selected so that the
build process could begin. To do this, a scoring matrix was created to rank the robot layouts.
Weight was assigned to each criteria depending on how essential it was viewed to be to the success
of the design. Some of the highest weighted criteria included cost, maintenance, mobility, and
minimal blockage. Each design was ranked on a scale from one to five, with five being the highest,
and multiplied by the weight percentage as a decimal. The tiebreaker, should one be needed, was
the total number of points earned, separate from weight. The winning design was the first design,
Design A, in the scoring matrix. A summary of the designs and the results of the scoring matrix

are given in Table C7 in Appendix C.

20

2.3.3 Mockup Creation

Once the preliminary concept was chosen, mockups were created for the design, both
physically and in SolidWorks. The purpose of these mockups was to ensure that the design was
geometrically, logically, and economically reasonable. For example, this would address the
question of if the motors could all be mounted in a certain amount of space. An image of the
physical mockup is given below in Figure 10. Additional images of the physical and SolidWorks

mockups can be found in Figure D1, Figure D2, and Figure D3 in Appendix D.

Figure 10: Completed Physical Mockup.

Within one day of the completion of these mockups, it became apparent that revisions
needed to be made. First, discussion amongst the team and with the instructional staff indicated
that there were better more reliable options for the fuel button than the front panel on a motor.
Additionally, the linear actuation desired from a gear and pinion system for the supplies was shown
to be outside of the budget possibilities at an approximate cost of $75.00 [5]. Finally, the staff
indicated that implementing a beveled gear system would be incredibly difficult under the budget

and time constraints.

21

For these reasons, a few revisions were made to the mockup to make it more feasible. First,
the three motor system was replaced with a four motor, direct-drive system to prevent the need for
beveled gears. In addition, a checkerboard design replaced the front panel on a motor idea to reduce
cost. Lastly, a forklift design using dual-locking positions with a rotating wheel replaced the gear
and pinion system in order to fit into budget constraints. An image of the new chassis design is

given in Figure 11 below.

Figure 11: Direct Drive, Four Motor Design.

2.3.4 Flowcharts and Pseudocode
Once a preliminary concept for the design was fully agreed upon, a preliminary concept

for the task execution needed to be established in terms of flowcharts and pseudocode. The

22

programming was centered on a few key functions and header files. By placing all of the functions
inside of separate headers, the main code was planned to be very modular, so that it would be
easier to see which headers and functions contained errors. The overall plan was to get the crucial
functions working, then tweak which ones to call in order to most efficiently complete the tasks.
Table 2 below outlines all of the major functions and their purpose in the pseudocode. It was
planned for each function to accept multiple arguments so that the desired control could be
achieved. For example, a driveUntilTime function would accept heading of travel, power of
motors, and time of travel as three arguments. Other functions would require additional arguments.
Figure B14 in Appendix B provides a flowchart containing the general flow of the program,

placing these functions in the order in which they would be executed.

Table 2: Pseudocode Header Files.

Header File Functions Associated
Drive Drive until: bump switch, encoder counts, line reached, time
Turn Encoder counts, RPS heading angle, time
Ramp Use drive and turn functions to navigate up and down the
temporary access ramp
Microswitch Detects what switches on which sides have been pressed
Optosensor Detects line
CdS (Cadmium Sulfide) Cell | Detects red, blue, and no light
Constants Keep all constants here to organize
Initialize everything, wait for start light with CdS, initial turning
Start . ; 3
and driving setup to reach first location
First Toggles = push all switches forward
Toggles Second Toggles = optosensor to get on line, drive forward to press
switch based on RPS
Supplies Pick up = aI!gn with _supplies and pick up with servo motor
Drop off = line up with receptacle and lower servo
Fuel Align with f_uel light, read _value with CdS, drive to side according
to data, run into buttons with checkerboard
End Line up with final button and run into it.

23

3. Analysis, Testing, and Refinements

The purpose of this section is to provide detail regarding the refinement process that was
underwent to move from the preliminary concept towards a final design. To demonstrate this
process, the section will give a chronological account of the tests and analyses leading up to the
performance tests and individual competition. It will then describe how these analyses led to

alterations in the final product, in terms of the code and physical robot.

3.1 Performance Test 1 Refinements
For the first performance test, the robot needed to be able begin motion on a red start light,
then leave the start platform. Then, it needed to navigate to the upper surface of the course using
either the temporary access ramp or main ramp that was currently under construction. Finally, the
stretch exercise for the robot was to correctly read and display the color of the light associated with
the fuel delivery system. The two options were red or blue.

In preparation for this performance test, the drivetrain and chassis of the robot were
constructed, initially, in accordance to the preliminary concept. Initial testing conducted on
February 22 indicated that the robot was able to drive straight in the cardinal and ordinal directions,
drive up the ramp, and turn counterclockwise and clockwise on a point. This indicated that the
general design of the chassis and drivetrain would likely work for competition purposes. However,
a few corrections needed to be made to improve the design. First, shaft lock collars were added to
the axles on both of sides of the wheel to prevent the wheel from slipping or falling off. Next, it
was noticed that the acrylic was integral to the mounting system of the robot, so it should be

structurally supported even further than the acrylic cement. The cost of the acrylic parts was $9.57

24

in total. Erector supports were hot-glued to the acrylic joints to increase strength and prevent any
potential damage. See Table E1 in Appendix E for a full description of the budget.

Next, the Cadmium Sulfide, or CdS Cell, needed to be wired, tested, and implemented onto
the robot to read the start light and fuel light color. Once soldered on, the CdS cell values were
recorded on February 24. By analyzing this data, thresholds were determined for what the robot
would consider a red light or blue light. The results of this testing and analysis are given in below

in Table 3.

Table 3: Key CdS Readings and Thresholds.

Established Robot

Light Color CdS Reading (Volts) Threshold (Volts)
Red 0.36 0-0.99
Blue 1.26 1-18

General Surface of

Course (No Light) 25 Everything Else

Based on the robot testing over the course of several days, it was determined that the robot
code would need to be modified to achieve greater consistency. First, the robot relied on time for
a lot of movement and turning functions, which led to inconsistent navigation. Adding in the use
of the Robot Positioning System, or RPS, and relying more on microswitches hitting the walls
would help improve consistency. Also, it was noticed that the robot did not drive completely
straight at all times, which was a problem when it was supposed to ride along the acrylic wall
leading up to the temporary access ramp, keeping the microswitches pressed. To fix this issue, the
travel heading of the function was modified to drive the robot slightly into the wall while still

moving forward.

25

Once these issues were sorted out, the robot attempted to complete the performance test. It
failed three times, but a few key observations and refinements came out of the tests. First, the sharp
edges of the PVC base needed to be rounded because the edges consistently caught on various
objects around the course. Second, the microswitches used to navigate the course were not flush
with the edge of the PVC. This caused them to be pressed when the robot was not actually to a
wall yet, which made riding along walls quite difficult. This issue was resolved by screwing the
switches to the chassis, ensuring that they were always flush. These revisions led to the robot’s
successful completion of the performance test, with the stretch.

In order to complete the performance test, the robot followed a specific path. First, the robot
left the starting block at signal of the red light and ran directly into the wall to the right. Then, it
rode along the wall until its bump switches were no longer activated. Afterwards, it navigated the
access ramp using bump switches. Finally, it left the access ramp, rode along the wall up to the
fuel delivery light, and read the color of the light. A diagram of the path taken is given in Figure
A8 in Appendix A.

Finally, it was noticed that there was only $64.33 remaining in the budget after the completion
of the first performance test on February 26. This was concerning in that 62.5 percent of the
available budget had been spent, but none of the mechanisms, shaft encoders, or the RPS mount
had been installed. Realizing this caused a small shift in strategy. All of the mechanisms would be
the same as in the planning phase; they would just need to be done with cheaper materials such as
paper or already owned materials such as PVC. A line chart depiction of the budget over time is

given in Figure E1 in Appendix E.

26

3.2 Performance Test 2 Refinements

For the second performance test, the robot needed to push one switch toward the upper level,
push one different switch toward the lower level, and drive to the upper level at some point during
the test. The stretch objective was to press one or both of the fuel buttons. The color of the light
did not matter for this performance test.

An initial concern came up during the beginning of testing. The drive surfaces of the robot
occasionally became uneven coming off of the start platform. This caused the robot to drive
uncontrollably and unpredictably while trying to leave the platform. In the long term, RPS heading
and position checks would need to be included in the code to make sure that the robot was where
it needed to be at the start of a run. For now, the motor power was just increased to ensure that the
robot had enough momentum to leave the platform properly.

Next, it was discovered that the current arm mechanism that flings forward works, but it does
not have the power to push all of the toggle switches forward while riding along the wall. To
account for this, a strategy revision must occur in that the robot was to drive into the wall every
time to press the switch forward. Additionally, the paper mount for the switch arm was replaced
with bent Erector to provide a more consistent press. Lastly, the method for aligning with the
switches is currently time. This produced several failed practice runs and several good ones. It was
determined that adding an optosensor or RPS check into the design would help ensure proper
alignment.

Once these refinements were made or noted for future implementation, the robot was able to
complete the performance test with the stretch bonus on its first attempt. Although the robot was

successful, the reliance on time for almost everything was still quite concerning. For this reason,

27

rotary mechanical shaft encoders were added to the design idea to help with more fine-tuned
alignment.

The following path was taken by the robot to complete the performance test. First, the robot
left the start platform on the signal of the red light. Then, the robot used the walls to navigate to
the leftmost switch, pressing it forward. Then, the robot navigated along the switch wall and
eventually to the temporary access ramp. Next, the robot navigated up this ramp. Then, the robot
traveled over to the toggle switches from at the top of the course, pressing the rightmost switches
forward. Finally, the robot traveled over to the fuel buttons, running into both the red and blue

buttons. A full image of this path is given in Figure A9 in Appendix A.

3.3 Performance Test 3 Refinements

For the third performance test, the robot needed to be able to first leave the start platform on
the red start light. Next, it needed to travel to the cargo storage area and pick up the supplies. Then,
it needed to carry the supplies to the upper surface and release them into the receptacle. Finally,
the stretch activity was for the robot to drive back down to the lower surface.

In preparation for this performance test, much work needed to be done in testing and refining
the functions regarding turning and moving until RPS headings or positions. This meant that the
robot should turn until the mounted QR Code was in line with the desired alignment. First, it was
discovered that the current RPS turning algorithm did not properly account for turning through the
0° mark, where it often oscillated at this mark. Next, moving to an X- or Y- position on the course
posed difficulties in terms of speed. If the robot traveled too fast when entering the desired range,
with a motor power greater than 35 percent, its momentum would carry it past the region. However,

if the robot traveled too slow, around 20 percent, it would start to rotate based on whichever wheels

28

had the best traction. To account for this, the code was modified such that the robot always
realigned itself using a wall once it drove slowly to a position. This helped ensure both robot angle
and position were correct.

The next class of refinements needed to occur based on the mechanical locking arm design.
The purely mechanical design was not going to work in that the bottom wheel necessary for the
robot to lift and lower the dumbbell to the necessary heights protruded away from the robot’s base
and got caught on other objects. To fix this, the team changed the design to a servo-powered arm
that picks up the dumbbell using magnets. This design was much easier to implement. PVC
supports were added to help the magnets pick up and secure the dumbbell, as it fell off at higher
angles during testing. Once the servo angles and RPS positions were found for pick up and release,
the new arm performed consistently in testing.

One final strategy refinement was made towards the end of the pre-performance test testing
phase. The tests showed the robot took approximately 8 seconds to navigate up and down the
acrylic ramp, and this would not be sufficient for the robot to most efficiently complete the course.
For this reason, the team decided to send the robot down the construction ramp, using the motors
as a sled to get over the construction bump. This saved a helpful amount of time in testing, and it
prevented the robot from losing RPS data.

With all these revisions, the robot successfully passed the performance test on its first attempt.
First, the robot left the start platform on the red light. Next, it traveled towards the supplies and
aligned itself properly using RPS data and microswitches with the walls. Then, it traveled to the
upper surface on the temporary access ramp and dropped off the supplies. Finally, the robot aligned
itself with the main ramp and sledded down it. A full course diagram of this performance test run

is given in Figure A10 in Appendix A.

29

Immediately following the completion of this performance test, a budget analysis was
conducted. It was determined that there was $17.41 remaining in the budget as of March 9.
However, a VEX 393 motor, of which the robot was using four, costed $15.00 in the FEH Store
[6]. Because the team wanted to leave spare budget for this motor in the case of a failure, shaft
encoder and optosensor plans were scrapped from the design unless absolutely necessary. See the

budget in Table E1 in Appendix E for the state of the budget at this point.

3.4 Performance Test 4 Refinements

For the fourth performance test, the robot needed to be able to first start on the start light. Also,
the correct fuel button was to be pressed and held for five seconds, as indicated by the light on the
ground. Finally, the robot had to drive down one of the ramps and press the final button.
Additionally, bonus was awarded for controlling the supplies by the end of the run. This meant
that the supplies could not be in the starting bin.

In preparation for this performance test, the biggest thing that needed to be fixed was turning
until a specific RPS value was reached. This was determined to be critical in reducing error and
lining up correctly with the objectives. The code for this was changed to focus on which way the
robot was going to turn, rather than actually getting to a particular angle. Once the robot was able
to determine this, coding it to stop once at the correct angle was much easier.

Using a lot of RPS checks while running the motors at about 25 percent takes much more time
than driving at 80 percent power for a time. For this reason, driving until a time was combined
with driving until a desired RPS value was reached. The robot would drive or turn for a time that
was expected to achieve the desired value, then the location would be tweaked using RPS. The
same idea was applied to driving into a wall. The robot would drive towards the wall at higher

30

power for a time, then decrease the power once near the wall to reduce the force of impact with
the wall.

Due to the strategy change to be more reliant on RPS values for navigation, key locations on
the course needed to be recorded. A diagram giving the desired locations in order is given in Figure
All in Appendix A. A full list of these values and location descriptions is given in Table A2 in
Appendix A. These values include those relevant to the performance test and others needed for the
individual competition such as the fuel light area. These checks helped ensure that the robot was
in the right relative location before moving on throughout the course in an effort to reduce error.

The last major issues that needed to be corrected prior to the performance test dealt with the
electrical systems. One of the motor wires was not tightly screwed into the motor terminal, causing
a poor connection to be established. This meant that the motor would receive current only on
occasion, causing it to stop working occasionally. This issue informed the team that all electrical
connections need to be tested intensely before the performance test and competitions in order to
ensure that a hardware issue did not cause poor performance.

Following the testing and refinement process, the robot was able to successfully complete the
fourth performance test on its first attempt. First, the robot started on the start light and drove over
to pick up the supplies. Then, it drove up the temporary access ramp and stopped on the fuel light,
holding the appropriate button for five seconds. Finally, the robot drove down the main ramp and
ended the run by pressing the final button. A full diagram of this run is given in Figure A12 in
Appendix A.

In order to complete this performance test, no additional money was spent. This was a good
indication because this meant that enough money was still available for a VEX 393 motor in case

of damage or failure before the individual or final competitions. Additionally, each of the

31

performance tests were completed with full credit, so it was unlikely that much more spending

needed to occur in order to achieve success.

3.5 Additional Refinements before Individual Competition

For the individual competition, the robot needed to complete the entire course as described in
the first two sections of the report. As a reminder, Table Al contains a full description of the
primary and secondary tasks that needed to be completed in order to achieve points. The remainder
of this section contains the refinements made before the individual competition, while the
following section describes the individual competition procedure, strategy, and results.

In preparation for the individual competition, the switch toggling arms needed to be revisited.
First, the shorter switch arm was moved to the side of the robot with the checkerboard in order to
prevent the need for turning after releasing the supplies into the receptacle. By eliminating this
turn, a turn in a section without RPS was removed, and time was saved. Additionally, the longer
switch toggling arm was changed in that the paper on the end of it was replaced by an Erector set
piece with manually cut PVC strips on it. This was done to improve the strength and reach of the
arm, allowing it to press both the red and white switches in one motion. Lastly, it was noted in
testing that the robot consistently hit the red switch on the top of the course, even when undesired.
To account for this issue, the code was changed to have the robot continue driving until it reached
a specific RPS value.

The next major set of changes dealt largely with the use of the Robot Positioning System, or
RPS. The first major issue appeared in testing on March 28", where the robot started to drive the
incorrect direction on the temporary access ramp. This occurred because the robot received a value
of -1 from the RPS here. To account for this, the drive until RPS functions were changed such that

32

the robot will continue driving in its current direction if it is receiving this value. Next, it was
discovered that the RPS values differ between each course and the day that it is tested on. In order
to account for this inconsistency, code was added to the start function to log values that overwrite
the default values given earlier in Table A2. In order to ensure that the robot could be ready to run
within one minute, the number of values logged was reduced to the three most crucial positions:
the dumbbell pickup, fuel light, and main ramp. By logging these values, the robot was able to
perform more consistently in these precision-heavy locations.

There were also other refinements made to fix other problems that arose during testing. First,
a function was created that allowed the robot to read CdS values while driving. In doing this while
driving up to the fuel light, the robot was able to determine if the light was red and act accordingly.
If not, the robot just performed its usual light check. The inclusion of this code produced improved
accuracy in reading the light and reduced time pressing the red fuel button. Also, a 30 second
timeout was added in case the robot did not read the start light so that points could still be obtained.
Lastly, it was noted that poorly insulated wires caused the Proteus microcontroller to short out and
restart. To prevent this from being an issue during the competition, all poor wiring jobs were
redone and reinsulated.

From a budget standpoint, one purchase needed to be made after this testing. A microswitch
broke because it got caught on the weather ball station. This switch was replaced by spending
$1.20, which although unfortunate, kept the team above the $15 needed to replace a VEX 393
motor in case of failure or damage. The full description of the budget is shown in Table E1 in

Appendix E.

33

4. Individual Competition

The individual competition for Team B5: Leeroy Jenkins took place in Hitchcock Hall, Room
208 on Friday, April 1, 2016 from 8:00 a.m. to 10:05 a.m. The competition occurred between only
the teams of students in Dr. Richard J. Freuler’s 8:00 Fundamentals of Engineering for Honors
class. Each team was awarded a grade ranging from 0 to 75 points in accordance with the primary
tasks outlined by FEH Staff [1]. Additionally, the secondary tasks and time needed to complete
the course factored into the seeding of the final competition and 15 grade points associated with
being the best performing team in a particular section [1]. As described by the staff, the three most
important criteria were best score, best average score, and best time in that order. The order in
which the teams would run was determined randomly.

Each team was given three runs on the course. The first run was a completely randomized run
with the switch order, fuel light color, and course being unknown to the competitor prior to arrival.
For the second run, the instructor got to choose whichever of these options they desired prior to
the run. For the third and final run, the teams were able to choose all of the run criteria before
setting their robots on the course. Each team had two minutes to report to their assigned course
once their team number was called. Additionally, each team was given one minute to complete all
set up tasks necessary for their robot to complete their run [1]. Finally, the robots needed to

complete the course within two minutes of the start light signal [1].

4.1 Strategy
Before the competition on April 1%, a strategy needed to be established to ensure full

preparation for any potential or probable errors or issues. For this reason, the strategy used for the

34

individual competition was split into four major sections: on-course, pre-run, active run, and post-

run. These sections are described in greater detail below.

4.1.1 On-Course Strategy

In terms of the on-course strategy, the team agreed upon an order in which the robot should
complete all of the tasks. First, the robot would drive off of the start platform towards the switches
from the bottom. The robot would align itself with the wall and push the red and white switches
away, then push the blue switch away by driving into the wall twice. Second, the robot would
navigate to the dumbbell storage bin with the servo motor side facing it. The robot would pick up
the supplies with its magnetic arm and navigate to the temporary access ramp. Then, bump
switches would be used to navigate to the top of the access ramp. Next, the robot would navigate
to the fuel light and press the appropriate button for five seconds. Afterwards, the robot would
drive to the supplies receptacle and release the supplies from the magnetic arm. From here, the
switches were pushed forwards as needed to match the desired switch order. Finally, the robot
would navigate down the main ramp and press the final button. A full diagram of the course path

is given in Figure 12 on the following page.

35

Figure 12: Course Strategy for Individual Competition.

4.1.2 Pre-Run Preparations

To reduce error during each run, a number of preparatory measures need to be taken both on
and off of the course. The off-course preparations were charging the Proteus to approximately 12.0
Volts and checking the tightness of the bolts and rubber bands on the switch arms. On course
preparations included logging the key locations on the course described in Section 3, checking that
the bend angle of the long Erector arm was sufficient to toggle the switches, placing the robot in
the proper starting orientation on the start platform, and pressing the left button on the button board

once the course master instructed everyone to press their final button. The start orientation was

36

such that the corner between the checkerboard and long switch arm side was facing the switches

with the CdS cell over the start light.

4.1.3 In-Run Strategy
It was also important to assign roles to everyone when the robot was actually on the course in
order to cover everything that needed to be done. The roles of each team member during the run

are given in Table 4 below.

Table 4: Member Roles during Individual Competition.

Person Role
Ben Take notes on the course number, time of run, run time, and issues
or success with the run in order to help make changes for
subsequent runs on the day.

Jonathan Take video of the run for documentation and error correcting
purposes.
Logan Kill the robot’s run if one of the described scenarios arises.
Paul Make additional observations on run in order to help with potential
improvements.

Additionally, scenarios to kill the robot’s run needed to be established because time of run was
important in acting as a tiebreaker between runs that scored equally. First, the robot was to be
killed if the logged RPS values from the pre-run were incorrect, causing the robot to drive to
random locations on the course. Second, the run was to end if the robot got stuck on the weather
ball station for five seconds on the way down the main ramp. Third, the run would be killed if the

robot was clearly incapable of completing the course, agreed upon by the team on the spot.

37

4.1.4 Between Runs

Between runs, it was determined that only minor changes to the hardware and software would
be made based on observations. Changes to the order in which the robot would complete tasks or
changes to major apparatuses would not be made. This decision was made in order to prevent

rushing through changes that would only make the robot perform worse.

4.2 Performance

The performance of the robot was based on the score and completion time during the three
runs. Overall, the robot placed first in Dr. Freuler’s 8:00 a.m. section, receiving the 15 bonus points
for grade associated with this result. Additionally, the robot was awarded the 5™ overall seed for
the final competition. Unfortunately, the robot did not perform as well as expected, as it did not

complete three perfect runs. The details of these runs are given in the three subsections below.

4.2.1 First Run — Instructor’s Choice

For the first run, the course conditions were determined by the instructional staff. Course B
was used, the red fuel light was showing, and the switch order was red forward, white backward,
and blue forward. The robot completed the course with a perfect run of 100 points in 1 minute and
26 seconds. The only major concern was that the robot lost contact with the wall at the top of the
temporary access ramp early. This meant that the robot entered into its failsafe code of driving
slower, adding time to the run. Although it was good to know that the failsafe code worked,

entering into it did not help with the run time.

38

4.2.2 Second Run — Random Assignment

For the second run, the course conditions were determined at random. Course E was used, the
red fuel light was showing, and the switch order was red forward, white backward, and blue
backward. The robot was not able to complete the course this time, as it got caught on the weather
ball station on the way down the main ramp. The robot achieved a score of 92 points, but the time
was not recorded. The run was killed in accordance with the previously established kill conditions
for the weather ball stand. Other concerns included the robot pivoting on the top of the access ramp

and the fact that the robot was close to hitting the dumbbell receptacle.

4.2.3 Third Run — Team Choice

For the third run, the course conditions were determined by the team. The course conditions
were identical to the previous run, except that course B was used. The robot was able to complete
the course; however the blue switch was not toggled from the bottom for an unknown reason. The
end result was 90 points in 1 minute and 28 seconds. Other concerns included the top of the access

ramp once again and the line up with the main ramp being very close to ending the run again.

4.3 Analysis of Reasons for Success

There were a few major reasons for the success of the robot during the individual competition.
First, the team committed to early and frequent testing from the beginning of the project. The
performance tests were consistently completed two days prior to their due date, allowing for
reduced stress and earlier preparations for the following performance tests. Additionally, the lack
of last second changes to the robot meant that everything was thoroughly tested and most potential

errors had been addressed in the code.

39

There was also a lot of failsafe programming built into the competition code. For example, the
only reason that the robot’s run did not end on the top of the access ramp was due to the inclusion
of an infinite loop for it navigating while the RPS value was less than zero. Second, the adjustment
of RPS values between courses helped account for the differences between each course to ensure
consistency. Lastly, using frequent RPS X, Y, and heading checks prevented the robot from
continuing through the course when in a non-ideal location.

Success can also be attributed to the simplicity of the mechanism used to complete the tasks.
There were only two non-mechanical motions made by the mechanisms during an entire run,
picking up and releasing the supplies. All the task completions besides handling the supplies were
dependent upon the consistent drivetrain of the robot. The robot could consistently drive or turn in
any desired way, so driving left or right to press the fuel buttons or switches was less of a concern.

The final reason for success was the preparation taken before the competition. For example,
practicing the timing in logging the RPS values before the run helped reduce stress during the
competition. Also, having established Kill scenarios helped reduce the time wasted in making a

decision ending the second run. This helped improve the robot’s average time.

4.4 Analysis of Reasons for Failure

There were also a few reasons that the robot and team failed during the individual competition.
First, the team did not stick to the strategy of not changing too much between runs. Following the
first perfect run, the orientation of the checkerboard was changed in an effort to prevent it from
pushing the robot off of the wall. This actually resulted in a near run end with the robot getting
stuck here for a few seconds. In general, the team did not have an answer for the issues with the

top of the ramp, which was a major problem. The biggest cause for failure, the one that killed the

40

second run, was that the code was not actually modified to account for the offset at the top of the
main ramp. This meant that the changes here did not actually do anything. Overall, the code needed

to be thoroughly re-read through to make sure that everything desired was present.

4.5 Potential Improvements

Based on the results of the competition, there were a few potential improvements that were
considered. First, the RPS offset needed to be applied to the top of the main ramp which would
likely prevent the robot from catching on the weather ball station. As an added precaution, the
robot should be programmed to drift away from the station. Next, the issues with the top of the
temporary access ramp could be reduced by having the robot drive for a time instead of until the
microswitches released. This would prevent the robot from catching on the wall and pivoting or
getting stuck.

With these issues addressed, attention should be turned to the switches, which prevented a
perfect third run. For this reason, the most testing should be done on these in preparation for the
final competition. Tests should be done to ensure that all of the switches can be consistently
pressed from both the top and bottom. Also, experimentation needs to be done with pushing the
blue switch from the top as the weather ball station and switch platform are not perfectly flush.
This could cause the robot to contact the wall a non-square angle. Additionally, reducing the
distance for the robot when driving horizontally to the supplies receptacle would reduce the risk
that the robot drifts too far and hits it. A final suggestion included changing the start orientation of
the robot to prevent it from getting stuck on the start platform.

In general, the reduction of time was prioritized. Although the robot was the fastest in the class,
robots in other classes had been recorded with faster times, and teams would continue improving.

41

Time reduction could be achieved by increasing motor powers at certain areas, not stopping at
switches that do not need to be pressed, decreasing the timeout on RPS checks, and increasing the
acceptable range on areas of the course where the robot’s positioning does not need to be as precise.
Additionally, the inclusion of a new drive while turning function would allow the robot to drive
and turn in one motion, which would prevent time waste from doing both separately. On a separate

note, Velcro was added to further secure the Proteus to the PVVC base.

5. Final Design

The final design of the robot was determined through hours of testing, analyzing success and
failure during performance tests, and applying the lessons learned from the individual competition
to the finished product. This section describes the chassis, drivetrain, mechanisms, and electrical
systems final state using SolidWorks models and images of the robot. Additionally, it provides
information regarding the final budget, time, and reasons that resources were applied to particular
areas. An image of the final robot, The Black Baron, can be found on the following page in Figure
13. Additionally, the completed SolidWorks model of the robot can be found in Figure F1 in

Appendix F. The full working drawing set is provided in Appendix G.

42

Figure 13: Final Image of the Black Baron.

5.1 Budget

Overall, the robot was able to be built within the $160 budget imposed by the Fundamentals
of Engineering for Honors Space Administration with $15.56 remaining. The amount of money
remaining was in line with the original goal of leaving at least $15 left in case an additional motor
needed to be purchased. In general, most of the spending occurred at the beginning of the project

and went into the chassis and drivetrain, with very little spending towards the end of the project.

5.1.1 Budget over Time

As stated in the previous section, most of the spending occurred at the beginning of the project,
with 62.5% of the budget being spent by the first performance test on February 26, 2016. This was
expected as the entire chassis and drivetrain of the robot needed to be assembled at this point. From
here, very little spending occurred until the third performance test preparations began. Here, a
Futaba servo motor needed to be purchased, and the arm that attached to it needed to be built. Once

this was built, nothing else needed to be purchased except for the replacement of a broken
43

microswitch and Velcro. A full description of the budget over time is given in Table E1, and the

information is displayed graphically in Figure E1.

5.1.2 Budget Breakdown by Part Type

As discussed in the Preliminary Concepts section of this report, the chassis and drivetrain of
the robot were the most essential components of the robot. They were intended to simplify the task
completion mechanisms of the robot and make navigation as simple as possible. As a result, they
accounted for nearly 75% of the robot’s total cost. See Figure 14 below for a visual depiction of
the cost breakdown by part type. Additionally, see Table E2 in Appendix E for a tabular description

of this data.

Cost Breakdown by Part Type

Mechanisms,
527.52 Chassis
19% $20.02

14%

Electrical Systems
$11.90
8%

Drivetrain
$84.80
59%

Figure 14: Cost Breakdown of Budget by Part Type.

44

5.2 Final Design of Chassis and Drivetrain

The robot was supported by an acrylic base. The base was made of five laser cut pieces of
acrylic mounted together using acrylic cement. This laser cut chassis contained a one inch diameter
hole in the middle for wiring purposes, holes for mounting the motors and PVC base, and holes
for the wheel axles to go through. A picture of the acrylic chassis broken down into its components
can be seen in Figure F2 in Appendix F. At the points of connection between the four fins of the
chassis, and the large base piece, there are Erector set right angle brackets. These brackets help
support the connection between the acrylic. One side of the bracket is attached to the fins with hot
glue, and the other side is bolted to the large acrylic base.

The robot used four Vex omnidirectional wheels. An image of these wheels can be seen in
Appendix F, Figure F3. Each of these wheels was driven by a VEX 2 Wire 393 DC motor. These
motors were mounted directly to the fins on the acrylic chassis with Vex motor mounting screws.
A Vex axle, placed through a hole in the acrylic connected the omnidirectional wheels to the Vex
motors. These axles were held in place with two shaft locking collars. One collar was placed
between the acrylic and the Vex motor; the other was placed outside of the wheel. Also, a 1/8 inch
spacer was used to separate the wheel and the acrylic to prevent rubbing. An image and an
exploded view of the motor and wheel connection can be seen in Figure F4 in Appendix F.

A Polyvinyl Chloride (PVC) sheet was placed on top of this acrylic chassis. It was connected
with the same bolts that connected the angle brackets to the acrylic base. This base was 8 by 8
inches with each corner rounded by a radius of one inch. The PVC sheet was mounted so that each
corner was over top of one of the four wheels. In order to gain clearance from the wheels, two ¥4
inch spacers were used between the acrylic base and PVC sheet, elevating the PVC % inch from
the acrylic base.

45

5.2.1 Navigation and Driving

The biggest advantage of this drivetrain design was the ability to drive at all headings, meaning
that this robot could drive in the direction of North, East, South, West, and everywhere in between.
This was made possible by the omnidirectional wheels designed for that function. When a certain
heading was desired, vector calculations were done inside the code which powered the four motors
in such a way as to drive at the desired heading. See the Final Code section of this report for more
details about these functions and calculations.

With the Vex motors mounted underneath the acrylic chassis, there was not enough clearance
to get up the main access ramp, so the temporary access ramp had to be used. Although the robot
could not make it up the main access ramp, it could make it back down. The Vex motors were
used, like a sled, to slide over the bump on the main ramp. This decreased the time it took the robot
to complete the course because going down the access ramp required the robot to travel less

distance.

5.2.2 Cost

This drivetrain and chassis system contained 5 laser cut acrylic pieces, one PVC sheet, eight
Y4 inch spacers, four 1/8 inch spacers, four Vex motors, eight shaft locking collars, four Vex axles,
four 1.5 inch number 6 screws, and four Vex omnidirectional wheels. This drivetrain and chassis
system consumed 65 percent of the $160 available. The pie chart shown on the following page in

Figure 15, gives the breakdown of the $104 cost.

46

Chassis/Drivetrain Budget

)
B 914% m 0.25% M Laser Cut Acrylic

y " 2.88% W #6 Screws
PVC Sheet
384% Vex Motors
2.69% W Axles
0.84% _— s
B 1.69% 57.57% pacers

1/8" Spacers

m 1.929
% Shaft Locking Collars

Erector Angle Bracket

Figure 15: Detailed Breakdown of Budget Allocated to Chassis and Drivetrain.

5.3 Final Design of Electrical Systems

The electrical system of the robot was split into three main categories: general-purpose
input/output, or GPIO, drive motors, and servo motors. The GPIO category of the electrical system
was made up of eight roller blade microswitches, one CdS cell, and an FEH Button board. Two
bump switches were mounted on each of the four sides of the robot, and were used for bump
navigation. These microswitches were named microswitch 1 through 8, going clockwise starting
from the northwest corner of the robot. The CdS cell was mounted onto the bottom front of the
robot to sense the starting light and both colors of the fuel light. The wires for six of the
microswitches and CdS cell were brought up through a hole in the center of the chassis and
connected to the Proteus. Two of the microswitches, mounted to the top side of the chassis, were
connected directly to the Proteus.

The drive motor category was made up of four VEX 2 Wire 393 DC motors. These motors

were mounted onto the acrylic drivetrain of the robot, and directly drove the wheels. Starting from
47

the northwest corner and going clockwise in a manner similar to the microswitches, these motors
were named Motorl through 4, and were wired into motor ports zero through three on the Proteus.
The wires of these motors were brought up through a hole in the center of the drivetrain and chassis
and connected to the Proteus.

The third category of the electrical system, servo motors, consisted of only a single Futaba
servo motor. This motor was secured to the top on the robot chassis using PVC, hot glue, and tape,
and it was used to control the dumbbell supply arm. The servo was wired directly to the Proteus.
A complete wiring diagram for all three categories can be seen in Figure F11 in Appendix F.
Additionally, tables describing each of the GP10s and motors in more detail can be found in Table

F1 and Table F2 in Appendix F.

5.4 Final Design of Mechanisms

The goal with all of the mechanism designs was to keep them as simple, cheap, and mechanical
as possible. For this reason, materials such as paper, left over bolts, and already purchased PVC
were used. The major mechanisms were the long and short arms used to push the toggle switches
forward as needed, the magnetic arm used to control the supplies, and the checkerboard design
used to press the fuel buttons. The short switch arm and offset trunnions were placed on the front
side of the robot with the CdS cell. The long switch arm was placed on the left side of the robot
relative to the front side, and the magnetic supplies arm was placed on the rear side of the robot.
These designs, which were largely contingent on the drivetrain of the robot, are described in greater

detail in the subsequent subsections.

48

5.4.1 Switch Toggling Arms

To toggle the switches, it was determined that it would be easier and more consistent to push
the switches from both sides of the course instead of pulling them. One arm pushed all of the
switches from the bottom of the course in as few motions as possible, while the other arm pushed
switches back from the top as needed to match the RPS data.

The first arm used, the long arm, was made out of Erector, nuts, bolts, PVVC, and rubber bands.
The main body of the arm was an Erector piece manually curved in a way that allows it to reach
the switches from the bottom and stay within FEHSA’s size constraints. A horizontal Erector strip
was attached to the end of this curved piece. Additionally, hand-machined PV C strips were glued
to the ends of this horizontal Erector to add extra length and consistency to the apparatus. The arm
pivoted about a horizontal screw mounted on the top of the PVVC base. Finally, a rubber band was
used to pull the arm back so that it did not protrude out and interfere with other parts of the course.
A SolidWorks model of this arm can be found in Figure F5 in Appendix F.

The short arm was constructed very similarly to the long arm, but it was made using paper
instead of Erector. This decision was made because this arm did not extend as from its pivot point,
so it did not require as much strength or flexibility as the Erector model. Additionally, using paper
only costed $0.01 while another Erector strip would have costed $0.89. An image of the short

arm’s final design is shown in Figure F6 in Appendix F.

5.4.2 Air Filtration Supplies

To transport the air filtration supplies from the bottom storage bin to the top receptacle bin, a
mechanical arm controlled by a servo motor was designed and built. The arm featured two magnets
attached to the end of angle girder Erector pieces with hot glue. The purpose of these magnets was

49

to secure the dumbbell, which contained metal washers inside of it and release it into the receptacle
by scraping it off when driving away. However, the magnets were not strong enough on their own,
as noted in the Analysis, Testing, and Refinements section of the report, so PVC strips were cut to
support the dumbbell at its highest point. This arm was controlled by a Futaba servo motor, with
different angles used to pick up, hold, and scrape off the supplies. An image of this design can be
seen in Appendix F, Figure F7.

The major strategy for this design was to minimize the number of electrical motions that
needed to occur to improve consistency and reduce wear on the servo motor. This was done by
using the robot’s maneuverability to get the arm into the exact location needed to just raise and
lower. From a materials standpoint, the design was kept to Erector, PVC, and magnets, which

helped keep the cost within the $160 budget.

5.4.3 Fuel Delivery Apparatus

The final design and strategy of the fuel delivery apparatus relied almost entirely on the
drivetrain of the robot. The strategy was to read the fuel light and drive either drive straight or to
the right depending on the color of the light. If the light was blue, the robot would drive straight to
press the blue button using the trunnion mounted on the bottom of the PVC base. If the light was
red, then the robot would align itself with the wall and drive forward to press the red button with
the trunnion mounted on the top of the base. The trunnions were spaced out far enough to allow
for one half inch of error in pressing the buttons. An image of this design can be found in Figure
F8 in Appendix F.

From a time saving and strategy standpoint, it was determined that it would be advantageous
to try and read the fuel light while driving up to it. If the CdS detected a red light, then the robot

50

would stop, run into the wall to the right, and press the red fuel button. If the CdS cell detected a
blue light or did not detect a light, the robot would go through its usual progression of using RPS

to align with the light and act accordingly.

5.5 Final Design of QR Code Mount

The QR Code mount was essential to the final design of the robot because the robot relied very
heavily on RPS because it did not have shaft encoding navigation available. The QR mount was
placed a little under 9 inches above the ground surface of the course in order to obtain the best data
[1]. The mount was made out of two Erector pieces bent at 90° angles at the top and bottom and
bolted into the PVC base. PVC pieces were cut and glued to the top of the Erector mount to firmly
secure the QR Code in place so that it would not change angle or location during the run. The
design was intended to be as cheap and simple as possible in order to account for the large cost
spent on the chassis and drivetrain parts of the robot. An image of the mount can be found in Figure

F9 in Appendix F.

5.6 Final Code

The final robot was autonomously controlled using C++ code run on a custom Proteus
microcontroller. The software package was modular, utilizing 37 separate source and header files.
The use of several source and header files offered many advantages. The code was easy to maintain
and was organized. Separate source and header files could be copied and reused without modifying
them. In addition, the compilation time was decreased. The final robot code is included in

Appendix H.

51

5.6.1 Software Structure

The software was broken into five tiers. The first and second tier included the main program
and the touch screen menu. The menu accessed the sub-programs, which were part of the third tier.
A few sub-programs used during development included a Proteus test, a world state program, a
competition program, or a test program. The competition code accessed the task completion
functions, which were part of the fourth tier. These functions controlled the robot on the course to
complete the course objectives. The code for the robot course tasks were broken up into six
sections: start, toggles, supplies, ramp, fuel button, and launch button. Each section contained the
functions to complete each task. The final tier was comprised of the basic robot control functions.
These offered definitions for motors and sensors, drive functions, a world state logging function,

and more. A structure of the software can be seen below in Figure 16.

Main)
main
Program
Touch Screen _
RobotMenuMain
Menu
I
v v ¥ ¥
Sub- . - . .
ProteusTestMain WorldStateMain Fma\Com.pet\ton FmaCompe_t\t\on
Programs Main FastMain
|
12 ¥ 12 v ¥ ¥
Task |
. toggles . ramp launchbutton
Completion start toggles. fast supplies ramp. fast fuelbutton launchbutton_fast
Functions
Basic Robot)
constants drive supplyarm worldstate
Control

Figure 16: The Structure of the Software was Modular and Tiered.

52

5.6.2 Code Functions

The robot task completion functions were designed to divide the course into different sections.
These functions executed other functions that controlled the different parts of the robot. Table F4,
located in Appendix F, outlines where each function was located and what it did. The functions
are further described in the commented code.

The drive code included 11 defined drive functions. These functions accepted many arguments
for easy modification. Some of the common arguments would be the heading, power, and time
out. The heading declared the direction the robot should drive which was calculated using a motor
ratios function using trigonometry. A plot of the motor percentages against the heading is shown
below in Figure 17. The specified power was multiplied by the motor ratios to alter the speed of

the robot. The time out allowed for the function to stop prematurely in the case of the unexpected.

100
80
60 [,
40 1

20 -

20F /0

Motor Power Percent

-40 |

-80

/

e

/1

/
J/
/
.’"

Motor Power Percents Relative to the Heading

Motor 1

Motor 3

Motor 2| |

S/
|

Motor 4| |

-100

Figure 17: Sinusoidal Curves of the Motor Percentages as the Heading Changes.

150 200 250
Heading in Degrees

53

300 350

400

5.6.3 Version Control

The code was developed and maintained using version control. A Git repository, hosted by
Bitbucket, was used to backup and track changes in the code, which can be found at
https://bitbucket.org/jonliew/fehrobotcode. The repository provides detailed changes during the
development of the code. Additionally, the code was automatically saved to a Box folder, which
provided additional versioning and backup. This allowed for the entire team to access the code and

restore the desired versions.

5.7 Final Schedule and Time

Overall, the team underestimated the total number of hours that the project would take and the
total number of hours that would be spent on each major area. It was estimated that the project
would take 301.5 total man hours to complete, while the actual time logged was 439.3 man hours.
This underestimation of 137.8 hours occurred largely due to the unexpected amount of time that
went into the planning process of the design, which differed by 57.01% from the expected value.
Additionally, it was interesting to note what parts of the project took the greatest amount of time.
Documentation, testing, and planning took the most time while building took the least amount of
time by 13 hours. A breakdown of the time predicted and spent on each category is given in Table
5 on the following page. A pie chart break down of hours by category is given in Figure F10 in

Appendix F.

54

Table 5: Breakdown of Hours Spent by Category.

Type of Work Estimated Hours | Actual Hours Spent | Percent Difference
Spent

Planning 39.5 71 57.01 %
Documentation 104 161 43.02 %
Building 44 50.5 13.76 %
Programming 54 63.5 16.17 %
Testing 60 93.30 43.44 %
Total 301.50 439.30 37.30 %

In terms of the design schedule, the team was consistently behind on the estimated start dates,
but the due dates were all achieved reliably. It was determined that the original dates were at times
early in that other parts of the robot or documentation were not yet completed that needed to be.
However, setting early start dates for everything helped the team stay ahead on performance tests
and assignments for the most part. The final design schedule can be found in Table F3 in Appendix
F. Due to size constraints, the schedule is restricted to merely deliverables, desired dates, and actual

dates.

6. Final Competition

The final competition for Team B5: Leeroy Jenkins occurred at The Ohio State University’s
Recreation and Physical Activities Center on Saturday, April 9, 2016. The team arrived at 10:00
a.m., and the awards ceremony was completed at 6:00 p.m. The competition occurred between
over 70 teams from the Fundamentals of Engineering for Honors course at Ohio State. In the same
way as the individual competition, each team was awarded a grade ranging from 0 to 75 points
based on the level of completion of the primary objectives [1]. Additionally, there were 25
secondary points, not associated with the team’s grade, used for scoring. A full description of the
scoring can be found in Table Al in Appendix A.

55

The format for the competition was as follows: Each team competed in three round robin
matches which were used to determine their grade for the competition. Then, based on the seeding
from the individual competition, the head-to-head competition began. In each match, four robots
competed, and the top team advanced out of each stage. In total, there was one play-in round and
three single elimination rounds. As with the individual competition, each team had one minute to

setup their robot for the run and two minutes to actually complete the run [1].

6.1 Strategy

For this competition, the team employed a strategy nearly identical to the individual
competition. The on-course strategy and order of task completion remained identical. Additionally,
the in-run strategy and team member roles remained the same. The only differences in strategy
were to the pre-run strategy and what changes were allowed between runs. As discussed in the
Individual Competition Section, the robot’s start orientation was changed. Additionally, issues
were encountered as the team made changes to the robot between runs. As a result, it was

determined that no changes to the code or hardware would be made upon arrival at the RPAC.

6.2 Performance

Overall, the robot performed quite well during the seven runs that it had during the final
competition. The robot achieved a perfect score of 100 points in each run with an average run time
of 1 minute and 12 seconds. In the pool play rounds, the robot received second place overall for

being the second most consistent robot. During the knockout stage of the head-to-head

56

competition, the robot made it into the final four round, placing second overall. A full description

of the run results is given in Table 6 below.

Table 6: Description of Runs at Final Competition.

Run Course Time of Score Time Result
Description Designation Run (min:sec)
Practice Run B 11:30 a.m. 100 1:14 Robot looked
ready to go
Pool Play 1 A 12:00 p.m. 100 1:12 Earned 75
grade points
Pool Play 2 D 12:30 p.m. 100 1:14 No changes
needed
Pool Play 3 C 1:00 p.m. 100 1:09 No changes
needed
Knockout C 4:00 p.m. 100 1:15 Won heat
Stage 1° and advanced
Round
Sweet Sixteen A 4:30 p.m. 100 1:09 Won and
advanced
Final Four D 5:05 p.m. 100 1:12 2" Place

Overall, the robot performed well, but the robot made a few unexpected and undesired actions.
For example, the robot did not read the red fuel light on its first attempt during a few of the runs.
This hurt the time by about 4 seconds. Additionally, the robot frequently drove well past the desired
location off of the temporary access ramp. This meant that it needed to spend approximately 5

seconds readjusting its position to the desired location on the course using RPS.

6.3 Analysis of Reasons for Success

The success of the robot during the final competition can be attributed largely to the
survivability to the robot code. As noted in the Final Schedule and Time Section, over 90 hours
were spent testing the robot on the course, discussing changes to be made, and implementing

failsafe code in case of major error. This was crucial in areas such as having multiple ways to
57

check the fuel light, aligning with the main ramp, and ensuring that the robot left the temporary
access ramp. Additionally, key RPS locations on the course were logged and used in run instead
of preset values. This helped to make sure that the robot had the necessary precision when picking
up the supplies and reading the fuel light.

The physical design of the robot also played a large role in team success. The drivetrain used
allowed the robot to have good maneuverability and reliable navigation, which was a major factor
in the robot’s success in the competition. The robot's mechanisms were designed to be as simple
as possible, which helped achieve the perfect consistency with task completion. From a strategy
standpoint, the team focused on consistency over time, which allowed the Black Baron to continue
advancing in the head-to-head tournament. Some robots were faster but failed to achieve a perfect

score.

6.4 Analysis of Reasons for Failure

Overall, there were not too many failures for the robot at the competition as it achieved a
perfect run every time. However, the biggest cause for not winning the competition was the time
that it took the robot to complete the course. Although the emphasis was on consistency, improving
time would have allowed the robot to win the competition. The inability of the robot to travel up
the main ramp with the construction bump added approximately 10 seconds in comparison to many
of the competitors. Also, VEX motors provided inferior power when compared to the Igwan

motors that many teams used, which put the robot further behind in the speed category.

58

7. Summary and Conclusions

The purpose of this section of the report is to briefly summarize all of the information in the
report up until this point and provide analyses into improvements that would be made if the team
got the opportunity to restart the project from scratch.

The project was completed by Team B5: Leeroy Jenkins, which consisted of Paul Harshbarger,
Benjamin Higgins, Jonathan Liew, and Logan Meyer. The purpose of the project was to build a
fully functioning prototype robot to complete a set of predetermined tasks for the Fundamental of
Engineering for Honors Space Administration’s rocket launch preparation site. There were a few
checkpoints that indicated the tasks that the robot needed to be able to achieve at certain dates. On
April 9", the robot demonstrated its ability to complete the course in a head-to-head competition
with other design companies to FEHSA. Visit https://u.osu.edu/feh16b5/ for additional project

information.

7.1 Summary

At the beginning of the project, the team underwent a brainstorming process that involved
individual and group components. In this process, several design concepts were generated, and the
best ideas were identified by comparing the concepts to a reference. From this list, three final
design ideas were created and ranked. The chosen design was then modeled physically and in
SolidWorks to allow the team to analyze how plausible and effective it would be on the course.
After a few alterations, the final design featured an omnidirectional drivetrain, an acrylic chassis,
and a PVC base on which all of the motor-free mechanisms were to be mounted.

Throughout the testing and building process, several key refinements were made to ensure

success in the competitions. For example, the corners of the PVC base were rounded to prevent

59

the robot from catching on the corners of the acrylic temporary access ramp. Also, spacers were
added between the acrylic chassis and PVC base to raise the height of the mechanisms so they
could better complete tasks. A major change occurred when the mechanical locking arm design
idea needed to be scrapped in favor of the final magnetic arm. In terms of time, a decision was
made to go down the main ramp in order to save valuable seconds. Lastly, a function was
implemented that allowed RPS values at key positions to be inserted into the code right before a
run. This helped to increase consistency with fine maneuverability.

In terms of the competitions, the robot performed very well, placing first in the class during
the individual competition and second overall during the final competition. The issues of catching
on the weather ball station and missing the blue toggle switch were able to be corrected before the
final competition. By eliminating these issues and adding in more failsafe code and RPS checks,
the robot managed to achieve perfect runs in all 7 attempts.

The final design of the robot was similar to the original design idea generated from
brainstorming. It featured four individually driven omnidirectional wheels and primarily
mechanical mechanisms. The only motorized mechanism was the magnetic arm used to pick up
the supplies, but this apparatus only made a few motions on the course. The other systems used
were the trunnion checkerboard for the fuel delivery and the two Erector arms for switch toggling.
Additionally, a QR code mount was constructed out of Erector to allow the robot to receive RPS
data. From a coding standpoint, multiple drive functions existed which allowed the robot to drive
at any heading, until a bump switch was pressed, or until the CdS recorded a certain value.
Additionally, the robot could drive while turning and turn on a point. Overall, the robot was
completed with $15.56 remaining from the $160 budget, with approximately 75% of the budget

spent being allocated to the chassis and drivetrain. Additionally, the team underestimated the time

60

that the project would take by 137.8 hours in terms of building, planning, programming,

documenting, and testing.

7.2 Conclusions

Overall, the final design schedule and project time utilization did not match the predictions and
plan, but this worked out to help the team succeed with the robot design project. As shown in Table
F3, the team consistently fell behind the projected task start dates on the design schedule. However,
this was due to the fact that the dates were ambitious and set early in an effort to motivate everyone
to get ahead on work. This strategy helped the team stay ahead of the schedule set out by FEHSA,
completing three out of the four performance tests early and working on the competition code well
before other teams. Additionally, all of the assignments were able to be completed on time.

In terms of time utilization, the team underestimated the total project time by 143.8 hours, with
the biggest estimation errors coming with the planning, testing, and documentation aspects of the
project. Performing more work in these areas helped the team achieve greater success. By spending
71 hours planning out the design and code of the robot, all of the key details of the robot were able
to be solidified before actual construction and programming began. This helped reduce future time
waste and prevent major errors. Also, committing 93 hours to testing the robot helped the team
discover any potential issues that could arise during the competitions. By developing failsafe
algorithms and improving the robot’s hardware allowed the robot to be the only one to achieve
perfect runs in every final competition run. These were major factors in obtaining success in terms
of grades and placing.

As stated above, Leeroy Jenkins was pleased with the outcomes of the project, but a few
changes would be considered in future work. As noted in the Analysis, Testing and Refinements

61

Section of the report, there was a large reliance on time-based navigation early in the process. This
caused difficulties when trying to navigate to parts of the course that required precision. Pursuing
RPS earlier or adding in shaft encoding as a navigation technique would have helped with these
early struggles. Additionally, the inability of the robot to travel over the bump on the way up the
main ramp caused it to lose valuable time in comparison to the competition. Pursuing larger
diameter wheels would allow the motors to gain the clearance necessary to avoid the construction
bump. Additionally, larger diameter wheels would help the robot drive faster in general on the
course. Future work would also involve the use of better materials for some of the mechanisms.
For example, the use of paper and rubber bands on the switch toggling arms proved to cause some
issues during testing. Although reliable in the competitions, using wood or Erector instead of paper
would have reduce fail potential even further. These changes would improve the robot’s success
during a future competition and allow it to move from the prototype stage into full scale production

for FEHSA’s rocket launch site.

62

8. References
[1] Spring 2016 Robot Scenario Revision 1. 2016, February 25. www.carmen.osu.edu.
[2] Performance Tests Robot 2016. 2016, February 25. www.carmen.osu.edu.
[3] 2016 Scenario PowerPoint. 2016, February 25. www.carmen.osu.edu.
[4] Course Top View. 2016, February 25. www.carmen.osu.edu.
[5] 3 Inch Fast Linear Actuator. 2016, February 25. https://www.tampamotions.com/
products/3-fast-linear-actuator-30mm-s-50Ibs-lift-12v?utm_medium=cpc&utm_source=

googlepla&variant=7789379589.

[6] Motor. 2016, March 22. https://feh.osu.edu/secure/store/The_Store/store/index.php.

63

APPENDIX A

The Course and Scoring

Table Al: Scoring System [1].

Primary Tasks Points
Initiate on start light 8
Touch supplies 8
Control supplies 12
Toggle launch sequence switch 8
Toggle launch sequence switch in correct direction 12
Press a fuel pump button 8
Press the correct fuel pump button 11
Press the final launch button 8
Possible Primary Task Points 75
Secondary Tasks
Deposit supplies 8
Toggle 3 launch sequence switches in correct directions 10
Hold the correct fuel pump button for 5 seconds 7
Possible Secondary Task Points 25
Total Possible Task Points 100
Penalties
Knocking the orb off the weather station -10
Disturbing a competitors’ objects -10
Failure to control objects DQ
Points

A2

Figure Al: Top View of Course [4].

Main Ramp Ui
-, Constructiol

Figure A3: Temporary Access Ramp [3].

A3

Figure A4: Weather Ball [3].

Figure A5: Proposed Course Strategy for First Design.

A4

Figure A6: Proposed Course Strategy for Second Design.

Figure A7: Proposed Course Strategy for Third Design.

A5

Figure A8: Performance Test 1 Path.

Figure A9: Performance Test 2 Path.

A6

Figure A10: Performance Test 3 Path.

Figure A11: Key Locations for RPS.

AT

Table A2: Locations and Corresponding RPS Values.

Location on Diagram Description X Value Y Value
1 Off the Start Platform Not Needed 24.0
Towards Switches
2 Supplies Pick Up Not Needed 10.8
3 Bottom of Access Not Needed 24.0
Ramp
4 Top of Course, Left of 31.3 Not Needed
Access Ramp
5 Fuel Light 31.8 61.8
6 Set Up for Run Long Not Needed 50.0
Run to Supplies
Release
7 Red Switch Top 1.5 43.5
8 White Switch Top 6.4 Not Needed
9 Blue Switch Top 115 Not Needed
10 Top Main Ramp 21.7 42.5
11 Bottom Main Ramp Not Needed 22.0
12 Final Button Lineup 18.4 21.3

Figure A12: Performance Test 4 Path

APPENDIX B

Brainstorming Ideas and Design Concepts

Figure B1: Train Chassis/Drivetrain
Design ldea.

Figure B2: Mecanum Wheel Chassis
Design.

Figure B3: Tread Drivetrain Design.

B2

Figure B4: Forklift Design Idea.

ST [

Figure B5: Supply Mechanism Proposal.

Figure B6: Vice Grip Mechanism.

B3

Figure B7: T-Shaped Hook Idea.

Figure B8: Double Sided Hook Idea.

Figure B9: Vertically Moving Switch
Arm ldea.

B4

HILLH LIMES SHLW
F& T OF RETRA CTAELE
SURSACE.

Figure B10: Retractable Slots Idea.

Figure B11: Seesaw Lever Idea.

Figure B12: Vertically Moving Front
Panel Idea.

B5

Figure B13: Potential Bumper Design.

| Smrt Main

}] R i
Inchusde all andToggles
oy start) functian secondToggles(endl] function
¥ ¥ ¥
r
Defire: any needed firstToggles|) dropOfSuppliesi) End Main
constants furctian furctian
I— ¥ ¥
picklIpSapnlies() FuelDelwery()
functian functian
¥ ¥
paingUpiamp() painglawnfampl}
functian functian

Figure B14: Preliminary Flowchart.

B6

APPENDIX C

Decision Matrices

Table C1: Drivetrain Screening Matrix.

Drivetrain Design and Screening
UCCESS CRITERIY = Elsom REF)=| TReaps 2m) [+] miecanum (am)[=] 2 DRIVE WHEELS (2M) wy Skids[~| OMNI DIRECTIONAL (28] =] QuAD omN [3m] -
BALAWCE 0 0 0 0 0|
MINIMAL BLOCKAGE 0 0 0|
CENTER OF GRAVITY J] 0] 0
DURABILITY 0 0 +
COST 0 0 + 4
STRUCTURE a +]
TRACTION 0 + + +
WEIGHT 0 0 0 + 0|
TURNING] + + 4
Sum +5 0 2 2 4 3
Sum 0s 6 5 5 2 4
Sum -5 0 2 2 3 2
Mzt Score] 0 0 1 1
Table C2: Chassis Screening Matrix.
Chassis Designs and Screening
LICCESS CRITE - DESIGM & [~ DESIGM B [= DESIGM C | = DESIGN D - DESIGME [=
BALANMCE a 0 0 [&) - ¥
MINIMAL BLOCKAGE a 0 + + -]
CENTER OF GRAVITY a 0 0 [&) - o
a - + [o +
COST a 0 - 0| + +
0 R + -] - R
a +| o 0| + +
Surmn +s a 1 3 1 2 3
Sumn Os & 3 5 1 3
Sum -s a 2 1 4 1
Met Scors a -1 2 [-2 2
Chassiz Design Descriptions
Design [= [= Location of Wheels] = Slats? [+
Reference Cutside Mo
Diesign A Outside Mo
Design B Enclosed Yes
Design C Outside Mo
Design D Outside Mo
Design E Outside/Enclosed es/No

C2

Table C3: Switch Toggling Screening Matrix.

Switch Toggling Designs and Screening
ENCE [+| pesend~] pesigni~| DesiaNd-]| DEsigNO-| DESIGME-
0 - 0| 0|
0 4 0| -
0 0|

UCCESS CRITH
BALANCE
MINIMAL BLOCKAGE
WEIGHT
MAINTANANCE
COST
HEIGHT
EXTENDABILITY
MOTORS NEEDED

o =1 E=1 =]

=]
=]
+

'
'
ol+j+rlololo

'
olo

um +s 0 3 E

i =]

um Os 3 4 4
um-s 0 1 1

g [[
w o [w
=l fra

)

Met Score 0 2

a
fa
i
"

Toggle Design Descriptions

S

Design * Design Description v

Reference Arm that goes up and down om motor. Push only. Back only

esign A T-shaped hook_ Pull and push same side. Back only
Design A h Il and Back onl

Design B Fixed stationary arm. Pull and push same side. Back only

Design Arm that goes up and down, forward and back, two maotors.

Design D Horizo

amp that grabs switch. Drive forwand or back to move. Back only

Design £ Arm th when at top. Push only.

Table C4: Fuel Delivery Matrix.

Fuel Delivery Designs and Screening

SUCCESS CRITERIY =

ENCE -| oesigud<] pesignd<]| oesien (=] DEsiemO+] DEsiGH (-

MINIMAL BLOCKAGE 0 0

DURABILITY

COsT

+l+ |+ |

STRUCTURE

ACCURACY

WEIGHT

MAINTENANCE

oo|o|o|o|o|lo|o
[=]
(=3 =1 =1 3 L=1 [=} [=] =]

MOTORS

I
3
i
"
=)
£
=]
[

[|
i
3
=}
&
3
bafra | as

[I
=
(=]

Net Score 0 2 2| -4 1 0

Fuel Delivery Descriptions

Diesign [+ Design Description [+

Referance Flat Panel that moves up and down based on button to press

Dezign & Checkered board where robot aligns based on button to press

Design B Two different sides of the robat to press the different buttons

Design C Flat panel, where part of panel is pulled into the robot

Deszign O See zzwing lever rotated by 3 motor

Design B Rotating block 30 or 180 degrees of rotation on servo

C3

Table C5: Final Button Matrix.

Final Button Pressing Design and Screening

SUCCESS CRITI

ER

EN

CE

DESIGN £ =

DESIGN £ =]

DESIGN (| DESIGN O+

CONSISTENCY

MINIMAL BLOCKAGE

DURABILITY

COsT

STRUCTURE

WEIGHT

=R I=RI=2[=2I=2I=]

ololaolala|o

=1 [=RI=1 =1 I=2[=]

n+s

[=]

wr oo [
I
3|3
=1
ey

|
3
th

=1 =5

Net Soare

Final Button Descriptions

Design E

Desigm Description

Refarence

Extending Arm at fixed height that hits it

Desizn &

Rum into it, use bumper/panel to protect

Design B

Slightly extended arm th

=t rotates 90 degrees to slap button

Design C

Sliding arm om gear rail

Design D

Spring loaded steel ball

releasad based on position

Design E

Run into it, use foam as bumper

Table C6: Supplies Matrix.

Supply Control and Screening

SIUCCESS CRITERIE =

DESIGN 4= |

DESIGN §

DESIGN | = |

BALAMCE

0

MINIMAL BLOCKAGE

DROP POTENTIAL

MAINTENANCE

COST

STRUCTURE

ACCURACY

WENGHT

clojlo|lo|lo|a|a|o

oS N 1= S e e =

ol+lolol+ |+]+ |0

=R =2 =2 =2 K=]

L

5
t

w

[=]

=)

o

EAES

@ [[
I
3|3
=1
=

[
3
th

=1 NN =5

g [ra a2

AL =]

o | s

Met Score

0

(i)

Supply Control Descriptions
Dresign [+ Design Description -

Referance Forklift (1) - to tile
Design A Magnets through Vertical Red
Design B Plastic Locking Clamp
Design C Magmets om Horizontzl PVC Pipe
Design D Forklift 1] - for vertical shifts
Design £ \ice grip from the sides

C4

Table C7: Final Scoring Matrix.

Designs
Sugcess Criteria Weight Design A Design B Design C
Balanced 5% 5 0.5 3 0.15 5 0.25
Minimal Blockage 15% 4 05 3 045 4 05
Center-of-Gravity
Location 10% 5 05 4 04 5 05
Maintenance 15% 3 045 4 06 2 03
Durability 15% 3 045 4 06 Jl 03
Cost W 3 05 4 08 3 05
Ramp 5% 3 0.15 3 0.15 4 0.2
Mability 15% 5 0.75 3 045 3 045
Total Score 100% 3 X 1B 36 1B 32
Layout of Each Design
Design |~ Drivetrain |=| Fuel Delivery| ~| Final Buttor - Supplies - (hassis - Togzle -

A Omni Wheels (3M) |Flat panel Fixed flat panel |Vertical magnetic ro{PVC Sheets (surrounded) |T-shaped hook

B 2 Drive Wheels (skidgCheckered Board |Bumper PVC Horizontal PVC Sheets {surrounded) Fixed Arm

C Treads Seesaw Foam Forklift PVC Sheets (outside wheels) |Arm that moves up a shaft and falls down

C5

APPENDIX D

Mockup Images

Figure D1: Physical Mockup Chassis.

Figure D2: Underside of SolidWorks Model.

D2

The Ohio State University |DWe. Title: Robot Mockup Inst: D Rick [Scale:1:5 Dvrg. Mo Hik

First Year Enginsering DraanEBy: Team B35 Hour: 0800 Units: ITCH Date: 2/15/2016

Figure D3: Layout Drawing of Mockup.

D3

APPENDIX E
Budgets

Table E1: Final Budget.

Item Date of Cost Cost per | Costper | Quantity of Total Budget
Purchase per Inch Inch"2 Item (units) | Costdue | Remaining
Part to Part ($160 Start)
25 Inch Acrylic 2/18/2016 N/A N/A $0.06 38 $2.28 $157.72
Laser Path 2/18/2016 N/A $0.07 N/A 75 $5.25 $152.47
Laser Cutting Fee | 2/18/2016 | $2.00 N/A N/A 1 $2.00 $150.47
VEX 393 Motor | 2/19/2016 | $15.00 N/A N/A 4 $60.00 $90.47
Motterm 2/19/2016 | $0.05 N/A N/A 4 $0.20 $90.27
12x12 PVC Sheet | 2/19/2016 | $3.00 N/A N/A 1 $3.00 $87.27
6 Pack #6 Screws | 2/19/2016 | $0.20 N/A N/A 2 $0.40 $86.87
Large Spacers 2/22/2016 | $0.22 N/A N/A 8 $1.76 $85.11
Small Spacers 2/22/2016 | $0.22 N/A N/A 4 $0.88 $84.23
VEX Motor Axle | 2/22/2016 | $0.50 N/A N/A 4 $2.00 $82.23
Microswitch 2/22/2016 | $1.20 N/A N/A 3 $3.60 $78.63
Shaft Lock Collar | 2/22/2016 | $0.35 N/A N/A 8 $2.80 $75.83
Angle Bracket 2/22/2016 | $1.00 N/A N/A 4 $4.00 $71.83
Red Filter 2/23/2016 | $0.10 N/A N/A 1 $0.10 $71.73
Microswitch 2/25/2016 | $1.20 N/A N/A 4 $4.80 $66.93
Double Bracket | 2/26/2016 | $0.74 N/A N/A 2 $1.48 $65.45
Double Bracket | 2/26/2016 | $0.56 N/A N/A 2 $1.12 $64.33
2 Screws 2/29/2016 | $0.20 N/A N/A 4 $0.80 $63.53
5.5 " Strip Erector | 2/29/2016 | $0.89 N/A N/A 1 $0.89 $62.64
9.5" Strip Erector | 2/29/2016 | $1.65 N/A N/A 1 $1.65 $60.99
Proteus Repair 3/2/2016 | $2.00 N/A N/A 1 $2.00 $58.99
9.5" Strip Erector | 3/4/2016 | $1.65 N/A N/A 2 $3.30 $55.69
#6 Screws (3/8") | 3/4/2016 | $0.20 N/A N/A 1 $0.20 $55.49
Triangle Flex 3/4/2016 $0.90 N/A N/A 1 $0.90 $54.59
Plate and Return
Trunnion 3/4/2016 $0.98 N/A N/A 2 $1.96 $52.63
Angle Girder 3/6/2016 | $1.58 N/A N/A 2 $3.16 $50.14
Sheet of Paper 3/7/2016 | $0.01 N/A N/A 1 $0.01 $50.13
Rubber Band 3/7/2016 $0.01 N/A N/A 2 $0.02 $50.11
Futaba Servo 3/7/2016 | $10.00 N/A N/A 1 $10.00 $40.11
Omni-Wheels 3/7/2016 | $5.00 N/A N/A 4 $20.00 $20.11
Magnet Square 3/7/2016 | $1.35 N/A N/A 2 $2.70 $17.41
Microswitch 3/31/2016 | $1.20 N/A N/A 1 $1.20 $16.21
Velcro 4/7/12016 N/A $0.15 N/A 3 $0.45 $15.76

E2

$)

Budget Remaining (

$180.00
$160.00

v
-
N
©
o
o

$120.00
$100.00
$80.00
$60.00
$40.00
$20.00
$0.00

2/10

Remaining Budget over Time

2/20 3/1

3/11 3/21
Date

Figure E1: Line Chart Depiction of Budget over Time.

Table E2: Cost Breakdown of Budget by Part Type.

——o

3/31

Type of Part Total Cost by Type
Chassis/Drivetrain $104.37
Electrical Systems $11.90

Mechanisms $27.52

Total $143.79

E3

4/10

APPENDIX F

Final Design and Time

Tearm 8BS
LMW 4/32016

Figure F1: SolidWorks Model of Completed Robot.

Figure F2: Disassembled Chassis.

F2

Figure F4: Motor and Wheel Connection.

F3

Figure F5: Long Arm Final Design.

Figure F6: Short Arm Final Design.

F4

Figure F7: Supplies Arm Final Design.

Figure F8: Trunion Checkerboard Final Design.

F5

Figure F9: QR Code Mount Final Design.

Actual Hours Spent

Programming,
64.5, 15%

= Planning = Documentation = Building Programming = Testing

Figure F10: Pie Chart Breakdown of Hours Spent by Category.

F6

Table F1: GPIO Information.

Port Wire In-Code Type of Purpose Additional Notes
1D ID Name Sensor
(Object
Name)
PO O Cds cdscell CdS Cell Detects the start White/Purple (Tape
light/Fuel Light marked as C)
PO 1
P0O_2
P0O_3
PO_4
PO_5
P0O_6
PO _7
P10 Bump | microswitchl | Roller blade | Detect contact with Brown/Red North Left
switch 1 microswitch wall (Tape marked as 1)
P11
P12 Bump | microswitch2 | Roller blade | Detect contact with Black/White North
switch 2 microswitch wall Right (Tape marked as 2)
P13
P14 Bump | microswitch3 | Roller blade | Detect contact with Brown/Red East
switch 3 microswitch wall Left (Tape marked as 3)
P15
P16 Bump | microswitch4 | Roller blade | Detect contact with Brown/Red
switch 4 microswitch wall East Right (Tape marked
as 4)
P17
P20 Bump | microswitch5 | Roller blade | Detect contact with Green/Blue South
switch 5 microswitch wall Left (Tape marked as 5)
P21
P2 2 Bump | microswitch6 | Roller blade | Detect contact with Yellow/Orange South
switch 6 microswitch wall Right (Tape marked as 6)
P2 3
P2 4 Bump | microswitch7 | Roller blade | Detect contact with Green/Blue West
switch 7 microswitch wall Left (Tape marked as 7)
P25
P2 6 Bump | microswitch8 | Roller blade | Detect contact with Yellow/Orange West
switch 8 microswitch wall Right (Tape marked as 8)
P2 7
Bank FEH button 3 buttons Send information Takes up all of bank 3,
3 Button that allow to Proteus relating has 3 buttons
(P30 Board for user to continuing with
- input to program or logging
P3 7) Proteus values

F7

Table F2: Motor Electrical Information.

Port | Wire | Variable | Type Purpose Additional Notes
ID ID Name of
Motor

MotorO | Motor | motorl Vex Drive for Marked as 1 in Port O
1 393 Northwest wheel

Motorl | Motor | motor2 Vex | Drive for Northeast | Marked as 2 in Port 1
2 393 wheel

Motor2 | Motor | motor3 Vex | Drive for Southeast | Marked as 3 in Port 2
3 393 wheel

Motor3 | Motor | motor4 Vex Drive for Marked as 4 in Port 3
4 393 Southwest wheel

Servo0 | Servo | arm_servo | Futaba Lifts and holds Red, white, blue

Arm Servo dumbbell

|_ Morthwsest 393 Robor [MoTond) J

| Merireast 393 Motor [Meaar1) |

| southeast 393 Motor [Motorz) |

I Souihrecest 393 Rilobor [RAchor 3 I

Durmbdell SArmm Sereo [Sareol]]

Wrcior etz [[[II]] serve Ports

O

| cds Cell {PO_D] I

I Microswitch 1 (P1_0] =

GFED O GRWD 1 GFY

X GPIo 3

i)

| wrioraswinch 2 (Pa_z) |

I Miorossstch 5 {F1_4)]

| Microswitch 4 {F1_g) |

| Micraswetch 5 (F2_o) |

| miicrosssch s (rz_z2) |

| Micromastch 7 (F2_a) |

[Micraswetch & (P2_8) |

Figure F11: Electric Wiring Diagram.

F8

Table F3: Condensed Final Design Schedule.

Scheduled Dates

Actual Dates

Task Type of Task Start End Start End
RO1: Individual Brainstorming Planning 31-Jan 3-Feb 31-Jan 3-Feb
Team Formation Planning 3-Feb 3-Feb 3-Feb 3-Feb
R02: Team Working Agreement Planning 3-Feb 5-Feb 3-Feb 5-Feb
RO3: Sketches, Decisions, and
Strategy Planning 4-Feb 9-Feb 4-Feb 9-Feb
RO4: Design Schedule Planning 9-Feb 11-Feb 9-Feb 11-Feb
RO5: Mockup/Solid Model Planning 10-Feb 14-Feb 10-Feb 14-Feb
RO6: Drivetrain Analysis Planning 12-Feb 16-Feb 12-Feb 15-Feb
EXPO1: Sensors & Motors Planning 12-Feb 18-Feb 12-Feb 18-Feb
RO7: Pseudocode/Flowchart Planning 15-Feb 21-Feb 15-Feb 22-Feb
Preliminary Budget Planning 16-Feb 18-Feb 16-Feb 18-Feb
Build robot chassis Building 15-Feb 21-Feb 17-Feb 24-Feb
EXPO02: Line Following & Shaft
Encoding Programming 17-Feb 23-Feb 17-Feb 23-Feb
R08: Final Report Outline Documentation 19-Feb 23-Feb 21-Feb 23-Feb
Performance Test 1 Programming 22-Feb 24-Feb 23-Feb 26-Feb
R09: Report Peer Review Documentation 20-Feb 25-Feb 23-Feb 26-Feb
R10: Critical Design Review Planning 12-Feb 3-Mar 2-Mar 2-Mar
Build robot attachments Building 25-Feb 29-Feb 26-Feb 6-Mar
Performance Test 2 Programming 29-Feb 2-Mar 29-Feb 2-Mar
Technical Inspection 1 Building 2-Mar 6-Mar 7-Mar 7-Mar
EXP03: RPS & Data Logging Programming 29-Feb 8-Mar 29-Feb 8-Mar
Build Robot Attachments Building 1-Mar 8-Mar 4-Mar 8-Mar
Performance Test 3 Programming 4-Mar 9-Mar 8-Mar 9-Mar
R11: Final Report Draft 1 Documentation 7-Mar 22-Mar 10-Mar 22-Mar
Performance Test 4 Programming 10-Mar | 23-Mar 11-Mar 23-Mar
R12: Electrical Documentation Documentation 9-Mar 27-Mar 28-Feb 9-Mar
Individual Competition Competition 1-Apr 1-Apr 1-Apr 1-Apr
R13: Final Report Draft 2 Documentation 23-Mar 3-Apr 31-Mar 3-Apr
R14: Isometric for Display Documentation 1-Apr 5-Apr 31-Mar N/A
Final Competition Competition 9-Apr 9-Apr 9-Apr 9-Apr
Technical Inspection 2 Building 8-Apr 12-Apr 13-Apr 13-Apr
R15: Working Drawing Set Documentation 25-Mar | 17-Apr 13-Apr 17-Apr
R16: Oral Report Documentation 23-Mar | 19-Apr 14-Apr 19-Apr
R17: Final Report Documentation 11-Apr 24-Apr 18-Apr 24-Apr
R18: Project Notebook Documentation 3-Feb 24-Feb 3-Feb 25-Apr
Testing (from Testing Log) Testing 20-Feb 8-Apr 22-Feb 9-Apr

F9

Table F4: Outline of Different Functions Used in the Final Code.

File Function Name Purpose
start start Run at the beginning of a run; Initializes RPS offsets
and servo for the arm; Waits for the start light
toggles togglesBottom Controls the robot to hit the toggles from the bottom
togglesTop Controls the robot to hit the toggles from the top
supplies pickupSuppIigs Controls the robot to pick up the suppligs
dropOffSupplies Controls the robot to drop off the supplies
tempRamp Controls the robot to navigate up the temporary access
ramp ramp
mainRamp Controls the robot the drive down the main ramp
f fuelbutton Controls the robot to press the correct fuel button
uelbutton . .
depending on the fuel light
launchbutton launchbutton Con_trols the robot to press the final launch button
ending the run
driveUntilTime Drives the robot for at a heading at a power for a
duration
driveWhileRotate Drives the robot in a straight line while rotating the
robot
driveUntilBump Drives the robot until microswitches are activated or
deactivated; Used to stop at a wall or ride along a wall
driveUntilBumpTimeout The same as driveUntilBump with a timeout
driveUntilCds Drives the robot until a CdS value is read
drive driveUntilRPSx Drives the robot until the x-position of the robot is
within a 0.5 inch range of the desired x-position
driveUntilRPSy Drives the robot until the y-position of the robot is
within a 0.5 inch range of the desired y-position
driveUntilRPSxRange The same as driveUntilRPSx with a custom range
driveUntilRPSyRange The same as driveUntilRPSy with a custom range
turnUntilTime Rotates the robot at a power for a duration
turnUntilRPS Rotates until the robot is within a 3 degree range of the
desired heading
initializeArm Initializes the minimum and maximum of the servo
lowerToPickupArm Lowers the servo arm to pick up the supplies
supplyarm raiseToPickupArm Raises the servo arm to pick up the supplies
lowerToDepositArm Lowers the servo arm to drop off the supplies
raiseToDepositArm Raises the servo arm after dropping off the supplie
initializeLog Closes any open logs, opens a new log, and writes a
header to the opened log
worldstate worldState Prints all current sensor and motor information to the
screen; Can write values to the opened log
closeLog Closes one open log

F10

Team B5: 4/24/16

APPENDIX G
Drawing Set

910¢/L1/y -9%ed

SdI -siufy

00:8 :InoH

YAATN NVDOT :Ag umelq

00-(:'ON "3m(

€17 91808

A0 I8U]

ATAWASSY 11N NOISAA TYNIA :PPLL "M

SurioouiSus Jes A 1s11,]
AJSIDATUN 9781 Oy YL,

9107/9/¥ 9¥ed SdI -sauf) 00:8 oy YAATN NVDOT g umelq Surosurduy Jea & 1sa1,]
00-XH 7ON ‘3m@ [F10[0s | drd Isul ATANASSY QHA0TdXE NV OAYAS oL Bmq | AUSIAIUN 91815 O1YO oY,
[OAd 1IVd WY OAd3S G
l OAd 7 1avd 4
4 1INOVYW COOVW €
l OAd € 1dvd < ” .
z 4010343 veoo| | ﬁ H S
ALD IVIHALYW AIGWNN/TWVYN LIVd | "'ON W3ll \\ s, ™

910T/S1/¥ *2red SdI ‘syun 008 *NOH YIATGN NVOOT &g umei(SuneouIdug J8a & 1SI1,]
10-XH 0N 8mQ €:T:o[ds | ANy sUl a0 TdXd INNOW 3000 ¥O OpLL ‘Sm(| AMSIGAIUN 18IS OIYO YL
unow
m OAd 2POD IOy | WAsSY 4
Z DA Z b poddns oad g
Z 8. % ib poddns oad £
¢ 13318 20DIgHBA JD 1040943 _ wwm%
ALD IVINIVYW JIAWNN [dVd "ON W3ll Wm
4
|o! w@
E 0]
. w T M,anqﬁﬁ#?r@,__ ///
\/] M T ;M/ifmwf,m\wm. . \\\\
// " ‘ _ _mw_ __ {_F \\\
S~ o] |)
b zamm de;.uﬁqlﬁv(_ w B \xw\ \
i e H/M. £ IHUM;U#H”M“ “:\ s & \.\
M \\\WW 2 @ 2 //\w . // \

< d £ s \H\\
\\ - M wﬂ \“\,\ \\\\
. s
A
xﬁ\ /S T &
i

910T/L/v -91ed

SdI suupn 00:8 :InOH

AATN NVDOT :Ag umelq

70-Xd 'ON "3m(

1S | drd sl

MAIA AAA0TIXd NIV LIOHS :PPLL “3mMd

SurioauIduy Jed A 1811
AJIsI2AIUN) 97B1S 014 YL,

L d3dvd EHD4QUUYIIDLUS 4

L d3dvd CHRJUUV|IDWS £

L d4dvd HOQUUV[DWIS 4

! dO103d4 dL 1o L
ALD TVIdIIVN JFGWNN/AWYN 18V | "ON W3l

9102/9/y 9red SdI -siup) 00-8 -MMOH YAATN NVDOT :Ag umerq SunoauI3us Jed & 1811,
€0-Xd 'ON "3m(191808 Ard sug MEIA QHIAOTIXE WY DNOT: ML ‘Sm(y | ANSIOAIUN 18IS OO oYL
| 13318 60M3IIDS 8
£ 1331S laysombig L
5 13318 INNM&10SBUOT 9
| ¥O10333 ar10 G
| OAd /HPd 14
| OAd 9HOd €
| J4O10333 Z z
| JOL1O3¥3 jogoy|ouljulyBuoT |
"ALD TVINILYW JIGWNN/IWYN 1dVd | "ON WALl

910¢/S1/y 1A

SdI:smun | o:g :noy

YAAAN NVDOT Ag umei(q

Sunoouidug Jea & 1811

0-Xd *'ON "M €:TROS| ANy IsU] A4A01dXd NIVILIARA/OITANOV OBLL ‘Bm | AHSIOAIUN 93§ OIYO Ayl
14 SNOIANVTIIOSIW Y X321jA10010 0WIULIO z
L DITAIDV aspg junowJojowl |
‘ALO TVIYILYW J39WNN Ldvd "ON WALl

910¢/S1/y -=9red

SdI :syuupn) 00:8 :InOH

AATN NVDOT :Ag umelq

SureauI3uy Jed & ISI1,]

S0-Xd 'ON '3MQ |- -2jeog d0y -suf AAAOTdXA NIVYLIATIA OpLL ‘Sm | AISIRAIUN 183G 04O Ay L
| V/N Alquiessy [UWO /
i 13318 IDJ|OD320THPYS 9
l DILSY1d v8€0 S
| 13318 60XV XIA 14
4 13318 MaI0S BuoT e
| V/N I0}JOW™X3A g
| (LND ¥3SV1) DIANDY SOPISjunowJojoul |
‘AL TVINALYW JIIWNN L3V d "ON W3l

910T/S1/¥ -91ed

SdI -suupn)

00:8 :INOH

YAAAN NVDOT &g umelq

90-XH :'ON 8m

To1:91808

AR Isug

NOISOTdXd SLNANOJNOD DAd :9PLL 8mQ

Surreaurduy Jea A 1811,
KjISIoATUN 93BIS OIY() Y,

910Z/S 1/t ored SdI:Siun | (0:g :INOH MAATN NVDOT :Ag umel(SuieourSug Teo & 1811,
90-Xd 'ON 8m(C'1 19808 A sul (90-X2) W08 NOISOTdXH DOAd ONLL ‘Sm(q | AISIPAIUL 211§ 01O oYL

4 13318 Ll Al

Z 1331$ uouniy Ll

9 1331 60MIOS ol

s OAd o_nco_+0>®_®cotapbv_®w 6

¢ 13318 Q'EMBIDS Q

9l 13318 INN | LMBIDS L

8 133LS INNM3I0SOUOT 9

8 WIMSN3S S

9l 1331 L LM3¥OS 14

8 DIISV1d 48¢c0 €

| OAd 1499UsOAd 4

l NIV YLIAIITBDITAYOY l

"ALD VINILYW JIIWNN L8V d "ON WALl

910¢/S1/¥ -9ked

SdI snun

00:8 :InoH

YAATN NVDOT :Ag umel(

LO-XH 'ON "8m(

71 :91808

MY IsU[

Aa4dO1dXd SWSINVHOTIN HLIM ATINASSY 1104 :PPLL '8md

Sunioour3uy Jea & 1811
ANIsI9ATU() 93B1S OIYQ YL,

SRS

v

- —
e T e,

910¢/S1/y -9%ed

SdI -sHun

00:8 :INOH

VAATN NVDOT &g umelq

LO-XH "ON "8m(

[:1:9180S

AL -I8U]

WO'd ATINASSY TVNIA P11, 8mQ

Surioaur3uy Jes A 1S11J
KyIsIoATUN) 93B1S Oy YL,

L (L) Wivoases| 62
I uolunij 8¢
14 nul /2
l OAd [188USDAd| 92
| ogoind| Sz
l SNOANYTIIDSIW [oUWIVHOYS| T
| SNOANYTIDSIW [oudwiyBbuol| €7
91 73318 (1) LLMI¥DS| TT
8 WAMSNIS| 1T
e
l OAd o|jquolipAs|suoiingpPal 0c
| OAd YOL00 WD Hoys| 4|
A 13318 ZOMIYOS| 8l
| LOTOYINOD| /I
| SNOANVTIFDSIW unow epoo 1| 91
L DIISV1d LOAId8|DIIDI0}OUWOAISS &1
L OAd JUNOWIOAISS 71
4 73318 Ll €l
€ 1331S LOMIYDS| Tl
8 DILSVY1d v8eo| Ll
8 7331 60MI¥DS| Ol
8 13318 00THM| 6
_ OAd SHIIUBISOIOU od 8
8 13318 LLMINDS| Z
v DILSY1d ageol 9
4 13318 S|Xy Loys| ¢
4 IOIOW X3A| ¥
4 Alquessy luwQ| €
14 DITAYDY sepisT{unowIojow| - g
| DITAYDY 9s0Q” jUnowJojou L
ALD IVIYILYW YIGWNN L3Vd "ON W3ll

910¢/01/v °1ed

SdI -syup)

00:8 :INOH

YIAIN NVDOT :Ag umelq

00-(IC1 :'ON "3m

[:7:9[e0S

A0 -IsU]

LIVd NIV TIVIAS 9] “Sm(

Surroourduy Jeax 1s1,]
KJISISATU() 2)e1S OIYO YL

w_.G//

61°®

00°€

9102/01/v -°red Sdl -s3uf) 00:8 :INOH YAATN NVDOT :Ag umelq Sureauiduy Jeo A 1SI1,]
10-Ad :"ON "8smQ [:] 191808 Ard syl 7 TIVd MY TIVIAS oL “Smp | ANsIoAtun 91e1§ oo ay L
0s'€
)

6L°Q =

9102/01/¥ -°ked

SdI :syup)

00-8 InoH

YAATN NVDOT ‘A9 umeq

Z0-Ad - 'ON 3m

[:1 :9180S

A0 IsU]

€ LAVd NIV TIVIAS :9DLL 8M

Surrooui3uyg Jeo X 18114
KJSIDATU() 9)€)S OIYQO YL,

61°@

910¢/01/¥ =1

SdI :smun

00:8 :INOH

€0-dd :'oN 3m[

[:] 191808

A0y IsU]

AN NVDOT :Ag umel(
, L 14Vd P 8mg

SurioouIduy Jea g 181,
KJISIATU) 9)BIS OTY(Y,

L9°C

"Im_..

9102/01/v -°ked SdI -syuf 00:8 InoH YAATN NVDOT :Ag umelq SurroouISuyg Jea A 1811,
#0-ad 'ON "Smd [11:9[80S Ay syl 9 LMV :opLL, Bm | ANSIOAIUN OTEIS OO YL
05°1
-] =€l e R

9102/01/% -°¥ed

SdI -sHuf)

00:8 :INOH

YAATAN NVDOT Ag umel(

S0-Ad :'oN 3m([

[:1 :9180S

drd -sul

1AVd WV OAYAS PP 8ma

SurrosuISuy J89 & 1811,
KIISIOATUN) 918IS OIYQ YL,

— e— |

00¢

mN. —— (g

910¢/01/¥ 21

SdI -suuf)

00:8 :InoH

YAATAN NVDOT A umel(

90-(I(1 - 'ON "3m(

[:] :9180S

A0 IsU]

¥ LIVd PLL SmQ

SurroouISuy Jes X 1841,
K1s10AIUN 93B1S OIYQ YL,

q¢

910¢/01/¥ -9ked

SdI :syup)

00:8 :INOH

YAATAN NVDOT :Ag umelq

L0~ “"ON "3m(

[:] :9180S

Al +IsU]

€ LIVd :Pp 8mg

SuroouISuy Jea X 1811,
KJISIoATU) 97B1S OIYQ) Y.L,

= 00°¢

910¢/01/¥ =¥

SdI -sHup)

00:8 :INOH

YAAAN NVDOOT :Ag umel(q

80-I(1 :'ON "3m(

[:1 191888

404 -I84]

O LIOddNS DA NLL 8m(

Surioourduy Jea g 1811
KJSIaATU 9181S OIYO YL,

oc —i

m_.|||+

Qs'e

—_—

910¢/01/¥ -°ked

SdI -snun

00:8 :INOK

YAATN NVOOT :Ag umelq

60-ad :"ON “Smq

[:1:9[€08

Ard -Isug

290 1L40ddNS DA :dNLL 8M[

Surroauiduy Jeo X 18I
ANISIDATUN 9)B)S OIY() YT,

L —

el

S/l

910C/01/¥ -91ed

SdI :snun

00:8 :INOH

YHATN NVDOT Ag umel(

01-Ad :'oN 8mQ

[:1 91808

d0d -IsU]

D014 NOLLVYAATA NOLLNE Ad¥ P, ‘8md

SurroauIduy Jea X 1811,

KIISI9ATUN 978)S OIYQ YL

|

sl'gy — 1 &b

910¢/01/¥ -°1eQ

SdI -suun)

00:8 :INOH

YAATN NVDOT :Ag umelq

[1-ad :'oN '8mQ

8:¢ 10[80S

J0d IsY]

[LHAHS OAd :9NLL Sm(

SurroaurSus Jed & 1811,
KIISIOATUN) 9381S OIYQ YL,

<~

'ASV4 JHL 4O dINJOD 1IHOIY

NOL1LO4 IHL NI dIVd FHL NI NMOHS SV
AINOISNIWIA FV SFTOH d313WVId
NI €1° d3LIWIYAd 4O SdIvd 11V

-

11

IT

‘ - _ o
Tm. . 8E™ = %._Tl | 00°€
a + Om 7 i |$| @u 1$| A gl /
wO.N A d T T
0g'¢C BE"]
50’ & e + +
: I_l <4
A ; CLPXIL — &
IT
s I Xw
61" @ X0l A ’
4 09'® ©-
. -+
0oy SO°€
| 80'C T T
o G .
» 5¢ = Foc N - S

— 80T |-

-~ 00y ————=

T

00'8

910T/01/v 93ed Sdl “STH] 00-8 oY YAATN NVDOT :Ag umel(SurioouIdug Iea X 1SI1,]
71-dd oN 8ma [:] :9[e08 A0y Isu] LNNOW OAMAS oL, “Sm | ANSIOAIUN 7EIS OIYO YL
[~ 97| —=
-
B ST
I e)
B } el
a
|
b 00'¢C ve'e
|
|
|)
i sz B
L]
) m*— ‘| e
09’
“_AV\/ - gy
\ — 8¢ — =
(R . T) —
— Om. [

910¢/01/¥ -9ted SdI -snun 00:8 :INOH YIATGN NVDOOT Ag umel(q SuroourSuy Jea g 1811,

£1-ad oN '8m@ L1:[@dS | ArY 18Ul SAAIS INNOW YOLOW :2PLL, Bm(y | ANSIPATUN 9181S OO oYL
9|
- A \\m_\r A
B e K& \
e —"| L1
Ol'l—
Gl ——=
- Vv A

9102/01/% -°red SdI -syufny 00:8 -INOH YIATN NVDOT :Ad umeiq SuroauIduy Jed & 1811,
b1-dd ON "3mQ [-1:3183§ 08 8] ASVE LNNOW MOLOW [L ‘Sm(| ANSI9AIUN 311§ OO AU L
V-V INIT3IHL v
1NOAY DIIIWWAS SI 1aVd JHL
] I
|
s o+

[TI1 [111 I

~— L

—= 8¢l

— = N.V. — -

9102/01/¥ -=1d

SdI -syuf)

00:8 :INOH

YAATGN NVDOT :Ag umelq

SI-Ad :'oN 3mq

[:1:9[€0S

J0d -I8U]

HOLYD INYV LYOHS :2PLL "3md

SuroouIguy Jea X 1SI1,]
KIsI0ATUN) 93B)S OIYQ Y],

8¢

Team B5: 4/24/16

APPENDIX H
Final Code

main.cpp

// Required custom library
#include "RobotMenuMain.h"

/* This main function runs the RobotMainMenu, which can access all of the subprograms.
* Last modified: 3/14/2016
*/
int main (void)
{
while (true) {
RobotMenu.Run () ;
}

} // end main function

RobotMenuMain.h

#ifndef ROBOTMAINMENU H
#define ROBOTMAINMENU H

class RobotMenuMain ({
public:

void Run () ;
private:

int MNMenu () ;
b

extern RobotMenuMain RobotMenu;

#endif // ROBOTMAINMENU H

RobotMenuMain. cpp

// Required libraries
#include <FEHLCD.h>
#include <string.h>
#include "RobotMenuMain.h"

// Included custom libraries. Comment out the ones not needed.

// Be sure to comment out the functions in the code farther down in RobotMenuMain: :Run ()
//#include "ProteusTestMain.h"

#include "WorldStateMain.h"

#include "FinalCompetitionMain.h"

#include "FinalCompetitionFastMain.h"

// Define the colors for the menus
#define MENU C SCARLET
#define TEXT C BLACK

// Declare the object of type RobotMenuMain
RobotMenuMain RobotMenu;

/* This function draws the main menu, accepts input, requests for confirmation, and returns the
choice.
* This code was mostly inspired by Proteus Test.cpp and FEHRPS.cpp.
* Last Modified: 3/14/2016 JKL
*/
int RobotMenuMain: :MNMenu (void)
{
// Initialize/reset choice and menu
int confirmChoice = 0;

H2

int menu = 0;

// Initialize the main menu title, main menu labels, confirmation title, and confirmation menu
labels.

FEHIcon::Icon MAIN T[1];

char main t label[1][20] = {"Proteus Main Menu"};

FEHIcon::Icon MAIN[6];
char main label[6][20] = {"Proteus Test","WorldState","Blank","FinalComp",6 "Testl","FinalFast"};

FEHIcon::Icon confirm title[1];
char confirm title label[1][20] = {""};

FEHIcon::Icon confirm[2];
char confirm labels[2][20] = {"Ok", "Cancel"};

while (confirmChoice != 1) {
LCD.Clear (GRAY) ;

// Draw the title block
FEHIcon::DrawlIconArray (MAIN T, 1, 1, 1, 201, 1, 1, main t label, MENU C, TEXT C);
MAIN T[O].Select();

// Draw the menu options with 3 rows and 2 columns
FEHIcon::DrawlIconArray (MAIN, 3, 2, 40, 1, 1, 1, main label, MENU C, TEXT C);

float x, vy;
menu = 0;
while (menu==0) {
if (LCD.Touch (&x, &y)) {

for (int n=0; n<=9; n++) {
if (MAIN[n].Pressed(x, vy, 0)) {

menu = n + 1;
MAIN[n] .WhilePressed(x, V)7
break;

}
}

} // end while loop that repeats until a icon is pressed
strcpy(confirm title label[0], main label[menu-1]);

LCD.Clear (GRAY) ;

FEHIcon::DrawlIconArray(confirm title, 1, 1, 60, 201, 1, 1, confirm title label, MENU C,
TEXT C) ;

FEHIcon::DrawlIconArray(confirm, 1, 2, 60, 60, 1, 1, confirm labels, MENU C, TEXT C);

confirmChoice = 0;

while (!confirmChoice) {
if (LCD.Touch (&x, &y)) {
for (int n=0; n <=1; n++) {
if (confirm[n].Pressed(x, vy, 0)) {
confirm[n] .WhilePressed(x, V);
confirmChoice = n+1;

}
}

} // end while loop that repeats until a confirmation choice
} // end while loop the repeats until positive confirmation

H3

return menu;
} // end RobotMenuMain::MNMenu function

/* This function is the main function that runs in main.cpp.
* It contains the switch-case options for the menu choices and runs the included programs.
* Be sure to comment out the subprograms not included at the top of this file.
* Last Modified: 3/14/2016 JKL
*/

void RobotMenuMain: :Run () {

int choice = MNMenu () ;

LCD.Clear (BLACK) ;

switch (choice) {

case 1:
LCD.WriteLine ("Proteus Test");
//ProteusTest.Run () ;
break;

case 2:
LCD.WriteLine ("WorldState") ;
WorldState.Run () ;
break;

case 3:
LCD.WriteLine ("Blank") ;
break;

case 4:
LCD.WritelLine ("Final Competition");
FinalCompetition.Run() ;
break;

case 5:
LCD.WriteLine ("Testl") ;
break;

case 6:
LCD.WriteLine ("Final Fast");
FinalCompetitionFast.Run() ;
break;

} // end switch-case structure
} // end RobotMenuMain::Run function

ProteusTest.h

#ifndef PROTEUSTEST H
#define PROTEUSTEST H

#define PROTEUSTESTMAIN 1
class ProteusTestMain {
public:

void Run () ;
b

extern ProteusTestMain ProteusTest;

#endif // PROTEUSTEST H

ProteusTest.cpp

/*‘k*‘k*‘k*‘k************************/
/* Proteus Test Code */
/* OSU FEH Spring 2016 */
/* Drew Phillips */

H4

/* 02/04/16 Version 3.0 */

/********************************/

/* Include preprocessor directives */
#include <FEHLCD.h>

#include <FEHIO.h>

#include <FEHUtility.h>
#include <FEHMotor.h>
#include <FEHServo.h>
#include <FEHAccel.h>
#include <FEHBattery.h>
#include <FEHBuzzer.h>
#include <FEHRPS.h>

#include <string.h>

#include <stdio.h>

#include "ProteusTestMain.h"

/* Define colors for parts of menus */
#define MENU C WHITE

#define TEXT C GOLD

#define SELT C RED

#define SHOW C BLUE

#define HI C GREEN

/* Define menu number values */
#define MN MENU 0

#define DC_MENU
#define SV_MENU
#define DI_MENU
#define AI MENU
#define AC MENU
#define TO MENU
#define DO MENU
#define RP_MENU

O ~J oy Ul WwWDN

/* Define time for beep */
#define beep t 10 // int milliseconds

ProteusTestMain ProteusTest;

/* Global variable to keep track of being initialized to RPS */
int RPS init = 0;

/* Function to write input value as true or false to icon */
void WriteLogicValue (FEHIcon::Icon icon, int wval)
{
if (val)
icon.ChangelLabelString ("True") ;
else
icon.ChangelLabelString ("False");
} // end WriteLogicValue function

/* Main Menu */
int MNMenu ()

{
LCD.Clear (BLACK) ;

/* Create icons for main menu */

FEHIcon::Icon MAIN T[1];

char main t label[1][20] = {"PROTEUS TEST CODE"};
FEHIcon::DrawlIconArray(MAIN T, 1, 1, 1, 201, 1, 1, main t label, HI C, TEXT C);
MAIN T[O].Select();

H5

FEHIcon::Icon MAIN[6];

char main label[8][20] = {"DC", "Servo", "Digital In", "Analog In", "Accel", "Touch",
Out", "RPS"};

FEHIcon::DrawlIconArray (MAIN, 4, 2, 40, 20, 1,

LCD.SetFontColor (HI C);
LCD.WriteAt ("AHP V3.0", 220, 222);

LCD.SetFontColor (TEXT C);
LCD.WriteAt ("BATT: v", 0, 222);

Buzzer.Buzz (beep t);
int menu=MN MENU, n;
float x, vy;

float m = 0, bat v = 0;

while (menu==MN_ MENU)
{

1, main label, MENU C, TEXT C);

/* Display average battery voltage to screen */

bat v = ((bat_v*m)+Battery.Voltage());
bat v = bat v/ (++m);
LCD.WriteAt(bat_v, 72, 222);

if (LCD.Touch (&x, &y))

{

/* Check to see if a main menu icon has been touched */

for (n=0; n<=7; n++)

{
if (MAIN[n].Pressed(x, vy, 0))
{

menu = n+l;
MAIN[n].WhilePressed(x, Vy):
break;

}
}
} // end while loop
return menu;

} // end MNMenu function

/* DC Motors Menu */
int DCMenu ()

{

/* Declare DC Motor ports */

FEHMotor motorO (FEHMotor::Motor0O, 5.0);
FEHMotor motorl (FEHMotor::Motorl, 5.0);
FEHMotor motor2 (FEHMotor::Motor2, 5.0);
FEHMotor motor3 (FEHMotor::Motor3, 5.0);

LCD.Clear (BLACK) ;

/* Create icons for DC motors menu */
FEHIcon::Icon DC T[1];

char dc_t label[1][20] = {"DC Motors"};
FEHIcon::DrawIconArray(DC T, 1, 1, 1, 201, 1,

FEHIcon::Icon Back[1l];
char back label[1][20] = {"<=-"};
FEHIcon::DrawIconArray(Back, 1, 1, 1, 201, 1,

FEHIcon::Icon DC[4];

1, dc_t label, MENU C, TEXT C);

260, back label, MENU C,

H6

TEXT C);

"Digital

char dc labels[4][20] = {"MotorO", "Motorl", "Motor2", "Motor3"};
FEHIcon::DrawlIconArray(DC, 2, 2, 40, 1, 1, 60, dc labels, SHOW C, TEXT C);

FEHIcon::Icon Run[2];
char run labels[2][20] = {"F", "B"};
FEHIcon::DrawIconArray(Run, 2, 1, 40, 1, 261, 1, run labels, SELT C, TEXT C);

Buzzer.Buzz (beep t);

int menu=DC MENU, n, m;
float x, vy;
int runf4] = {0, 0, 0, 0};

while (menu==DC_ MENU)
{ if (LCD.Touch (&x, &y))
{ /* Check to see if a motor icon has been touched */
for (n=0; n<=3; n++)
{ if (DC[n].Pressed(x, y, 0))
{

/* Select or deselect motor icon for running */

if (!run[n])
run[n] = 1;

else if (run[n])
run[n] = 0;

DC[n] .WhilePressed(x, Vy);
}
}
/* Check to see if a forward or backward run button has been touched */
for (m=0; m<=1l; m++)
{
if (Run[m].Pressed(x, y, 0))
{
/* Run motors according to direction */
if (run[0]==1)
motor0.SetPercent ((m* (-100))+50) ;
if (run[l]==1)
motorl.SetPercent ((m* (-100))+50);
if (run([2]==1)
motor2.SetPercent ((m* (-100))+50) ;
if (run[3]==1)
motor3.SetPercent ((m* (-100))+50) ;
Run[m] .WhilePressed(x, V)’
Run[m] .Deselect () ;
motor0.Stop () ;
motorl.Stop ()
motor2.Stop () ;
motor3.Stop ()

’

}
}
/* If back button has been touched, go to main menu */
if (Back[O].Pressed(x, vy, 0))
{
Back[0] .WhilePressed(x, Vy);
menu = MN MENU;
}
}
} // end while loop
return menu;
} // end DCMenu function

H7

/* Servo Motors Menu */
int SVMenu ()
{
/* Declare Servo Motor ports */
FEHServo servo(O (FEHServo::Servo0);
FEHServo servol (FEHServo::Servol);
FEHServo servo2 (FEHServo::Servo2);
FEHServo servo3 (FEHServo::Servo3);
)i
)i
)i
)i

’

’

FEHServo servod4 (FEHServo::Servo4d
FEHServo servo5 (FEHServo::Servob
FEHServo servo6 (FEHServo::Servob
FEHServo servo7 (FEHServo::Servo’

’
’
’

(
(
(
(
(
(
(
(

LCD.Clear (BLACK) ;

/* Create icons for servo motors menu */

FEHIcon::Icon SV T[1];

char sv t label[1][20] = {"Servo Motors"};

FEHIcon::DrawlIconArray(SV_T, 1, 1, 1, 201, 1, 1, sv_t label, MENU C, TEXT C);

FEHIcon::Icon Back[1l];
char back label[1][20] = {"<=-"};
FEHIcon::DrawlIconArray(Back, 1, 1, 1, 201, 1, 260, back label, MENU C, TEXT C);

FEHIcon::Icon SV[8];

char sv labels([8][20] = {"ServoO", "Servol", "Servo2", "Servo3", "Servo4", "Servo5",

"ServoT7"};
FEHIcon::DrawlIconArray(Sv, 4, 2, 40, 1, 1, 60, sv labels, SHOW C, TEXT C);

FEHIcon::Icon Run[2];
char run labels[2][20] = {"F", "B"};
FEHIcon::DrawlIconArray(Run, 2, 1, 40, 41, 261, 1, run labels, SELT C, TEXT C);

FEHIcon::Icon Degl[l];
char deg labels[1][20] = {"0"};
FEHIcon::DrawlIconArray(Deg, 1, 1, 198, 4, 261, 1, deg labels, SELT C, TEXT C);

Buzzer.Buzz (beep t);

int menu=SV_MENU, n, m;

float x, vy’

int deg=0;

int run(8] = {0, 0, 0O, O, O, 0O, O, 0};

while (menu==SV_MENU)
{ if (LCD.Touch (&x, &y))
{ /* Check to see if a servo motor icon has been touched */
for (n=0; n<=7; n++)
{ if (SV[n].Pressed(x, y, 0))
{

/* Select or deselect motor icon for running */

if (!run[n])
run[n] = 1;

else if (run[n])
run[n] = 0;

SV[n].WhilePressed(x, Vy);

}
} // end for loop

H8

"Servoo",

/* Check to see if the forward or backward run icons have been touched */
for (m=0; m<=1l; m++)
{
if (Run[m].Pressed(x, y, 0))
{
while (Run[m] .Pressed(x, vy, 1))
{
/* While the run button is being touched, increase or decrease the servo
angle within the limits */
LCD.Touch (&x, &Yy);
deg = deg+l-(m*2);

if (deg<0)
deg = 0;

else if (deg>180)
deg = 180;

Deg[0] .ChangeLabellInt (deqg) ;
if (run([0]==1)
servo0.SetDegree (deqg) ;
if (run([l]==1)
servol.SetDegree (deg) ;
if (run([2]==1)
servo2.SetDegree (deqg) ;
if (run([3]==1)
servo3.SetDegree (deqg) ;
if (run([4]==1)
servo4d.SetDegree (deg) ;
if (run[5]==1)
servob.SetDegree (deg) ;
if (run([6]==1)
servob6.SetDegree (deqg) ;
if (run[7]==1)
servo’.SetDegree (deg) ;
}
Run[m] .Deselect ()
}
} // end for loop
/* If back button has been touched, go to main menu */
if (Back[O].Pressed(x, vy, 0))
{
Back[0] .WhilePressed (x, Vy):
menu = MN MENU;
}
}
} // end while loop
return menu;
} // end SVMenu function

/* Digital Input Menu */

int DIMenu ()

{
/* Declare ports for digital input */
DigitalInputPin di00 (
DigitalInputPin diOl ()
DigitalInputPin di02 ()
DigitalInputPin di03 ()
DigitalInputPin di04 ()
DigitalInputPin di05 (FEHIO::P0O 5);
DigitalInputPin di06 ()
DigitalInputPin di07 ()
DigitalInputPin dil0 ()
DigitalInputPin dill ()
DigitalInputPin dil2 ()

H9

"PO_S" ,

"Pl_5" ,

"P2_5" ,

"P3_5" ,

DigitalInputPin dil3 (FEHIO::P1 3);
DigitalInputPin dil4 (FEHIO::P1 4);
DigitalInputPin dil5 (FEHIO::P1 5);
DigitalInputPin dilé (FEHIO::P1 6);
DigitalInputPin dil7 (FEHIO::P1 7);
DigitalInputPin di20 (FEHIO::P2 0);
DigitalInputPin di2l (FEHIO::P2 1);
DigitalInputPin di22 (FEHIO::P2 2);
DigitalInputPin di23 (FEHIO::P2 3);
DigitalInputPin di24 (FEHIO::P2 4);
DigitalInputPin di25 (FEHIO::P2 5);
DigitalInputPin di26 (FEHIO::P2 6);
DigitalInputPin di27 (FEHIO::P2 7);
DigitalInputPin di30 (FEHIO::P3 0);
DigitalInputPin di31 (FEHIO::P3 1);
DigitalInputPin di32 (FEHIO::P3 2);
DigitalInputPin di33 (FEHIO::P3 3);
DigitalInputPin di34 (FEHIO::P3 4);
DigitalInputPin di35 (FEHIO::P3 5);
DigitalInputPin di36 (FEHIO::P3 6);
DigitalInputPin di37 (FEHIO::P3 7);
LCD.Clear (BLACK) ;

/* Create digital input menu icons */
FEHIcon::Icon DI T[1];

char di t label[1]([20] = {"Digital Input"};

FEHIcon::DrawlIconArray(DI T, 1, 1, 1

FEHIcon::Icon Back[1l];
char back label[1][20] = {"<=-"};
FEHIcon::DrawlIconArray(Back, 1, 1, 1

FEHIcon::Icon BANKS[4];
char banks label[4][20] = {"BankQ",
FEHIcon::DrawlIconArray (BANKS, 1, 4,

FEHIcon::Icon DI BO[16];

char di b0 labels[16][20] {"pO_O",
"PO_6", "PO_7", " ", " ", " ", "

FEHIcon::Icon DI B1[1l6];

char di bl labels[16][20] = {"P1 O",
"P1_6", "P1_7", " ", " ", " ", "

FEHIcon::Icon DI B2[16];

char di b2 labels[16][20] {"p2 0",
"P2_6", "P2_7 ", " ", " ", " ", "

FEHIcon::Icon DI B3[16];

char di b3 labels[16][20] = {"P3 0",
" P3_6 " , " P3_7 " , " " , " " , " " , "

Buzzer.Buzz (beep t);

int menu=DI MENU, bank=0, bank i, n;
float x, vy;

while (menu==DI_ MENU)

{
/* Draw selected bank's ports */
switch (bank)

, 201, 1,

, 201, 1,

"Bankl",
40, 1le1l,

"PO_:L",
"}

llPl_lll,
"}

IIP2_1 " ,
"}

IIP3_1 " ,
"}

"Bank2",

"PO_2 " ,

llPl_z " ,

" P2_2 " ,

" P3_2 " ,

H10

"Bank3"};
1, 1, banks label,

"PO_3 " ,

IIP1_3 " ,

IIP2_3 " ,

IIP3_3 " ,

"

SELT C,

1, di_t label, MENU C, TEXT C);

260, back label, MENU C, TEXT C);

TEXT C);

n, "PO_4",

n, IIP1_4H,
n’ IIP2_4"’
n, IIP3_4H,

{

case 0:
FEHIcon:
break;

case 1:
FEHIcon:
break;

case 2:
FEHIcon:
break;

case 3:
FEHIcon:
break;

}

bank i = bank;
while (bank==bank i)

{

:DrawIconArray (DI _BO,

:DrawIconArray (DI _BI,

:DrawlIconArray (DI B2,

:DrawIconArray (DI B3,

4, 4, 80, 1

4, 4, 80, 1

4, 4, 80, 1

4, 4, 80, 1

di b0 labels,

di bl labels,

di b2 labels,

di b3 labels,

/* For each bank, display the digital input values */

if (bank==

{

WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue

}

else if

{

WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue

}

else if

{

WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue

}

else if

{

WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue
WriteLogicValue

)

DI_BO
DI _BO
DI_BO
DI _BO
DI_BO
DI _BO
DI BO[
DI _BO[

(bank==1)

DI _B1
DI_B1
DI Bl
DI_B1
DI Bl
DI_B1
DI _B1

4
5
6
7
1
1
1
DI BI1[1

]
]
]
]
2
3
4
5

(
[
(
[
(
[
[
[

(bank==2)

DI B2
DI_B2[
DI B2
DI_B2[
DI B2
DI_B2[
DI B2
DI_B2[

(bank==3)

DI B3
DI B3
DI B3
DI B3
DI B3
DI B3
DI B3

4
5
6
;
1
1
1
DI _B3([1

1
]
1
]
2
3
4
5

[
[
[
[
[
[
[
[

’
’

’

]
]
]
]

’
’

’

]
]
]
]

I4

4

I4

4

I4

’

I4

’

di00.Value
diOl.Value
di02.Value
di03.Value
di04.vValue
di05.Value
diO6.Value
di07.Value

(
(
(
(

dil0.Value
dill.Value
dil2.Value
dil3.Value
dild.vValue
dil5.Value
dile6.Value
dil7.Value

di20.Value (
di2l.Value (
di22.vValue (
di23.Value (
di24.vValue
di25.Value
di26.Value
di27.Value

di30.Value
di3l.Value
di32.vValue
di33.Value
di34.value
di35.Value
di3e6.Value
di37.Value

(
(
(
(

H11

)
)
)
)
(
(
(
(
)
)
)
)
(
(
(
(

)
)
)
)

(
(
(
(

)i
)i
)i
)i
)
)
)
)
)i
)i
)7
)i
)
)
)
)

)i
)i
)i
)i
)
)
)
)

’
’

’

)i
)i
)i
)i

’
’

’

)i
)i
)i
)i

’
’

’

)7
)7
)7
)7

’

’

’

’

’

’

’

’

’

’

’

’

SHOW_C,

SHOW C,

SHOW_C,

SHOW C,

TEXT C);

TEXT C);

TEXT C);

TEXT C);

if (LCD.Touch (&x, &y))
{
/* Check to see if any of the banks icons have been touched */
for (n=0; n<=3; n++)
{
if (BANKS[n].Pressed(x, y, 0))
{
/* Change selected bank number to update screen */
BANKS [n] .WhilePressed(x, V)7
BANKS [n] .Deselect () ;
bank = n;
}
}
/* If back button has been touched, go to main menu */
if (Back[O].Pressed(x, y, 0))
{
Back[0] .WhilePressed(x, Vy):
menu = MN MENU;
bank = -1;
}
}
} // end while loop
} // end while loop
return menu;
} // end DIMenu function

/* Analog Input Menu */

int AIMenu()

{
/* Declare ports for digital input */ // Trust me, you have to declare them as digital and

analog inputs in order for this to work
DigitalInputPin di00 (FEHIO::P0_0);
DigitalInputPin di0l1 (FEHIO::PO 1
DigitalInputPin di02 (FEHIO::P0O 2
DigitalInputPin di03 (FEHIO::PO 3
DigitalInputPin di04 (
DigitalInputPin di05 (
DigitalInputPin di06 (
DigitalInputPin di07 (
DigitalInputPin dil0 (
DigitalInputPin dill (
DigitalInputPin dil2 (
DigitalInputPin dil3 (
DigitalInputPin diléd (
DigitalInputPin dil5 (
DigitalInputPin dil6 (
DigitalInputPin dil7 (
DigitalInputPin di20 (
DigitalInputPin di2l1 (FEHIO::P2 1
DigitalInputPin di22 (
DigitalInputPin di23 (
DigitalInputPin di24 (
DigitalInputPin di25 (
DigitalInputPin di26 (
DigitalInputPin di27 (
DigitalInputPin di30 (
DigitalInputPin di31l (
DigitalInputPin di32 (
DigitalInputPin di33 (
DigitalInputPin di34 (
DigitalInputPin di35 (
DigitalInputPin di36 (

H12

"PO_S" ,

"Pl_5" ,

"P2_5" ,

DigitalInputPin di37 (FEHIO::P3 7);

/* Declare ports for analog input */
AnalogInputPin aiO0 (FEHIO::PO O0);
AnalogInputPin aiOl (FEHIO::PO 1);
AnalogInputPin ai02 (FEHIO::PO 2);
AnalogInputPin aiO3 (FEHIO::PO 3);
AnalogInputPin ai04 (FEHIO::PO 4);
AnalogInputPin aiO5 (FEHIO::PO_5);
AnalogInputPin ai0O6 (FEHIO::PO 6);
AnalogInputPin aiO7 (FEHIO::PO 7);
AnalogInputPin ailQ0 (FEHIO::P1 O0);
AnalogInputPin aill (FEHIO::P1 1);
AnalogInputPin ail2 (FEHIO::P1 2);
AnalogInputPin ail3 (FEHIO::P1 3);
AnalogInputPin aild4 (FEHIO::P1 4);
AnalogInputPin ail5 (FEHIO::P1 5);
AnalogInputPin ail6 (FEHIO::P1 6);
AnalogInputPin ail7 (FEHIO::P1 7);
AnalogInputPin ai20 (FEHIO::P2 0);
AnalogInputPin ai2l (FEHIO::P2 1);
AnalogInputPin ai22 (FEHIO::P2 2);
AnalogInputPin ai23 (FEHIO::P2 3);
AnalogInputPin ai24 (FEHIO::P2 4);
AnalogInputPin ai25 (FEHIO::P2 5);
AnalogInputPin ai26 (FEHIO::P2 6);
AnalogInputPin ai27 (FEHIO::P2 7);
AnalogInputPin ai30 (FEHIO::P3 0);
AnalogInputPin ai3l (FEHIO::P3 1);
AnalogInputPin ai32 (FEHIO::P3 2);
AnalogInputPin ai33 (FEHIO::P3 3);
AnalogInputPin ai34 (FEHIO::P3 4);
AnalogInputPin ai35 (FEHIO::P3 5);
AnalogInputPin ai36 (FEHIO::P3 6);
AnalogInputPin ai37 (FEHIO::P3 7);

LCD.Clear (BLACK) ;

/* Create analog input menu icons */
FEHIcon::Icon AT T[1];
char ai t label[1][20] = {"Analog Input"};

FEHIcon::DrawlIconArray(AI T, 1, 1, 1, 201, 1,

FEHIcon::Icon Back[1l];

char back label[1][20] = {"<=-"};

FEHIcon::DrawIconArray (Back, 1, 1, 1, 201, 1,

FEHIcon::Icon BANKS[4];

char banks label[4][20] = {"BankO", "Bankl",

FEHIcon::DrawlIconArray (BANKS, 1, 4, 40, 161,

FEHIcon::Icon AI BO[1l6];

char AI b0 labels[16][20] {"p0O_O", "PO 1",
"PO_6", "PO_7", " ", " ", " ", " "} ;

FEHIcon::Icon AI B1[1l6];

char AI bl labels[16][20] {"p1_O", "P1 1",
"Pl_6", "Pl_7", " ", " ", " ", " "} ;

FEHIcon::Icon AI B2[16];

char AI b2 labels[1l6][20] = {"pP2 O", "P2 1",
"P2_6", "P2_7", " ", " ", " ", " "} ;

1, ai t label, MENU C, TEXT C);

260, back label, MENU C,

"Bank2",

IIPO_2H, IIP0_3H,
"P172", "P173",
IVP272 ", "P273 ",

H13

"Bank3"};
1, 1, banks label,

n

1]

SELT C,

TEXT C);

TEXT C);

" PO_4 " ,

"P174 n,

IVP274 " ,

FEHIcon::Icon AI B3[16];
char AI_b3_labelS[l6] [20] — {"P3_O", "P3_l", "P3_2", "P3_3", n "’ " n, n "’ " n, "P3_4",
"P375 " , "P376" , "P377 A\l , " " , A\l A\l , " " , A\l A\l } ’.

Buzzer.Buzz (beep t);

int menu=AI MENU, bank=0, bank i, n;
float x, vy;

while (menu==AI MENU)
{
/* Draw selected bank's ports */
switch (bank)
{
case 0:
FEHIcon::DrawlIconArray (AI BO, 4, 4, 80, 1, 1, 1, AI bO labels, SHOW C, TEXT C);
break;
case 1:
FEHIcon::DrawlIconArray(AI B1, 4, 4, 80, 1, 1, 1, AI bl labels, SHOW C, TEXT C);
break;
case 2:
FEHIcon::DrawlIconArray(AI B2, 4, 4, 80, 1, 1, 1, AT b2 labels, SHOW C, TEXT C);
break;
case 3:
FEHIcon::DrawlIconArray(AI B3, 4, 4, 80, 1, 1, 1, AI b3 labels, SHOW C, TEXT C);
break;
}
bank i = bank;
while (bank==bank i)
{
/* Draw each bank's analog input values */
if (bank==0)
{
AI BO[4].ChangeLabelFloat (ai00.Value (
AI BO[5].ChangeLabelFloat (aill.Value (
.ChangelLabelFloat (ai02.Value (
(

’
’

)
)
)
)

[)

[)
AI BO[6])i
AI BO[7].ChangeLabelFloat (ail3.Value());
AI BO[12].ChangeLabelFloat (ail4.Value());
AI BO[13].ChangeLabelFloat (ai05.Value());
AI BO[14].ChangeLabelFloat (ail6.Value());
AI BO[15].ChangelLabelFloat (ai07.Value());

}
else if (bank==1)
{
AI B1[4].ChangeLabelFloat (ail0.Value
AI B1[5].ChangeLabelFloat (aill.Value(
.ChangelLabelFloat (ail2.Value (
(

[)

[)
AI B1[6])i
AI B1[7].ChangeLabelFloat(ail3.Value());
AI B1[12].ChangelLabelFloat(ail4.Value());
AI B1[13].ChangelLabelFloat (ail5.Value());
AI B1[14].ChangelLabelFloat(ail6.Value());
AI B1[15].ChangelLabelFloat (ail7.Value());

}
else if (bank==2)
{

’

4] .ChangelabelFloat (ai20.Value (

AI B2 ()
5] .ChangelLabelFloat (ai2l.Value ()
()

)

AI B2
AI B2
AI B2
AI B2
AI B2

’

)

)
6] .ChangeLabelFloat (ai22.Value());
7] .ChangelLabelFloat (ai23.Value())
12] .ChangeLabelFloat (ai24.Value ()
)

13] .ChangelabelFloat (ai25.Value (

H14

’

)
)

}

AI B2[14].ChangelabelFloat (ai26.Value());
AI B2[15].ChangeLabelFloat (ai27.Value());

else if (bank==3)

{

AI B3[4].ChangeLabelFloat (ai30.Value());
AI B3[5].ChangelLabelFloat(ai3l.Value());
AI B3[6].ChangelLabelFloat(ai32.Value());
AI B3[7].ChangeLabelFloat (ai33.Value());
AI B3[12].ChangeLabelFloat (ai34.Value());
AI B3[13].ChangelabelFloat (ai35.Value());
AI B3[14].ChangelLabelFloat (ai36.Value());
AI B3[15].ChangelabelFloat (ai37.Value());

}
if (LCD.Touch (&x, &y))

{

/* Check to see if any of the banks icons

for (n=0; n<=3; n++)

{
if (BANKS[n].Pressed(x, y, 0))
{

/* Change selected bank to update */

BANKS[n] .WhilePressed(x, y);
BANKS [n] .Deselect () ;
bank = n;
}
}

/* If back button has been touched, go to

if (Back[0].Pressed(x, vy, 0))
{
Back[0] .WhilePressed(x, Vy);
menu = MN MENU;
bank = -1;
}
}
} // end while loop
} // end while loop
return menu;
} // end AIMenu function

/* Accelerometer Menu */
int ACMenu ()

{
LCD.Clear (BLACK) ;

/* Create accelerometer menu icons */
FEHIcon::Icon AC T[1];

char ac t label[1][20] = {"Accelerometer"};
FEHIcon::DrawIconArray(AC T, 1, 1, 1, 201, 1, 1,

FEHIcon::Icon Back[1l];
char back label[1][20] = {"<-"};

FEHIcon::DrawlIconArray(Back, 1, 1, 1, 201, 1, 260, back label, MENU C,

FEHIcon::Icon AC XYZ[3];
char ac xyz label[3][20] = {"Xx", "y", "z"};
FEHIcon::DrawlIconArray (AC XYZ, 1, 3, 40, 120, 1,

FEHIcon::Icon AC VAL[3];

char ac val label([3][20] = {"", "", ""};
FEHIcon::DrawIconArray(AC VAL, 1, 3, 120, 40, 1,

H15

ac_t label, MENU C,

1,

1,

ac_xyz label,

ac_val label,

main menu */

have been touched */

SHOW C,

SHOW_C,

TEXT C);

TEXT C);

TEXT C);

TEXT C) ;

FEHIcon::Icon AC CAL[1];
char ac_cal label[1][20] = {"Calibrate"};
FEHIcon::DrawlIconArray(AC CAL, 1, 1, 201, 2, 1, 1, ac _cal label, SELT C, TEXT C);

Buzzer.Buzz (beep t);

int menu=AC MENU;
float x, vy, xo=0, yo=0, zo=0;

while (menu==AC_ MENU)
{
/* Update accelerometer readings taking into account an offset (calibration) */
AC VAL[O].ChangeLabelFloat (Accel.X()-x0);
AC VAL[1].ChangeLabelFloat (Accel.Y ()-yo);
AC VAL[2] .ChangeLabelFloat (Accel.Z()-zo);
if (LCD.Touch (&x, &y))
{
/* Check to see if the calibrate icon has been touched */
if (AC_CAL[O0].Pressed(x, y, 0))
{

/* Set offsets to current accelerometer data to calibrate to zeros at that

orientation */

AC CAL[O].WhilePressed(x, y);
AC CAL[O].Deselect();

x0 = Accel.X();

yo Accel.Y () ;

zo = Accel.Z();

/* If back button has been touched, go to main menu */
if (Back[O].Pressed(x, vy, 0))

Back[0] .WhilePressed(x, Vy);
menu = MN MENU;
}

}
} // end while loop
return menu;

} // end ACMenu

/* Touch Menu */
int TOMenu ()

{

LCD.Clear (BLACK) ;

/* Create touch menu icons */

FEHIcon::Icon TO T[1];

char to t label[1][20] = {"Touch Screen"};

FEHIcon::DrawIconArray(TO T, 1, 1, 1, 201, 1, 1, to t label, MENU C, TEXT C);

FEHIcon::Icon Back[1l];
char back label[1][20] = {"<=-"};
FEHIcon::DrawlIconArray(Back, 1, 1, 1, 201, 1, 260, back label, MENU C, TEXT C);

FEHIcon::Icon TO[4];
char to label[4][20] = {"x", ™ ™, "y", " "};
FEHIcon::DrawlIconArray(TO, 2, 2, 40, 161, 1, 1, to label, SHOW C, TEXT C);

FEHIcon::Icon TO SW[1];
char to sw label([1][20] = {"SWITCH"};
FEHIcon::DrawlIconArray(TO sw, 1, 1, 80, 121, 1, 1, to sw label, SELT C, TEXT C);

Buzzer.Buzz (beep t);

H16

int menu=TO MENU, side=0;
float x, vy;

/* Sleep briefly to avoid touching after selecting menu */
Sleep (100);

while (menu==TO_ MENU)
{
if (LCD.Touch (&x, &y))
{
/* Update x and y of touched locations */
TO[1l] .ChangelLabelFloat (x) ;
TO[3] .ChangelLabelFloat (y) ;
if (TO SW[O].Pressed(x, y, 0))
{
/* If switch is touched, switch the side of the screen with the icons to allow
access to both halfs of the touch screen for testing */
TO SW[0].WhilePressed(x, y);
TO_SW[0].Deselect();
if (side==0)
{
LCD.Clear (BLACK) ;
FEHIcon::DrawlIconArray(TO T, 1, 1, 121, 80, 1, 1, to t label, MENU C, TEXT C);
FEHIcon::DrawlIconArray(Back, 1, 1, 121, 81, 1, 260, back label, MENU C,

TEXT C);
- FEHIcon::DrawlIconArray(TO, 2, 2, 161, 40, 1, 1, to label, SHOW C, TEXT C);
FEHIcon::DrawlIconArray(TO sw, 1, 1, 201, 2, 1, 1, to sw label, SELT C, TEXT C);
side = 1;
}
else if (side==1)
{
LCD.Clear (BLACK) ;
FEHIcon::DrawIconArray(TO T, 1, 1, 1, 201, 1, 1, to_t label, MENU C, TEXT C);
FEHIcon::DrawlIconArray(Back, 1, 1, 1, 201, 1, 260, back label, MENU C, TEXT C);
FEHIcon::DrawlIconArray(TO, 2, 2, 40, 161, 1, 1, to label, SHOW C, TEXT C);
FEHIcon::DrawIconArray(TO sw, 1, 1, 80, 121, 1, 1, to sw label, SELT C,
TEXT C);

side = 0;
}
}
/* If back button has been touched, go to main menu */
if (Back[O].Pressed(x, vy, 0))
{
Back[0] .WhilePressed(x, Vy);
menu = MN MENU;
}
}
} // end while loop
return menu;
} // end TOMenu function

/* Digital Output Menu */
int DOMenu ()
{
/* Declare ports for digital output */
DigitalOutputPin do0O0 (FEHIO::PO _O);
DigitalOutputPin do0l1 (FEHIO::PO 1)
DigitalOutputPin do02 (FEHIO::PO_2);
DigitalOutputPin do03 (FEHIO::PO 3);
()
()

’

’

DigitalOutputPin do04 (FEHIO::PO 4
DigitalOutputPin do05 (FEHIO::PO 5

’

H17

DigitalOutputPin do06 (FEHIO::P0_6);
DigitalOutputPin do0O7 (FEHIO::PO 7);
DigitalOutputPin dolQ0 (FEHIO::P1 O0);
DigitalOutputPin doll (FEHIO::P1 1);
DigitalOutputPin dol2 (FEHIO::P1 2);
DigitalOutputPin dol3 (FEHIO::P1 3);
DigitalOutputPin dol4 (FEHIO::P1 4);
DigitalOutputPin dol5 (FEHIO::P1 5);
DigitalOutputPin dol6 (FEHIO::P1l 6);
DigitalOutputPin dol7 (FEHIO::P1 7);
DigitalOutputPin do20 (FEHIO::P2 O0);
DigitalOutputPin do2l1 (FEHIO::P2 1);
DigitalOutputPin do22 (FEHIO::P2 2);
DigitalOutputPin do23 (FEHIO::P2 3);
DigitalOutputPin do24 (FEHIO::P2 4);
DigitalOutputPin do25 (FEHIO::P2 5);
DigitalOutputPin do26 (FEHIO::P2 6);
DigitalOutputPin do27 (FEHIO::P2 7);
DigitalOutputPin do30 (FEHIO::P3 0);
DigitalOutputPin do31l (FEHIO::P3 1);
DigitalOutputPin do32 (FEHIO::P3 2);
DigitalOutputPin do33 (FEHIO::P3 3);
DigitalOutputPin do34 (FEHIO::P3 4);
DigitalOutputPin do35 (FEHIO::P3 5);
DigitalOutputPin do36 (FEHIO::P3 6);
DigitalOutputPin do37 (FEHIO::P3 7);

LCD.Clear (BLACK) ;

/* Create digital output menu icons */
FEHIcon::Icon DO T[1];

char do_t label[1l][20] = {"Digital Output"};

FEHIcon::DrawlIconArray(DO T, 1, 1, 1, 201, 1, 1, do t label, MENU C, TEXT C);

FEHIcon::Icon Back[1l];

char back label[1][20] = {"<-"};

FEHIcon::DrawlIconArray(Back, 1, 1, 1, 201, 1, 260, back label, MENU C, TEXT C);
FEHIcon::Icon BANKS[4];

char banks label[4][20] = {"BankQ0", "Bankl", "Bank2", "Bank3"};
FEHIcon::DrawIconArray (BANKS, 1, 4, 40, 161, 1, 1, banks label, SELT C, TEXT C);
FEHIcon::Icon OUTI[1];

char out label[1][20] = {"Toggle"};

FEHIcon::DrawIconArray(OUT, 1, 1, 161, 3, 1, 1, out label, SELT C, TEXT C);

FEHIcon::Icon DO BO[8];

Cha]’j do_bo_labelS[S] [20] = {"PO_O", "PO_l", "PO_Z", "PO_3", "PO_4", "PO_S", "PO_6", "PO_7"};
FEHIcon::Icon DO B1([8];

Char do_bl_labelS[S] [20] = {"Pl_o"’ 'lPl_l"’ 'lPl_Z", '|P1_3"’ '|P1_4"’ '|P1_5"’ '|P1_6"’ '|P1_7"};
FEHIcon::Icon DO B2[8];

Cha]’j do_b2_labels[8] [20] = {"PZ_O", "P2_1", "P2_2", "P2_3", "P2_4", "P2_5", "P2_6", "P2_7"};
FEHIcon::Icon DO B3([8];

char doib3ilabels[8] [20] — {"P3io"’ IIP371"’ IIP372"’ IIP373"’ IIP374"’ "P375"’ "P376"’ VIP377"};

Buzzer.Buzz (beep t);

int menu=DO_MENU, bank=0, bank i, n, m;
float x, vy;

H18

int
0, 0, 0O,

output[4][8] =
0, 0, 0, 0};

while (menu==DO_MENU)

{

/* Deselect all selected ports when switching banks for visibility */

for (n=0; n<=7; n++)
{
if (output[0] [n]==1)
DO _BO[n].Deselect();
}
for (n=0; n<=7; n++)
{
if (output[l][n]==1)
DO _Bl[n].Deselect();
}
for (n=0; n<=7; n++)
{
if (output[2][n]==1)
DO B2 [n].Deselect();
}
for (n=0; n<=7; n++)
{
if (output[3][n]==1)

DO _B3[n].Deselect();
}

/* Draw each bank's ports and re-draw selected ports

switch (bank)
{
case 0:
FEHIcon::DrawIconArray (DO_BO,
for (n=0; n<=7; n++)
{
if (output[0] [n]==1)
DO _BO[n].Select();
}
break;
case 1:
FEHIcon::DrawIconArray (DO _Bl1,
for (n=0; n<=7; n++)
{
if (output[l][n]==1)
DO BO[n].Select();
}
break;
case 2:
FEHIcon::DrawIconArray (DO B2,
for (n=0; n<=7; n++)
{
if (output[2] [n]==1)
DO BO[n].Select();
}
break;
case 3:
FEHIcon::DrawIconArray(DO_B3,
for (n=0; n<=7; n++)
{
if (output[3][n]==1)
DO BO[n].Select();
}
break;

80,

80,

80,

80,

H19

80,

80,

80,

80,

if selected earlier */
do b0 labels,

SHOW_C,

do bl labels, SHOW C,

do b2 labels,

SHOW C,

do b3 labels, SHOW C,

TEXT C);

TEXT C) ;

TEXT C) ;

TEXT C) ;

}
bank i = bank;

while (bank==bank i)
{

/* Check to see if each bank's port icons are touched and set the output bit for each

port to be able to toggle or not */
if (bank==0)
{
if (LCD.Touch (&x, &y))
{
for (m=0; m<=7; mt+)
{
if (DO _BO[m].Pressed(x, y, 0))
{
DO BO[m].WhilePressed(x, y);
if (output[0] [m]==0)
output [0] [m] = 1;
else if (output[0] [m]==1)
output [0] [m] = 0;

}
}
else if (bank==1)
{
if (LCD.Touch (&x, &y))
{
for (m=0; m<=7; m++)
{
if (DO_Bl[m].Pressed(x, y, 0))
{
DO Bl [m].WhilePressed(x, y);
if (output[l][m]==0)
output[1l] [m] = 1;
else if (output[l][m]==1)
output([1l] [m] = 0

’

}
}
else if (bank==2)
{
if (LCD.Touch (&x, &y))
{
for (m=0; m<=7; m++)
{
if (DO _B2[m].Pressed(x, y, 0))
{
DO B2 [m].WhilePressed(x, y);
if (output[2] [m]==0)
output[2] [m] = 1;
else if (output[2] [m]==1)
output[2] [m] = 0;

}
}
else if (bank==3)
{
if (LCD.Touch (&x, &y))

{
for (m=0; m<=7; m++)

H20

if (DO B3[m].Pressed(x, y, 0))
{
DO B3[m].WhilePressed(x, y);
if (output[3] [m]==0)
output[3] [m] = 1;
else if (output[3][m]==1)
output[3] [m] = 0;

}
}
if (LCD.Touch (&x, &y))
{
/* Check to see if any of the banks icons have been touched */
for (n=0; n<=3; n++)
{
if (BANKS[n].Pressed(x, vy, 0))
{
/* Change selected bank to update */
BANKS [n] .WhilePressed(x, V)’
BANKS [n] .Deselect () ;
bank = n;
}
}
/* Check to see if the toggle icon has been touched */
if (OUT[O0].Pressed(x, vy, 0))
{
OUT[O0] .WhilePressed(x, V);
OUT[0] .Deselect () ;
/* Toggle the state of all selected output ports */
if (output[0] 1== do00.Toggle () ;

[0)
if (output[0][1l]==1) doOl.Toggle():;
if (output[0][2]==1) doO2.Toggle();
if (output[0][3]==1) do03.Toggle();
if (output[0][4]==1) doO4.Toggle();
if (output[0][5]==1) doO05.Toggle();
if (output[0][6]==1) doO6.Toggle();
if (output[0][7]==1) doO7.Toggle();
if (output[l][0]==1) dolO.Toggle();
if (output[l][l]==1) doll.Toggle();
if (output[l][2]==1) dol2.Toggle():;
if (output[l][3]==1) dol3.Toggle():;
if (output[l][4]==1) dold.Toggle();
if (output[l][5]==1) dol5.Toggle();
if (output[l][6]==1) dol6.Toggle();
if (output[l][7]==1) dol7.Toggle();
if (output[2][0]==1) do20.Toggle();
if (output[2][1]==l) do21.Toggle () ;
if (output[2][2]==1) do22.Toggle();
if (output[2][3]—=) do23.Toggle();
if (output[2][4]==1) do24.Toggle();
if (output[2][5]==1) do25.Toggle();
if (output[2][6]==1) do26.Toggle();
if (output[2][7]==1) do27.Toggle();
if (output[3][0]==1) do30.Toggle();
if (output[3][1l]==1) do3l.Toggle():;
if (output[3][2]==1) do32.Toggle();
if (output[3][3]==1) do33.Toggle();
if (output[3][4]==1) do34.Toggle();
if (output[3][5]==1) do35.Toggle();
if (output[3][6]==1) do36.Toggle();

if (output[3][7]==1) do37.Toggle();
}
/* If back button has been touched, go to main menu */
if (Back[0].Pressed(x, y, 0))
{
Back[0] .WhilePressed(x, Vy):
menu = MN MENU;
bank = -1;
}
}
} // end while loop
} // end while loop
/* Turn off all digital output ports when leaving menu */
do00.Write (0) ;
doOl.Write (0);
do02.Write (0) ;
do03.Write (
do04.Write (
doO5.Write (
doO6.Write (
do07.Write (
dolO0.Write (
doll.Write (
dol2.Write (
dol3.Write (
dold.Write (
dol5.Write (
dol6o.Write (
dol7.Write (
do20.Write (
do2l.Write (
do22.Write (
do23.Write (
do24 .Write (
do25.Write (
do26.Write (
do27.Write (
do30.Write (
do31.Write (
do32.Write (
do33.Write (
do34.Write (
do35.Write (
do36.Write (
do37.Write (
return menu;
} // end DOMenu function

/* RPS Menu function */
int RPMenu ()

{
LCD.Clear (BLACK) ;

/* Check to see if the Proteus has already initialized to a course region */
if (!RPS_init)
{
RPS.InitializeTouchMenu () ;
RPS_init = 1;
}

LCD.Clear (BLACK) ;

H22

/* Create RPS menu icons */

FEHIcon::Icon RP T[1];

char rp t label[1][20] = {"RPS"};

FEHIcon::DrawlIconArray(RP T, 1, 1, 1, 201, 1, 1, rp t label, MENU C, TEXT C);

FEHIcon::Icon Back[1l];
char back label[1][20] = {"<=-"};
FEHIcon::DrawlIconArray(Back, 1, 1, 1, 201, 1, 260, back label, MENU C, TEXT C);

FEHIcon::Icon RP XYH[3];
char rp xyh label[3][20] = {"X", "Y", "Heading"};

FEHIcon::DrawlIconArray (RP_XYH, 1, 3, 40, 120, 1, 1, rp xyh label, SHOW C, TEXT C);

FEHIcon::Icon RP VAL[3];
char rp val label[3][20] = {"", "™, ""};

FEHIcon::DrawlIconArray (RP_VAL, 1, 3, 120, 40, 1, 1, rp val label, SHOW C, TEXT C);

FEHIcon::Icon RP LOG[1];
char rp log label[1][20] = {"Log Data"};

FEHIcon::DrawlIconArray(RP_LOG, 1, 1, 201, 2, 1, 1, rp log label, SELT C, TEXT C);

Buzzer.Buzz (beep t);

int menu=RP_ MENU;
float x, vy;

while (menu==RP MENU)
{
/* Update RPS x, y, and heading values */
RP_VAL[O}.ChangeLabelFloat(RPS.X());
RP VAL[1].ChangeLabelFloat (RPS.Y());
RP VAL[2] .ChangeLabelFloat (RPS.Heading());
if (LCD.Touch (&x, &y))
{
/* Check to see if log data icon has been touched */
if (RP_LOGI[O].Pressed(x, y, 0))
{
RP LOG[0] .WhilePressed(x, y);
RP LOG[O] .Deselect () ;

/* LOG SOME STUFF USING SD CARD */
/* To be implemented in a later version */
}
/* If back button has been touched, go to main menu */
if (Back[O].Pressed(x, vy, 0))
{
Back[0] .WhilePressed(x, Vy);
menu = MN MENU;
}
}
} // end while loop
return menu;
} // end RPMenu function

/* Main function to control menu system */
void ProteusTestMain: :Run ()
{

int menu=MN MENU;

while (true)

{

switch (menu)

{
H23

case MN MENU:
menu = MNMenu () ;

break;

case DC MENU:
menu = DCMenu () ;
break;

case SV_MENU:
menu = SVMenu() ;
break;

case DI MENU:
menu = DIMenu () ;
break;

case AI MENU:
menu = AIMenu();
break;

case AC MENU:
menu = ACMenu() ;
break;

case TO MENU:
menu = TOMenu() ;
break;

case DO MENU:
menu = DOMenu () ;
break;

case RP MENU:
menu = RPMenu();
break;

}

} // end while loop
} // end ProteusTestMain function

WorldStateMain.h

#ifndef WORLDSTATEMAIN H
#define WORLDSTATEMAIN H

class WorldStateMain {
public:
void Run () ;
b
extern WorldStateMain WorldState;

#endif // WORLDSTATEMAIN H

WorldStateMain. cpp

// Required FEH libraries
#include <FEHLCD.h>
#include <FEHIO.h>
#include <FEHUtility.h>
#include <FEHRPS.h>

// Required custom libraries
#include "constants.h"
#include "worldstate.h"
#include "WorldStateMain.h"

// Declare object WorldState of class WorldStateMain
WorldStateMain WorldState;

H24

/* This function is a subprogram executed from the RobotMainMenu that
world state of the robot.
* Last modified: 4/2/2016
*/
volid WorldStateMain: :Run ()
{
RPS.InitializeTouchMenu() ;
initializeLog() ;

LCD.WritelLine ("Waiting for middle");
while (!button.MiddlePressed());

worldState (false, 0, 0, 0, 0, 0O, 0);
LCD.WriteRC ("Right button - log", 5, 3);
LCD.WriteRC ("Left button - quit", 6, 3);

while(!button.LeftPressed()) {
worldState (false, 0,0,0,0,0,0);

// Write to SD card file if right button is pressed
if (button.RightPressed()) {
worldState (true, 0, 0, 0, 0O, 0, 0);
LCD.WriteRC ("Logged", 5, 3);
}
Sleep (50) ;
}
closelLog () ;
LCD.WriteRC("SD Log Closed", 6, 3);
} // end WorldStateMain::Run function

FinalCompetition.h

#ifndef FINALCOMPETITIONMAIN H
#define FINALCOMPETITIONMAIN H

class FinalCompetitionMain {
public:
void Run () ;
private:
int breakpoint();
}i

extern FinalCompetitionMain FinalCompetition;

#endif // FINALCOMPETITIONMAIN H

FinalCompetition.cpp

// Required FEH libraries
#include <FEHLCD.h>
#include <FEHIO.h>

// Require custom libraries
#include "constants.h"
#include "worldstate.h"
#include "start.h"

#include "toggles.h"
#include "supplies.h"
#include "ramp.h"

#include "fuelbutton.h"
#include "launchbutton.h"

H25

continuously displays the

#include "FinalCompetitionMain.h"

// Declare object FinalCompetition of class FinalCompetitionMain

FinalCompetitionMain FinalCompetition;

/* This function adds a breakpoints to either continue or quit from the

*/
int FinalCompetitionMain::breakpoint () {
if (false) {

LCD.WriteRC ("Press left button to", 5,
3);
LCD.WriteRC ("or middle to quit.",

LCD.WriteRC ("continue...", 6,
while (!button.LeftPressed () &&
if (button.MiddlePressed()) {
closelog () ;
return 1;
}
while (!button.LeftReleased()
return 0;

&&

}
return 0;
} // end breakpoint function

/* This function is a subprogram for the
* Last Modified: 3/14/2016 JKL
*/

void FinalCompetitionMain::Run() {
start () ;
togglesBottom() ;

if (FinalCompetition.breakpoint())

return;
pickupSupplies();

if (FinalCompetition.breakpoint())

return;
tempRamp () ;

if (FinalCompetition.breakpoint())

return;
fuelbutton () ;

if (FinalCompetition.breakpoint())

return;
dropOffSupplies () ;

if (FinalCompetition.breakpoint())

return;
togglesTop () ;

if (FinalCompetition.breakpoint ())

return;

mainRamp () ;

program.

3);

T, 3);

'button.MiddlePressed()) ;

'button.MiddleReleased()) ;

Final Competition that is run from the RobotMainMenu.

H26

if (FinalCompetition.breakpoint())
return;

launchButton () ;

return;
} // end FinalCompetitionMain::Run function

FinalCompetitionFast.h

#ifndef FINALCOMPETITIONFASTMAIN H
#define FINALCOMPETITIONFASTMAIN H

class FinalCompetitionFastMain {
public:
void Run () ;
private:
int breakpoint () ;
}i

extern FinalCompetitionFastMain FinalCompetitionFast;

#endif // FINALCOMPETITIONFASTMAIN H

FinalCompetitionFast.cpp

// Required FEH libraries
#include <FEHLCD.h>
#include <FEHIO.h>

// Require custom libraries

#include "constants.h"

#include "worldstate.h"

#include "start.h"

#include "toggles fast.h"

#include "supplies.h"

#include "ramp fast.h"

#include "fuelbutton.h"

#include "launchbutton fast.h"
#include "FinalCompetitionFastMain.h"

// Declare object FinalCompetition of class FinalCompetitionFastMain
FinalCompetitionFastMain FinalCompetitionFast;

/* This function adds a breakpoints to either continue or quit from the program.
*/
int FinalCompetitionFastMain::breakpoint () {
if (false) {
LCD.WriteRC ("Press left button to", 5, 3);
LCD.WriteRC ("continue...", 6, 3);
LCD.WriteRC ("or middle to quit.", 7, 3);
while (!button.LeftPressed() && !button.MiddlePressed());
if (button.MiddlePressed()) {
closelog () ;
return 1;
}
while (!button.LeftReleased() && !button.MiddleReleased());
return 0;
}
return 0;
} // end breakpoint function

H27

/* This function is a subprogram for the Final Competition that is run from the RobotMainMenu.
* Last Modified: 4/6/2016 JKL
*/
void FinalCompetitionFastMain::Run() {
start () ;
togglesBottom fast();

if (FinalCompetitionFast.breakpoint())
return;

pickupSupplies();

if (FinalCompetitionFast.breakpoint())
return;

tempRamp fast () ;

if (FinalCompetitionFast.breakpoint())
return;

fuelbutton () ;

if (FinalCompetitionFast.breakpoint())
return;

dropOffSupplies () ;

if (FinalCompetitionFast.breakpoint())
return;

togglesTop fast();

if (FinalCompetitionFast.breakpoint())
return;

mainRamp fast();

if (FinalCompetitionFast.breakpoint())
return;

launchButton fast();

return;
} // end FinalCompetitionMain::Run function

start.h

#ifndef START H
#define START H

void start();

// extern these values so that other .cpp files can use the RPS offset values
extern float RPSSuppliesYOffset;

extern float RPSFuellLightXOffset;

extern float RPSFuellightYOffset;

extern float RPSTopRampXOffset;

#endif // START H

H28

start.cpp

// Required FEH libraries
#include <FEHRPS.h>
#include <FEHLCD.h>
#include <FEHUtility.h>
#include <FEHSD.h>

// Required custom libraries
#include "constants.h"
#include "worldstate.h"
#include "supplyarm.h"
#include "start.h"

// Initialize the RPS offsets as global so that it can be passed out of this .cpp file
float RPSSuppliesYOffset = 0;
float RPSFuellLightXOffset = 0;
float RPSFuellightYOffset = 0
float RPSTopRampXOffset = 0;

’

/* This function is run at the beginning of a course run to go through the launch sequence of the
robot.

* A log is opened, RPS is initialized, RPS offsets are calibrated, CdS cell is tested,

* servo arm is initialized, and the robot waits for the start light.

* Last Modified: 4/2/2016 JKL

*/

void start () {
RPS.InitializeTouchMenu () ;
initializeLog();

// Calibrate the RPS Y value for the supplies
while(0 != (microswitchl.Value () + microswitch2.Value())) {
worldState (false, 0,0,0,0,0,0);
LCD.WriteRC ("RPSSuppliesY", 5, 3);
if ((0 == (microswitchl.Value() + microswitch2.Value())) && (RPS.X() > 0)) {
worldState (true, 0, 0, 0, 0, 0, 0);
SD.Printf ("RPSSupplies\t");
RPSSuppliesYOffset = RPSSuppliesY - RPS.Y();
LCD.WriteRC ("Logged", 5, 3);

}

LCD.WriteRC (RPSSuppliesYOffset, 5, 3);
Sleep (1000);

// Calibrate the RPS X and Y values for the fuel light
while(0 != (microswitchl.Value () + microswitch2.Value())) {
worldState (false, 0,0,0,0,0,0);
LCD.WriteRC ("RPSFuellLightX and Y", 5, 3);
if ((0 == (microswitchl.Value() + microswitch2.Value())) && (RPS.X() > 0)) {
worldState (true, 0, 0, 0, 0, 0, 0);
SD.Printf ("RPSFuelLight\t") ;
RPSFuelLightXOffset = RPSFuelLightX - RPS.X();
RPSFuellLightYOffset = RPSFuelLightY - RPS.Y();
LCD.WriteRC ("Logged", 5, 3);

}

LCD.WriteRC (RPSFuellLightXOffset, 5, 3);

H29

LCD.WriteRC (RPSFuellLightYOffset, 6, 3);
Sleep (1000) ;

// Calibrate the RPS X value for the main ramp
while(0 != (microswitchl.Value() + microswitch2.Value())) {
worldState (false, 0,0,0,0,0,0);
LCD.WriteRC ("RPSTopRampX", 5, 3);
if ((0 == (microswitchl.Value() + microswitch2.Value())) && (RPS.X() > 0)) {
worldState (true, 0, 0, 0, 0, 0, 0);
SD.Printf ("RPSTopRamp\t") ;
RPSTopRampXOffset = RPSTopRampX - RPS.X();
LCD.WriteRC ("Logged", 5, 3);

}

LCD.WriteRC (RPSTopRampXOffset, 5, 3);
Sleep (1000);

// Wait for the left button to be pressed
while(!button.LeftPressed()) {
worldState (false,0,0,0,0,0,0);
LCD.WriteRC ("CdS Cell test"™, 5, 3);
LCD.WriteRC ("Press left button...", 6, 3);
LCD.WriteRC (cdscell.Value(), 7, 10);
}
while (!button.LeftReleased());

initializeArm() ;
worldState (true,0,0,0,0,0,0);
LCD.WriteRC ("Press left button...", 5, 3);

while (!button.LeftPressed());
while (!button.LeftReleased());

LCD.WriteRC ("Waiting for light...", 6, 3);
float startTime = TimeNow () ;
while (cdscell.Value() > 1 && TimeNow () - startTime < 30) {

LCD.WriteRC(cdscell.Value(), 7, 10);
}

LCD.WriteRC ("Beginning run", 8, 3);
} // end start function

toggles.h

#ifndef TOGGLES H
#define TOGGLES H

void togglesBottom() ;
void togglesTop () ;

#endif // TOGGLES_H

toggles.cpp

// Required FEH library
#include <FEHRPS.h>

// Required custom libraries

H30

#include "constants.h"
#include "drive.h"
#include "toggles.h"

/* This function controls the robot to press the launch sequence toggles from the lower level.
* This function starts after the start light has been detected on the start platform
* and ends after backing up from the toggles.
* Last modified: 4/2/2016 JKL
*/
void togglesBottom() {

//driveUntilTime (225, 100, 800, true);
driveUntilTime (180, 140, 500, true):;
driveUntilRPSyRange (RPSOffStart, 30, 90, 1, 3000);
turnUntilTime (=70, 500);

driveUntilBump (180, 60, 3);
driveUntilBumpTimeout (265, 100, 4, 2000);

driveUntilTime (90, 100, 10, false);
driveUntilTime (0, 80, 450, false);

turnUntilRPS (270, 20, 1000);

// Hit the blue toggle only if needed
if (RPS.BlueSwitchDirection() == 2) {
driveUntilBumpTimeout (270, 80, 4, 2000);
driveUntilTime (90, 80, 40, true);
}
} // end togglesBottom function

/* This function controls the robot to press the launch sequence toggles from the upper level.
* This function starts after the robot drives away from the drop zone
* and ends after backing away from the blue toggle.
* Last modified: 4/2/2016 JKL
*/
void togglesTop () |

// If the robot is in the dead zone, continue to drive out of it
if (RPS.X() < 0)
driveUntilTime (0, 60, 100, false);

driveUntilRPSy(RPSRedTopY, 27, 0, 2000);

// check the RPS X position if the red toggle needs to be pressed from the top
if (RPS.RedSwitchDirection() == 1)
driveUntilRPSx (RPSRedTopX, 27, 0, 1000);

turnUntilRPS (180, 20, 1000);

if (RPS.RedSwitchDirection() == 1) {
driveUntilBumpTimeout (0, 60, 1, 1000);
driveUntilTime (180, 60, 400, true);

}

driveUntilTime (270, 60, 400, false);

if (RPS.WhiteSwitchDirection() == 1) {
// check the RPS X position if the red toggle was skipped from the top
if (RPS.RedSwitchDirection() == 2)
driveUntilRPSx (RPSWhiteTopX, 27, 90, 1000);
driveUntilBumpTimeout (0, 60, 1, 1000);
driveUntilTime (180, 60, 400, true);

H31

}
driveUntilTime (270, 60, 400, false);

if (RPS.BlueSwitchDirection () == 1) {
driveUntilRPSx (RPSBlueTopX, 27, 90, 1000);
driveUntilBumpTimeout (0, 80, 1, 1000);
driveUntilTime (180, 60, 400, true);
}
} // end togglesTop function

toggles fast.h

#ifndef TOGGLES FAST H
#define TOGGLES FAST H

void togglesBottom fast();
void togglesTop fast();

#endif // TOGGLES_ FAST H

toggles fast.cpp

// Required FEH library
#include <FEHRPS.h>

// Required custom libraries
#include "constants.h"
#include "drive.h"

#include "toggles fast.h"

/* This function controls the robot to press the launch sequence toggles from the lower level.
* This function starts after the start light has been detected on the start platform
* and ends after backing up from the toggles.
* Last modified: 4/2/2016 JKL
*/
void togglesBottom fast () {

driveUntilTime (225, 100, 800, true);
driveUntilRPSyRange (RPSOffStart, 30, 90, 1, 3000);
turnUntilTime (=70, 250);

driveUntilBump (180, 100, 3);
driveUntilBumpTimeout (265, 100, 4, 2000);

driveUntilTime (90, 100, 10, false);
driveUntilTime (0, 80, 450, false);

turnUntilRPS (270, 20, 1000);

if (RPS.BlueSwitchDirection() == 2) {
driveUntilBumpTimeout (270, 80, 4, 2000);
driveUntilTime (90, 80, 40, true);
}
} // end togglesBottom function

/* This function controls the robot to press the launch sequence toggles from the upper level.
* This function starts after the robot drives away from the drop zone
* and ends after backing away from the blue toggle.
* Last modified: 4/2/2016 JKL
*/
void togglesTop fast() {

H32

if (RPS.X() < 0)
driveUntilTime (0, 60, 100, false);

driveUntilRPSyRange (RPSRedTopY, 27, 0, 0.3, 2000);

// check the RPS X position if the red toggle needs to be pressed from the top
if (RPS.RedSwitchDirection() == 1)
driveUntilRPSxRange (RPSRedTopX, 27, 0, 0.4, 1000);

turnUntilRPS (180, 20, 1000);

if (RPS.RedSwitchDirection() == 1) {
driveUntilBumpTimeout (0, 60, 1, 1000);
driveUntilTime (180, 60, 400, true);

}

driveUntilTime (270, 60, 400, false);

if (RPS.WhiteSwitchDirection() == 1) {
// check the RPS X position if the red toggle was skipped from the top
if (RPS.RedSwitchDirection() == 2)
driveUntilRPSxRange (RPSWhiteTopX, 27, 90, 0.4, 1000);
driveUntilBumpTimeout (0, 60, 1, 1000);
driveUntilTime (180, 60, 400, true);
}

driveUntilTime (270, 60, 400, false);

if (RPS.BlueSwitchDirection() == 1) {
driveUntilRPSxRange (RPSBlueTopX, 27, 90, 0.4, 1000);
driveUntilBumpTimeout (0, 80, 1, 1000);
driveUntilTime (180, 60, 400, true);
}
} // end togglesTop fast function

supplies.h

#ifndef SUPPLIES H
#define SUPPLIES H

void pickupSupplies();
void dropOffSupplies();

#endif // SUPPLIES_H

supplies.cpp

// Required FEH libraries
#include <FEHIO.h>
#include <FEHLCD.h>

// Required custom libraries
#include "drive.h"

#include "supplyarm.h"
#include "start.h"

#include "constants.h"
#include "supplies.h"

/* This function makes the robot align with and pick up the supplies.
* This function starts after the robot backs up from the blue toggle

H33

* and ends after aligning with the lower entrance if the temporary access ramp.
* Last modified: 4/2/2016 JKL
*/

void pickupSupplies() {

driveUntilTime (45, 90, 1450, true);

driveUntilRPSyRange(11.9, 30, 0, 1.5, 4000); // CHECK THIS OUT!
turnUntilTime (=70, 550);

turnUntilRPS (0,20, 2000);

driveUntilTime (90, 100, 600, false);
driveUntilBump (90, 60, 2);

driveUntilRPSy(RPSSuppliesY - RPSSuppliesYOffset, 27, 180, 8000);

// Failsafe code
// If the robot gets caught on the supply box and the bumpSide is not triggered,
// drive away and retry alignment with the wall.
if (driveUntilBumpTimeout (90, 30, 2, 5000) ==) o
driveUntilTime (0, 40, 500, true);
driveUntilBump (90, 60, 2);
driveUntilRPSy(RPSSuppliesY - RPSSuppliesYOffset, 27, 180, 8000);
driveUntilBumpTimeout (90, 30, 2, 2000);
}

lowerToPickupArm() ;
raiseToPickupArm/() ;

driveUntilTime (90, 30, 200, true);
driveUntilBump(9,80,-2);

driveUntilRPSy(RPSTempRampBottomY, 27, 270, 4000);
turnUntilRPS (0, 20, 1000);
} // end pickupSupplies function

/* This function makes the robot drop off the supplies at the drop zone.
* This function starts after a RPS heading check after the fuel button
* and ends after driving away from the drop zone.

* Last modified: 4/2/2016 JKL
*/
void dropOffSupplies() {

driveUntilTime (88, 140, 950, false);
driveUntilBump (90, 60, 2);

// Drive with heading 180 until microswitch 6 is bumped
while (microswitch6.Value()) {

motorl.SetPercent (-20);

motor2.SetPercent (20) ;

motor3.SetPercent (20);

motor4.SetPercent (-20) ;
}
motorl.SetPercent
motor2.SetPercent
motor3.SetPercent
motor4d.SetPercent

0);
0);
0);
0);

driveUntilTime (270, 50, 150, true);

lowerToDepositArm() ;
driveUntilTime (350, 80, 550, true);
raiseToDepositArm() ;

H34

} // end dropOffSupplies function

ramp.h

#ifndef RAMP H
#define RAMP H
void tempRamp () ;
void mainRamp () ;

#endif // RAMP_H
ramp.c

// Required FEH libraries
#include <FEHRPS.h>

// Required custom libraries
#include "constants.h"
#include "drive.h"

#include "start.h"

#include "ramp.h"

/* This function drives the robot up the temporary access ramp.
* This function starts after the RPS heading check at the lower entrance to the ramp
* and ends after the RPS X check with the fuel light at the top of the ramp.
* Last modified: 4/2/2016 JKL
*/
void tempRamp () {

driveUntilBump (90, 120, 2);
driveUntilBump (7, 120, 1);
driveUntilBump (0, 50, 1);

(

driveUntilBump (275, 70, -1);
driveUntilTime (270, 60, 200, false);
driveUntilRPSxRange (RPSTempRampTopX, 25, 270, 0.3, 3000);

// if the robot is on the ramp still, keep driving until RPS is reacquired
while (RPS.X() == -1) {

driveUntilTime (270, 90, 100, false);
}

driveUntilRPSxRange (RPSTempRampTopX, 25, 270, 0.3, 3000);
turnUntilRPS (0, 20, 1000);
} // end tempRamp function

/* This function drives the robot down the main ramp.

* This function starts at the blue toggle and ends after a heading check at the bottom of the main
ramp.

* Last modified: 4/2/2016 JKL

*/

void mainRamp () {

driveUntilTime (270, 100, 1100, false);

driveUntilRPSx (RPSTopRampX - RPSTopRampXOffset, 28, 0, 1000);
driveUntilRPSyRange (RPSTopRampY, 28, 0, 0.4, 1000);
turnUntilRPS (180, 20, 1000);

// 358 heading to ensure that robot does not get caught on the weather station
driveUntilTime (358, 50, 3200, true):;

H35

driveUntilRPSyRange (RPSBottomRampY, 27, 0, 0.75, 4000);
turnUntilRPS (180, 20, 1000);
} // end mainRamp function

ramp fast.h

#ifndef RAMP FAST H
#define RAMP FAST H

void tempRamp fast();
void mainRamp fast();

#endif // RAMP_H

ramp fast.cpp

// Required FEH libraries
#include <FEHRPS.h>

// Required custom libraries
#include "constants.h"
#include "drive.h"

#include "start.h"

#include "ramp fast.h"

/* This function drives the robot up the temporary access ramp.
* This function starts after the RPS heading check at the lower entrance to the ramp
* and ends after the RPS X check with the fuel light at the top of the ramp.
* Last modified: 4/2/2016 JKL
*/
void tempRamp fast () {

driveUntilBump (90, 120, 2);
driveUntilBump (7, 120, 1);
driveUntilBump (275, 70, -1);
driveUntilTime (270, 60, 200, false);
driveUntilRPSxRange (RPSTempRampTopX, 25, 270, 0.3, 3000);
while (RPS.X() == -1) {
driveUntilTime (270, 90, 150, false);
}
driveUntilRPSxRange (RPSTempRampTopX, 25, 270, 0.3, 3000);
turnUntilRPS (0, 20, 1000);
} // end tempRamp function

/* This function drives the robot down the main ramp.
* This function starts at the blue toggle and ends after a heading check at the bottom of the main

ramp.
* Last modified: 4/2/2016 JKL
*/

void mainRamp fast() {

driveUntilTime (270, 130, 800, false);
driveUntilRPSx (RPSTopRampX - RPSTopRampXOffset, 28, 0, 1000);
driveUntilRPSyRange (RPSTopRampY, 28, 0, 0.4, 1000);
turnUntilRPS (180, 20, 1000);
// 358 heading to ensure that robot does not get caught on the weather station
driveUntilTime (358, 50, 3000, true):;
driveUntilRPSyRange (RPSBottomRampY, 27, 0, 1, 4000);
turnUntilRPS (180, 20, 1000);
} // end mainRamp function

H36

fuelbutton.h

#ifndef FUELBUTTON H
#define FUELBUTTON H

void fuelbutton();

#endif // FUELBUTTON H

fuelbutton.cpp

// Required FEH libraries
#include <FEHIO.h>
#include <FEHLCD.h>
#include <FEHUtility.h>

// Required custom libraries
#include "constants.h"
#include "drive.h"

#include "start.h"

#include "fuelbutton.h"

/* This function presses the correct fuel button based on the color of the fuel light.

* This starts after the robot aligns with the fuel light right after the robot leaves the
temporary access ramp

* and ends after turning/heading check for the drive to the supplies drop zone.

* Last modified: 4/7/2016 JKL

*/
void fuelbutton () {

driveUntilCds (0, 60, 1, 1300);

int redbutton = 0;

// 1if a red light has been detected
if (cdscell.Value() < 1)

redbutton = 1;

// if a red light has not been detected

if (redbutton != 1) {
driveUntilBump (90, 60, 2);
driveUntilRPSy(RPSFuellLightY - RPSFuellLightYOffset, 25, 0, 1000);
driveUntilTime (270, 40, 350, true);
driveUntilRPSx (RPSFuellLightX - RPSFuellightXOffset, 25, 90, 1000);

turnUntilRPS (0, 20, 1000);
}

// if red light has been detected, press the red fuel button
if (redbutton == 1) {

LCD.WriteRC("Red!!!"™, 8, 5);

driveUntilBump (90, 50, 2);

driveUntilTime (10,50, 800, true);

LCD.WriteRC("Sleep 5.1 sec", 5, 3);

Sleep (5100) ;

driveUntilTime (180, 60, 50, false);

}

else 1f (CDSBlueLow < cdscell.Value() && cdscell.Value() < CDSBlueHigh) {
LCD.WriteRC ("Blue!!!", 8, 5);
driveUntilTime (0,50, 800, true);

H37

LCD.WriteRC("Sleep 5.1 sec", 5, 3);

S

leep (5100) ;

driveUntilTime (180, 60, 50, false);

}

else

if (CDSRedLow < cdscell.Value() && cdscell.Value() < CDSRedHigh) {

LCD.WriteRC ("Red!!!"™, 8, 5);

}

else

this far

}

driveUntilBump (90, 50, 2);
driveUntilTime (10,50, 800, true);

LCD.WriteRC ("Sleep 5.1 sec", 5, 3);
Sleep (5100) ;

driveUntilTime (180, 60, 50, false);

{
// There is a 50% probability that the light is blue.

// Plus, the robot has failed to detect a red light twice and a blue light once,

LCD.WriteRC ("NOPE! HOPE IT'S BLUE", 5, 3);

driveUntilBump (90, 60, 2);

driveUntilRPSy(RPSFuellLightY - RPSFuellLightYOffset, 25, 0, 1000);
driveUntilTime (270, 40, 350, true);

driveUntilRPSx (RPSFuellLightX - RPSFuellLightXOffset, 25, 90, 1000);
turnUntilRPS (0, 20, 1000);

driveUntilTime (0,50, 800, true):;
Sleep (5100) ;

driveUntilTime (180, 60, 50, false);

//driveUntilTime (210, 100, 1000, false);
// Cool code to do cool stuff
// Values determined empirically a day before the final competition
driveWhileRotate (205, 180, 80, =57, 1275);
driveUntilRPSy(RPSLongRunY, 26, 225, 1000);
//turnUntilTime (60, 1350);
turnUntilRPS (180, 20, 4000);

} // end fuelbutton function

launchbutton.h

#ifndef LAUNCHBUTTON_H

#define LAUNCHBUTTON_ H

void launchButton () ;

#endif // LAUNCHBUTTON H

launchbutton. cpp

// Required custom libraries

#include "constants.h"

#include "drive.h"

#include "worldstate.h"

#include "launchbutton.h"

H38

if it gets

/* This function drives the robot into the final launch button.
* This function starts after the RSP y check after the robot goes down the main ramp
* and ends after the robot hits the launch button.
* Last modified: 4/2/2016 JKL
*/
void launchButton () {

driveUntilTime (90, 100, 730, true);
turnUntilTime (=60, 360);
turnUntilRPS (225, 20, 2000);

// The robot is given a 2x2 inch box it can correct its position to
driveUntilRPSxRange (RPSFinalButtonX, 30, 45, 1, 1000);
driveUntilRPSyRange (RPSFinalButtonY, 30, 45, 1, 1000);

turnUntilRPS (225, 20, 2000);

closelLog () ;

driveUntilTime (90, 130, 3000, true);
} // end launchButton function

launchbutton fast.h

#ifndef LAUNCHBUTTON FAST H
#define LAUNCHBUTTON FAST H

void launchButton fast();

#endif // LAUNCHBUTTON H

launchbutton fast.cpp

// Required custom libraries
#include "constants.h"
#include "drive.h"

#include "worldstate.h"
#include "launchbutton fast.h"

/* This function drives the robot into the final launch button.
* This function starts after the RSP y check after the robot goes down the main ramp
* and ends after the robot hits the launch button.
* Last modified: 4/2/2016 JKL
*/
void launchButton fast () {

driveUntilTime (90, 120, 600, true);
turnUntilTime (=60, 360);
turnUntilRPS (225, 20, 2000);
driveUntilRPSxRange (RPSFinalButtonX, 30, 45, 1, 1000);
driveUntilRPSyRange (RPSFinalButtonY, 30, 45, 1, 1000);
closelLog () ;
driveUntilTime (90, 130, 3000, true);
} // end launchButton function

constants.h

#ifndef CONSTANTS H
#define CONSTANTS H
#include <FEHMotor.h>
#include <FEHIO.h>
#include <FEHServo.h>

H39

#define PI 3.14159

// This information is logged in the SD log files
// VERSION is [major build].[month] [day]

// TITLE is the program name

#define VERSION 3.0409

#define TITLE "FEHRobotCode"

// Define the min and max for the arm servo
#define SERVO_MIN 606
#define SERVO MAX 2016

// Define CdS cell values
#define CDSRedLow 0.
#define CDSRedHigh
#define CDSBluelLow
#define CDSBlueHigh

N~ O
oy O w O

// Define all RPS values

#define RPSOffStart 24.0
#define RPSSuppliesY 10.8 // calibrate per course
#define RPSTempRampBottomY 24.0
#define RPSTempRampTopX 31.3
#define RPSFuellLightY 61.8 // calibrate per course
#define RPSFuelLightX 31.8 // calibrate per course
#define RPSLongRunY 50.0
#define RPSRedTopY 43.5
#define RPSRedTopX 1.5
#define RPSWhiteTopX 6.4
#define RPSBlueTopX 11.5
#define RPSTopRampX 27.7 // calibrate per course
#define RPSTopRampY 42.5
#define RPSBottomRampY 21.3
#define RPSFinalButtonX 18.4
#define RPSFinalButtonY 21.3

// Use of extern so that these can be used elsewhere in the code
extern FEHMotor motorl;
extern FEHMotor motor2;
extern FEHMotor motor3;
extern FEHMotor motori4;

extern FEHServo arm_servo;

extern DigitalInputPin microswitchl;
extern DigitalInputPin microswitch2;
extern DigitalInputPin microswitch3;
extern DigitalInputPin microswitchi;
extern DigitalInputPin microswitch5;
extern DigitalInputPin microswitcho6;
extern DigitalInputPin microswitch7;
extern DigitalInputPin microswitch8;

extern AnalogInputPin cdscell;
extern ButtonBoard button;

#endif // CONSTANTS_H

constants.cpp

// Required FEH libraries

H40

#include <FEHIO.h>
#include <FEHMotor.h>
#include <FEHServo.h>

// Required custom library
#include "constants.h"

// Declare the four drive motors going in a clockwise direction
FEHMotor motorl (FEHMotor: :Motor0O, 7.2);

FEHMotor motor2 (FEHMotor: :Motorl, 7.2);
FEHMotor motor3 (FEHMotor: :Motor2, 7.2);
FEHMotor motor4 (FEHMotor: :Motor3, 7.2)

’

// Declare the servo for the arm for the supplies
FEHServo arm servo (FEHServo::Servo0) ;

// Declare the microswitches going in a clockwise direction
DigitalInputPin microswitchl (FEHIO::P1 0);
DigitalInputPin microswitch2 (FEHIO::P1 2);
DigitalInputPin microswitch3 (FEHIO::P1 4);
DigitalInputPin microswitchd4 (FEHIO::P1 6);
DigitalInputPin microswitchb5 (FEHIO::P2 0);
DigitalInputPin microswitch6 (FEHIO::P2 2);
DigitalInputPin microswitch?7 (FEHIO::P2 4);
DigitalInputPin microswitch8 (FEHIO::P2 6);

// Declare other sensors and the ButtonBoard
AnalogInputPin cdscell (FEHIO::PO 0);
ButtonBoard button (FEHIO: :Bank3) ;

drive.h

#ifndef DRIVE H
#define DRIVE H
#include "constants.h"

void driveUntilTime (int heading, float power, int time, bool stop);

void driveWhileRotate (int startHeading, float turnDegree, float power, float turnPower, int time);
void driveUntilBump (int heading, float power, int bumpSide);

int driveUntilBumpTimeout (int heading, float power, int bumpSide, int timeout);

void driveUntilCds (int heading, float power, float cdsvalue, int timeout);

void driveUntilRPSx (float desiredX, float power, int faultHeading, int timeout);

void driveUntilRPSy(float desiredY, float power, int faultHeading, int timeout);

void driveUntilRPSxRange (float desiredX, float power, int faultHeading, float range, int timeout);
void driveUntilRPSyRange (float desiredY, float power, int faultHeading, float range, int timeout);

void turnUntilTime (float power, int time);
void turnUntilRPS (int desiredHeading, int power, int timeout);

#endif // DRIVE_H

drive.cEE

// Required FEH libraries
#include <FEHLCD.h>
#include <FEHBuzzer.h>
#include <FEHUtility.h>
#include <FEHMotor.h>
#include <FEHIO.h>
#include <FEHRPS.h>
#include <FEHSD.h>

H41

// Required library to calculate motor ratios based on heading
#include <math.h>

// Required custom libraries
#include "constants.h"
#include "worldstate.h"
#include "drive.h"

//Declare global motor ratios
float motorlratio;
float motor2ratio;
float motor3ratio;
float motor4dratio;

/* This function calculates the motor ratios for a given heading. The calculation is derived from
vector quantities.

* The calculated ratios are assigned to each individual motor ratio. The ratios range from -1 to
1.

* If the heading is a cardinal direction (N/S/E/W), the ratio is 0.707.

* Last Modified: 3/14/2016 JKL

*/

void ratios(int heading) {

LCD.WriteRC ("Calculating motor ratios", 5,3);
float x, vy;

x = cos((45-heading) * PI / 180.0);

y = sin((45-heading) * PI / 180.0);
LCD.WriteRC(x, 6, 3);

LCD.WriteRC(y, 7, 3);

motorlratio = x;
motor2ratio = -y;
motor3ratio = -x;
motordratio = y;

} // end ratios function

/* This function drives the robot with a given heading at a given power for a given time in
milleseconds.

* If bool stop is false, the robot does not stop the motors. There will not be a pause in between
the next drive function.

* Last Modified: 3/15/2016 JKL

*/

void driveUntilTime (int heading, float power, int time, bool stop) {
ratios (heading) ;

worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motorédratio);
SD.Printf ("driveUntilTime start");

LCD.WriteRC("Time:", 5, 3);

LCD.WriteRC (time, 5, 9);

motorl.SetPercent (power * motorlratio);
motor2.SetPercent (power * motor2ratio);
motor3.SetPercent (power * motor3ratio);
motord.SetPercent (power * motordratio);

Sleep (time) ;
worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motordratio);
SD.Printf ("driveUntilTime stop");
if (stop) {
motorl.SetPercent (0) ;
motor2.SetPercent (0) ;

H42

motor3.SetPercent (0) ;
motor4d.SetPercent (0) ;

Sleep (100);
}

} // end driveUntilTime function

/* This function drives the robot while rotating it.

* startHeading:

the initial heading the robot drives.

* turnDegree:

the total degrees the robot rotates during the drive

* power: the power the robot drives at;
drift angle

* turnPower: the constant power added to turn the robot;

time
* time: the duration the robot drives in milleseconds
* Last modified: 4/8/2016 JKL
*/

void driveWhileRotate (int startHeading, float turnDegree,

changing this does not affect the total turn degree or

this is dependent upon turnDegree and

float power, float turnPower, int time)

// x is a fraction of the turnDegree used to add to the increment

float x turnDegree / (time / 50.0);

for(int increment = 0; increment <= turnDegree;
ratios (startHeading + increment);
motorl.SetPercent (power * motorlratio
motor2.SetPercent (power motor2ratio
motor3.SetPercent (power motor3ratio
motor4.SetPercent (power motordratio
Sleep (50) ;

turnPower
turnPower
turnPower

+
* +
* +
* + turnPower

}
motorl.
motor2.
motor3.
motor4.

SetPercent (
SetPercent (
SetPercent (
SetPercent (

’

’

’

0)
O)V
0)
0)

}

/* This function drives the robot with a given heading at a given power until a side is bumped

not) .
* int bumpSide ranges from -4 to 4.
the robot is side 1.

)
)
)
)

The sides are numbered in a clockwise fashion.

increment += x) {

’
’

’

’

(or

The front of

* A positive value allows for a robot drive until that side is bumped.
* A negative value allows for the robot to ride along that side until a microswitch is released.

* Last Modified: 3/14/2016
*/
void driveUntilBump (int heading, float power,

ratios (heading) ;

int bumpSide) {

LCD.WriteRC ("Bump:", 5, 3);

LCD.WriteRC (bumpSide, 5, 9);

worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio,
SD.Printf ("driveUntilBump start");

motorl
motor2
motor3
motord

.SetPercent (power
.SetPercent (power
.SetPercent (power
.SetPercent (power

*
*

*

the microswit
— _l)

//
if

if any of
(bumpSide
while(2 !
(bumpSide
while(2 !
(bumpSide
while(2 !

if -2)
(microswit

if = -3)

* motorlratio

(microswitchl.Value ()

(microswitch5.Value ()

)
motor2ratio) ;
)
)

’

motor3ratio
motordratio

’

ches are released on the specified side

)

+ microswitch2.Value())

ch3.vValue ());

+ microswitch4.Value())

)

+ microswitch6.Value())

H43

motordratio) ;

{

if (bumpSide == -4)
while(2 != (microswitch7.Value() + microswitch8.Value()));

// 1f both of the microswitches are depressed on the specified side

if (bumpSide == 1)

while(0 != (microswitchl.Value() + microswitch2.Value()));
if (bumpSide == 2)

while(0 != (microswitch3.Value() + microswitch4.Value()));
if (bumpSide == 3)

while(0 != (microswitch5.Value() + microswitché6.Value()));
if (bumpSide == 4)

while(0 != (microswitch7.Value() + microswitch8.Value()));

worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motor4dratio);
SD.Printf ("driveUntilBump stop"):;

motorl.SetPercent (0) ;

motor2.SetPercent (0) ;

motor3.SetPercent (0) ;

motor4d.SetPercent (0)

’

Sleep (100) ;
} // end driveUntilBump function

/* This function drives the robot with a given heading at a given power until a side is bumped (or

not) .

* int bumpSide ranges from -4 to 4. The sides are numbered in a clockwise fashion. The front of

the robot is side 1.
* A positive value allows for a robot drive until that side is bumped.

* A negative value allows for the robot to ride along that side until a microswitch is released.

* int timeout limits the duration the robot drives in milleseconds

* The return value is 0 is the function fulfills bumpSide or 1 if the function times out.
* Last Modified: 3/31/2016

*/

int driveUntilBumpTimeout (int heading, float power, int bumpSide, int timeout) {
ratios (heading) ;

LCD.WriteRC ("Bump:", 5, 3);
LCD.WriteRC (bumpSide, 5, 9);
worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motordratio);
SD.Printf ("driveUntilBumpTimeout start");

motorl.SetPercent (power * motorlratio);

motor2.SetPercent (power * motor2ratio);
motor3.SetPercent (power * motor3ratio);
motord.SetPercent (power * motordratio)

’

int returnValue = 0;
int startTime = TimeNowMSec () ;
// if any of the microswitches are released on the specified side
if (bumpSide == -1)
while(2 != (microswitchl.Value() + microswitch2.Value()) && TimeNowMSec () - startTime
timeout) {};
if (bumpSide == -2)
while(2 != (microswitch3.Value () + microswitch4.Value()) && TimeNowMSec () - startTime
timeout) {};
if (bumpSide == -3)
while(2 != (microswitch5.Value() + microswitché6.Value()) && TimeNowMSec () - startTime
timeout) {};
if (bumpSide == -4)
while(2 != (microswitch7.Value () + microswitch8.Value()) && TimeNowMSec () - startTime
timeout) {};

H44

// if both of the microswitches are depressed on the specified side

if (bumpSide == 1)
while(0 != (microswitchl.Value () + microswitch2.Value()) && TimeNowMSec () - startTime
timeout) {};
if (bumpSide == 2)
while(0 != (microswitch3.Value () + microswitch4.Value()) && TimeNowMSec () - startTime
timeout) {};
if (bumpSide == 3)
while(0 != (microswitch5.Value () + microswitcho6.Value()) && TimeNowMSec () - startTime
timeout) {};
if (bumpSide == 4)
while(0 != (microswitch7.Value() + microswitch8.Value()) && TimeNowMSec () - startTime

timeout) {};

if (TimeNowMSec () - startTime > timeout)

returnValue = 1;
worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motordratio);
SD.Printf ("driveUntilBumpTimeout stop");
motorl.SetPercent (0) ;
motor2.SetPercent (0) ;
motor3.SetPercent (0) ;
motor4d.SetPercent (0)

’

Sleep (100) ;
return returnValue;
} // end driveUntilBumpTimeout function

/* This function drives the robot with a given heading at a given power until the cdsvalue is
reached.

* If the CdS sensor reads a value less than float cdsvalue, the function stops the robot.

* Last Modified: 3/25/2016 JKL

*/

void driveUntilCds (int heading, float power, float cdsvalue, int timeout) {
ratios (heading) ;

worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motor4dratio);
SD.Printf ("driveUntilCds start");

LCD.WriteRC("CdS:", 5, 3);

LCD.WriteRC (cdsvalue, 5, 8);

motorl.SetPercent (power * motorlratio);

motor2.SetPercent (power * motor2ratio);

motor3.SetPercent (power * motor3ratio);

motord.SetPercent (power * motordratio);

int startTime = TimeNowMSec () ;

while (cdscell.Value() > cdsvalue && TimeNowMSec () - startTime < timeout);

worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motorédratio);
SD.Printf ("driveUntilCds stop");

motorl.SetPercent
motor2.SetPercent
motor3.SetPercent
motor4d.SetPercent

’

’

’

0)
0);
0)
0)
Sleep (150);

} // end driveUntilCds function

/* This function corrects the x-position of the robot using RPS.

H45

* The robot will drive until the desiredX coordinate with a given
exceeded.

* If the RPS is
faultHeading.

* Use driveUntilRPSxRange if a custom range/tolerance is needed.

* Last Modified: 3/28/2016 JKL

*/
void driveUntilRPSx (float desiredX,

-1 or -2 (off the course or dead zone), the robot

float power, int faultHeading,
float startTime = TimeNowMSec () ;
// the tolerance for the X coordinate is +/-
while ((RPS.X () < desiredX - 0.25 || RPS.X()
timeout) {

0.25 inches
> desiredX + 0.25)

// pulse toward faultHeading
if (RPS.X() -1 || RPS.X() ==
driveUntilTime (faultHeading,

-2) A
power,

500, true);

}

else if (RPS.X () < desiredX) {
int heading = RPS.Heading/()
ratios (heading) ;

+ 90;

worldState (true, heading, power, motorlratio,
SD.Printf ("driveUntilRPSx") ;
LCD.WriteRC ("RPS:", 5, 3);

LCD.WriteRC (desiredX, 5, 8);

motorlratio) ;
motor2ratio) ;
motor3ratio) ;
motordratio) ;

motorl.SetPercent
motor2.SetPercent
motor3.SetPercent
motord.SetPercent

power
power
power
power

* X X ot

// continuously drive the
desiredX

while (fabs(desiredX - RPS.X ()) >= 2);

motor2ratio,

power or until the timeout is

will pulse in the direction of

int timeout) {

&& TimeNowMSec () - startTime <

motor3ratio, motordratio);

motors while the robot is greater than 2 inches away the

// pulse the motors if the robot is within 2 inches of the desiredX

if (fabs(desiredX - RPS.X())

Sleep (300);

< 2)

’

motorl.SetPercent
motor2.SetPercent
motor3.SetPercent
motor4d.SetPercent

(0)

(0) 7
(0) 7
(0) 7

’

Sleep (250);

}

else if (RPS.X() > desiredX) {
int heading = RPS.Heading() -
ratios (heading) ;

90;

worldState (true, heading, power, motorlratio,

SD.Printf ("driveUntilRPSx") ;

LCD.WriteRC ("RPS:", 5, 3);

ILCD.WriteRC (desiredX, 5, 8);
motorl.SetPercent (power * motorlratio);
motor2.SetPercent (power * motor2ratio);
motor3.SetPercent (power * motor3ratio);
motor4.SetPercent (power * motor4dratio);

H46

motor2ratio,

motor3ratio, motordratio);

// continuously drive the motors while the robot is greater than 2 inches away the

desiredX
while (fabs(desiredX - RPS.X ()) >= 2);
// pulse the motors if the robot is within 2 inches of
if (fabs(desiredX - RPS.X ()) < 2)
Sleep (300) ;

’

SetPercent
SetPercent
SetPercent
SetPercent

motorl.
motor2.
motor3.
motor4.

(0)
(0);
(0);
(0)

’

’

Sleep (250);
}
} // end while loop
} // end driveUntilRPSx function

/* This function corrects the y-position of the robot using RPS.
* The robot will drive until the desiredY coordinate with a given
exceeded.
* If the RPS 1is
faultHeading.
* Use driveUntilRPSyRange if a custom range/tolerance is needed.
* Last Modified: 3/28/2016 JKL
*/
void driveUntilRPSy(float desiredy,
float startTime = TimeNowMSec () ;
// the tolerance for the Y coordinate is +/-

-1 or -2 (off the course or dead zone), the robot

float power, int faultHeading,

0.25 inches

while ((RPS.Y () < desiredY - 0.25 || RPS.Y() > desiredY + 0.25)
timeout) {
// pulse toward faultHeading
if (RPS.Y() == -1 || RPS.Y() == -2) {
driveUntilTime (faultHeading, power, 200, true);
}
else if (RPS.Y () < desiredY) {
int heading = RPS.Heading() ;
ratios (heading) ;
worldState (true, heading, power, motorlratio, motor2ratio,
SD.Printf ("driveUntilRPSy") ;
LCD.WriteRC ("RPS:", 5, 3);
LCD.WriteRC (desiredY, 5, 8);
motorl.SetPercent (power * motorlratio);
motor2.SetPercent (power * motor2ratio);
motor3.SetPercent (power * motor3ratio);
motord.SetPercent (power * motordratio);
// continuously drive the
desiredyY

while (fabs(desiredY - RPS.Y ()) >= 2);

the desiredX

power or until the timeout is

will pulse in the direction of

int timeout) {

&& TimeNowMSec () - startTime <

motor3ratio, motordratio);

motors while the robot is greater than 2 inches away the

// pulse the motors if the robot is within 2 inches of the desiredY

if (fabs(desiredY - RPS.Y ())

Sleep (250);

< 2)

SetPercent
SetPercent
SetPercent
SetPercent

motorl.
motor2.
motor3.
motord.

0);
0);
0);
0)

’

’

Sleep (250);
H47

}

else if (RPS.Y () > desiredYyY) {
int heading = RPS.Heading () + 180;
heading-= 360 * (heading < 360);

ratios (heading) ;

worldState (true, heading, power, motorlratio, motor2ratio,

SD.Printf ("driveUntilRPSy") ;

LCD.WriteRC ("RPS:", 5, 3);

LCD.WriteRC (desiredY, 5, 8);
motorl.SetPercent (power * motorlratio);
motor2.SetPercent (power * motor2ratio);
motor3.SetPercent (power * motor3ratio);
motor4d.SetPercent (power * motor4dratio);

// continuously drive the
desiredY

while (fabs(desiredY - RPS.Y ()) >= 2);

motor3ratio,

// pulse the motors if the robot is within 2 inches of the desiredY

if (fabs(desiredY - RPS.Y ()) < 2)

Sleep (300) ;

SetPercent
SetPercent
SetPercent
SetPercent

motorl.
motor2.
motor3.
motor4.

’

’

’

0)
O)V
0)
0)

Sleep (250);

}
} // end while loop
} // end driveUntilRPSy function

/* This function corrects the x-position of the robot using RPS.

motordratio);

motors while the robot is greater than 2 inches away the

* The robot will drive until the desiredX coordinate with a given power or until the timeout is

exceeded.
* If the RPS 1is
faultHeading.
* float range is the distance
* Last Modified: 4/2/2016 JKL
*/
void driveUntilRPSxRange (float desiredX,
float startTime TimeNowMSec () ;

-1 or -2 (off the course or dead zone), the robot will

error from the desiredX the robot can be

float power, int faultHeading,

while ((RPS.X () < desiredX - range || RPS.X() > desiredX + range) &&
timeout) {

if (RPS.X() == -1 || RPS.X() == -2) {
driveUntilTime (faultHeading, power, 500, true);

}

else if (RPS.X() < desiredX) {
int heading = RPS.Heading () + 90;
ratios (heading) ;
worldState (true, heading, power, motorlratio, motor2ratio,
SD.Printf ("driveUntilRPSx") ;
LCD.WriteRC ("RPS:", 5, 3);
ILCD.WriteRC (desiredX, 5, 8);
motorl.SetPercent (power * motorlratio);
motor2.SetPercent (power * motor2ratio);
motor3.SetPercent (power * motor3ratio);
motor4.SetPercent (power * motordratio);

H48

pulse in the direction of

within

float range,

TimeNowMSec ()

motor3ratio,

int timeout) {

startTime <

motordratio);

// to pulse or not to pulse

while (fabs(desiredX - RPS.X ()) >=

if (fabs(desiredX - RPS.X()) < 2)
Sleep (300);

2);

’

motorl.SetPercent (0) ;
motor2.SetPercent (0) ;
(0)
(0)

’

motor3.SetPercent
motord.SetPercent

’

Sleep (250) ;

}

else if (RPS.X() > desiredX) {
int heading = RPS.Heading() - 90;
ratios (heading) ;

worldState (true, heading, power, motorlratio, motor2ratio, motor3ratio, motordratio);

SD.Printf ("driveUntilRPSx") ;
LCD.WriteRC ("RPS:", 5, 3);
LCD.WriteRC (desiredX, 5, 8);

motorl.SetPercent (power * motorlratio);
motor2.SetPercent (power * motor2ratio);
motor3.SetPercent (power * motor3ratio);
motord.SetPercent (power * motordratio);

// to pulse or not to pulse

while (fabs(desiredX - RPS.X ()) >=

if (fabs(desiredX - RPS.X()) < 2)
Sleep (300);

2);

motorl.SetPercent (
motor2.SetPercent (
(
(

’

’

motor3.SetPercent
motord.SetPercent

’

0)

0);

0)

0)
Sleep (250) ;

}

} // end while loop
} // end driveUntilRPSxRange function

/* This function corrects the y-position of the robot using RPS.

* The robot will drive until the desiredY coordinate with a given power or until the timeout is

exceeded.
* If the RPS is -1 or -2 (off the course or dead zone), the robot will
faultHeading.
* float range is the distance error from the desiredY the robot can be
* Last Modified: 4/2/2016 JKL

*/
void driveUntilRPSyRange (float desiredY, float power, int faultHeading,
float startTime = TimeNowMSec () ;
while ((RPS.Y () < desiredY - range || RPS.Y() > desiredY + range) &&
timeout) {

if (RPS.Y() == -1 || RPS.Y() == =-2) {
driveUntilTime (faultHeading, power, 500, true);
}
else if (RPS.Y() < desiredYy) {
int heading = RPS.Heading() ;
ratios (heading) ;

H49

pulse in the direction of

within

float range, int timeout) {

TimeNowMSec () - startTime <

desiredyY

}

else if

worldState (true,

LCD.WriteRC ("RPS:",
LCD.WriteRC (desiredy,

motorl.SetPercent
motor2.SetPercent
motor3.SetPercent

heading, power, motorlratio,
SD.Printf ("driveUntilRPSy") ;
5, 3);
5, 8);
(power * motorlratio);
(power * motor2ratio);
(power * motor3ratio);
(power * motordratio);

motor4d.SetPercent

// continuously drive the

while (fabs(

desiredY - RPS.Y ()

) >= 2);

motor2ratio,

motor3ratio,

// pulse the motors if the robot is within 2 inches of the desiredY

if (fabs(

Sleep (250);

motorl.SetPercent
motor2.SetPercent
motor3.SetPercent
motord.SetPercent

Sleep (250) ;

(RPS.Y ()

int heading =
heading-= 360 *
ratios (heading) ;

worldState (true,

desiredY - RPS.Y ())

’

’

’

0)
0)
0)
0)

> desiredY) {
RPS.Heading ()

(heading < 360);

heading, power,

SD.Printf ("driveUntilRPSy") ;

< 2)

+ 180;

motorlratio,

LCD.WriteRC ("RPS:", 5, 3);

LCD.WriteRC (desiredY, 5, 8);

motorl.SetPercent (power * motorlratio);

motor2.SetPercent (power * motor2ratio);

motor3.SetPercent (power * motor3ratio);

motord.SetPercent (power * motordratio);

while (fabs(desiredY - RPS.Y ()) >= 2);

// to pulse or not to pulse

if (fabs(desiredY - RPS.Y()) < 2)
Sleep (300) ;

motorl.SetPercent
motor2.SetPercent
motor3.SetPercent
motor4d.SetPercent

Sleep (250);

}

} // end while loop
} // end driveUntilRPSyRange function

(0)
(0) 7
(0)
(0)

’

’

’

motor2ratio,

/* This function turns the robot at a given power for a given time.

* float power
* Last Modified:
*/

(0-100) :

4/2/2016 JKL

positive =

clockwise rotation,

void turnUntilTime (float power,

worldState (true,

0,

power,

int time) {

1, 1, 1, 1);

H50

negative =

motor3ratio,

motordratio);

motors while the robot is greater than 2 inches away the

motordratio) ;

counter-clockwise rotation

SD.Printf ("turnUntilTime start");
LCD.WriteRC ("Time:", 5, 3);
LCD.WriteRC (time, 5, 9);

motorl.SetPercent
motor2.SetPercent
motor3.SetPercent
motor4d.SetPercent

power) ;
power) ;

power) ;

power) ;

’

Sleep (time) ;

worldState (true, 0, power, 1, 1, 1, 1);
SD.Printf ("turnUntilTime stop");

motorl.SetPercent (0);
motor2.SetPercent (0) ;
motor3.SetPercent (0)
motord.SetPercent (0)

’

’

Sleep (100);

} // end turnUntilTime function

/* This function corrects the heading of the robot using RPS.
* Power should be less than 30.
* Last Modified: 4/2/2016 JKL

*/

void turnUntilRPS (int desiredHeading, int power, int timeout) {

&&

int startTime = TimeNowMSec () ;
// tolarance/range is +/- 1.5 degrees
// probably could have implemented a custom range
while((fabs(desiredHeading-RPS.Heading())>1.5 && fabs(desiredHeading-RPS.Heading())<358.5
(TimeNowMSec () - startTime < timeout)) {
worldState (true, desiredHeading, power, 1,1,1,1);
SD.Printf ("turnUntilRPS") ;
LCD.WriteRC ("Desired H:", 5, 3);
LCD.WriteRC (desiredHeading, 5, 13);

// if within +/- 10 degree of desiredHeading, start to pulse the motors
if (fabs(desiredHeading-RPS.Heading())<10 || fabs(desiredHeading-RPS.Heading())>350) {
motorl.SetPercent (0) ;
motor2.SetPercent (0) ;
motor3.SetPercent (0) ;
motor4d.SetPercent (0) ;
worldState (true, desiredHeading, power, 0,0,0,0);
SD.Printf ("turnUntilRPS") ;
Sleep (150);
}

// if within +/- 1.5 degrees, stop everything and break out of the function
// necessary to check within the loop right after the robot has stopped from the pulsing
if (fabs(desiredHeading-RPS.Heading())<1.5 || fabs(desiredHeading-RPS.Heading())>358.5)
motorl.SetPercent (0) ;
motor2.SetPercent (0) ;
motor3.SetPercent (0)
motor4d.SetPercent (0) ;
worldState (true, desiredHeading, power, 0,0,0,0);
SD.Printf ("turnUntilRPS") ;
return;

’

}

if (RPS.Heading () - desiredHeading >= 0) {

H51

)

{

// turn clockwise

if (RPS.Heading () - desiredHeading <= 180) {
motorl.SetPercent (power) ;
motor2.SetPercent (power) ;
motor3.SetPercent (power) ;
motor4.SetPercent (power)

’

}

// turn counter-clockwise

else if (desiredHeading - RPS.Heading () < 180) {
motorl.SetPercent (-power) ;
motor2.SetPercent (-power)
motor3.SetPercent (-power) ;
motor4d.SetPercent (-power) ;

’

’

}
if (RPS.Heading() - desiredHeading < 0) {

// turn counter-clockwise

if (desiredHeading - RPS.Heading() <= 180) {
motorl.SetPercent (-power) ;
motor2.SetPercent (-power) ;
motor3.SetPercent (-power) ;
motor4.SetPercent (-power) ;

’

}

// turn clockwise
else if (RPS.Heading() - desiredHeading < 180) {
motorl.SetPercent (power) ;
motor2.SetPercent (power) ;
motor3.SetPercent (power) ;
motor4.SetPercent (power)

’

}
}

} // end while loop
motorl.SetPercent (
motor2.SetPercent (
motor3.SetPercent (
motor4d.SetPercent (0) ;
worldState (true, desiredHeading, power, 0,0,0,0);
SD.Printf ("turnUntilRPS") ;

} // end turnUntilRPS function

0);
0);
0);

’

supplyarm.h

#ifndef SUPPLYARM H
#define SUPPLYARM H

void initializeArm();

void lowerToPickupArm() ;
void raiseToPickupArm() ;
void lowerToDepositArm() ;
void raiseToDepositArm() ;

’

#endif // SUPPLYARM H

supplyarm. cpp

H52

/* This 1is part of a custom header that contains the functions to operate the servo
* for the arm to pickup and deposit the supplies.
* Last modified: 3/21/2016 JKL
*/

// Required FEH libraries
#include <FEHServo.h>
#include <FEHUtility.h>

// Required custom libraries
#include "constants.h"
#include "worldstate.h"
#include "supplyarm.h"

/* This function is run from void start() at the beginning of the run.
* It sets the minimum and maximum of the servo and raises it to an upright position.
* Last modified: 3/21/2016 JKL
*/
voild initializeArm() {
arm_servo.SetMin (SERVO MIN) ;
arm servo.SetMax (SERVO MAX) ;
arm_servo.SetDegree(l75);

}

/* This function is run to lower the arm to contact the supplies.
* Last modified: 3/21/2016 JKL
*/
void lowerToPickupArm() {
arm servo.SetDegree (16);
Sleep (1000) ;
}

/* This function is run to pickup the supplies without dropping it.
* A delay must be added to ensure that the supplies are picked up.
* Last modified: 3/21/2016 JKL
*/

void raiseToPickupArm() {

for (int degree = 18; degree <= 175; degree+= 2) {
arm_servo.SetDegree (degree) ;
Sleep (10);

}

/* This function is run to lower the supplies into the drop zone.
* Last modified: 4/2/2016 JKL

*/
void lowerToDepositArm() {
arm_servo.SetDegree (63);
Sleep (400) ;

}

/* This function is run to raise the arm after the supplies are deposited.
* Last modified: 3/21/2016 JKL
*/
void raiseToDepositArm() {
arm_servo.SetDegree (160) ;

}

worldstate.h

#ifndef WORLDSTATE H
#define WORLDSTATE H

H53

void initializeLog();

void worldState (bool updatelog, int heading, float power, float motorlratio, float motor2ratio,
float motor3ratio, float motordratio);

void closelog();

#endif // WORLDSTATE H

worldstate.cpp

// Required FEH libraries
#include <FEHRPS.h>
#include <FEHIO.h>
#include <FEHLCD.h>
#include <FEHUtility.h>
#include <FEHBattery.h>
#include <FEHSD.h>

// Required custom libraries
#include "constants.h"
#include "worldstate.h"

/* This function initializes the SD card for logging. It closes any open logs, opens a new log, and
prints a log header.
* From past experiences, it is best to try to close all previous logs in case any are still open.
* Last modified: 3/14/2016 JKL
*/
void initializeLog() {
// Must close any remaining log files left over to prevent any SD card issues
for (int x = 0; x<=100; =x++) {
LCD.WriteRC ("Closing Log:", 7, 3);
LCD.WriteRC(x, 7, 16);
SD.CloseLog () ;
}
SD.OpenLog () ;
SD.Printf ("Title: %$s - Version: $f\n", TITLE, VERSION);
SD.Printf ("Course: %c - Red: %d - White: %d - Blue: %d\n", RPS.CurrentRegionLetter(),
RPS.RedSwitchDirection (), RPS.WhiteSwitchDirection(), RPS.BlueSwitchDirection());

SD.Printf ("Time\tRPSTime\tBatVolt\tMS1\tMS2\tMS3\tMS4\tMS5\tMS6\tMS7\tMS8\tCDSCell\tMotl\tMot2\tMot
3\tMot4\tH.\tRPS_H\tRPS X\tRPS Y");
} // end initializeLog function

/* This function closes the SD log. This allows for the FEHSD.h library to be isolated in this
program.
* Last Modified: 3/14/2016 JKL
*/
void closeLog () {
SD.CloseLog () ;
} // end closeLog function

/* This function prints the world state to the Proteus LCD and, if requested, to a log file

* Inputs: - bool updateLog - true writes the world state to the log file / false does not
* - The rest of the arguments are what is written to the log file

* Last Modified: 3/14/2016 JKL

*/

void worldState (bool updatelog, int heading, float power, float motorlratio, float motor2ratio,
float motor3ratio, float motordratio) {
LCD.Clear (BLACK) ;

LCD.DrawRectangle (2*12+1, 4*17+1, 22*12-1, 6*16-1);
// LCD.WriteRC ("* *" 5, 2);

H54

// LCD.WriteRC ("* *", 6, 2);
// LCD.WriteRC ("* *M, 7, 2);
// LCD.WriteRC ("* *", 8, 2);

LCD.SetFontColor (WHITE) ;

LCD.WriteRC (TimeNow (), 13, 5);
LCD.WriteRC (RPS.Time (), 13, 15);

if (updatelog)
SD.Printf ("\n%f\t%f\t", TimeNow (), RPS.Time());

if (updatelogq)
SD.Printf ("$£f\t", Battery.Voltage()):;

LCD.WriteRC((int) microswitchl.value (), 0, 2);

LCD.WriteRC((int) microswitch2.Value(), 0, 23);
LCD.WriteRC((int) microswitch3.Value (), 2, 25);
LCD.WriteRC((int) microswitch4.Value(), 11, 25);
LCD.WriteRC((int) microswitch5.Value(), 13, 23);
LCD.WriteRC((int) microswitch6.Value(), 13, 2);
LCD.WriteRC((int) microswitch7.value(), 11, 0);
LCD.WriteRC((int) microswitch8.Value(), 2, 0);

if (updatelog)
SD.Printf ("$d\t%d\t%d\t3d\tsd\tsd\tsd\tsd\t",
(int) microswitchl.Value(), (int) microswitch2.Value(), (int) microswitch3.Value(),
(int) microswitch4.vValue(),
(int) microswitch5.Value(), (int) microswitché6.Value(), (int) microswitch7.Value(),
(int) microswitch8.Value());

if (0.0 < cdscell.Value() && cdscell.Value() < 0.8)
LCD.SetFontColor (RED) ;

if (1.0 < cdscell.Value() && cdscell.Value() < 1.8)
LCD.SetFontColor (BLUE) ;

LCD.WriteRC(cdscell.Value(), 0, 11);

if (updatelogq)
SD.Printf ("$f\t", cdscell.Value()):;

LCD.SetFontColor (WHITE) ;

LCD.WriteRC ("Motl", 2, 2);

LCD.WriteRC (power * motorlratio, 3, 2);
LCD.WriteRC ("Mot2", 2, 20);

LCD.WriteRC (power * motor2ratio, 3, 18);
LCD.WriteRC ("Mot3"™, 11, 20);

LCD.WriteRC (power * motor3ratio, 10, 18);
LCD.WriteRC ("Mot4", 11, 2);

LCD.WriteRC (power * motordratio, 10, 2);

if (updatelogq)
SD.Printf ("$£\t%$f\t%f\t%f\t", power * motorlratio, power * motor2ratio, power *
motor3ratio, power * motor4dratio);

LCD.WriteRC("H:", 2, 10);
LCD.WriteRC (heading, 2, 12);

if (updatelog)
SD.Printf ("$d\t", heading);

LCD.WriteRC("B:", 11, 9);
LCD.WriteRC (RPS.Heading (), 11, 11);

H55

"X:", 12, 4);
RPS.X (), 12, 6);
"y:", 12, 14);
RPS.Y (), 12, 16);

LCD.WriteRC
LCD.WriteRC
LCD.WriteRC
LCD.WriteRC

if (updateloq)
SD.Printf ("$£\t$f\t%f\t", RPS.Heading(), RPS.X(), RPS.Y());
} // end worldState function

H56

