Fluid Mechanics Program

Engineering 1282.02H
Spring, 2015

Mahnoor Naqvi, Seat 13

S. Heglas Wednesday 3:00

Date of Submission: 2/27/15

```
clc;
clear;
fprintf ('\n')
fprintf ('\n**************************************************')
fprintf ('\n* Name: Mahnoor Naqvi Date: 2/26/15 *')
fprintf ('\n* File: Fluid Mechanics Program *')
fprintf ('\n* Instructor: DMG 3:00 *')
fprintf ('\n*************************************************')
fprintf ('\n')
%Explain program to user
fprintf ('This program calculates the key parameters for a rectangular
channel.\nThe input parameters are Volumetric Flow Rate, Width, Height,
Length, Delta P, Viscosity.\n');
fprintf ('The user must input n-1 of these parameters to calculate the nth
parameter, average velocity, shear stress at the wall, Reynolds number, and
Entrance length\n\n');
%loop to run as many times as user wants
YES = 1;
while YES==1
    missing = input('Which parameter is missing? Input\nQ - Volumetric Flow
Rate\nW - Width\nH - Height\nL - Length\nD - Delta P\nV -
Viscosity\n\n','s');
    switch missing
        %find the Viscosity
        case 'V'
        Q = input ('What is the Volumetric Flow Rate?');
        W = input ('What is the Width?');
        H = input ('What is the Height?');
        L = input ('What is the Length?');
        D = input ('What is the change in pressure?');
        missing = (12*Q*L)/(W*(H^3)*D);
        V = missing;
        fprintf ('The Volumetric Flow Rate is %1.2f\n',missing);
        %find the change in pressure
        case 'D'
            Q = input ('What is the Volumetric Flow Rate?');
            W = input ('What is the Width?');
            H = input ('What is the Height?');
            L = input ('What is the Length?');
            V = input ('What is the Viscosity?');
            missing = (Q*12*V*L)/(W*(H^3));
            D = missing;
            fprintf ('The change in pressure is %1.2f\n',missing);
            %find the length
            case 'L'
            Q = input ('What is the Volumetric Flow Rate?');
            W = input ('What is the Width?');
            H = input ('What is the Height?');
            D = input ('What is the change in pressure?');
            V = input ('What is the Viscosity?');
            missing = (W*(H^3)*D)/(Q*12*V);
            L = missing;
            fprintf ('The length is %1.2f\n',missing);
            case 'H'
            Q = input ('What is the Volumetric Flow Rate?');
```

```
    W = input ('What is the Width?');
    D = input ('What is the change in pressure?');
    L = input ('What is the Length?');
    V = input ('What is the Viscosity?');
    missing = ((Q*12*V*L)/(W*D))^(1/3);
    H = missing;
    fprintf ('The height is %1.2f\n',missing);
    case 'W'
    Q = input ('What is the Volumetric Flow Rate?');
    D = input ('What is the change in pressure?');
    H = input ('What is the Height?');
    L = input ('What is the Length?');
    V = input ('What is the Viscosity?');
    missing = (Q*12*V*L)/((H^3)*D);
    W = missing
    fprintf ('The width is %1.2f\n',missing);
    case 'Q'
    D = input ('What is the change in pressure?');
    W = input ('What is the Width?');
    H = input ('What is the Height?');
    L = input ('What is the Length?');
    V = input ('What is the Viscosity?');
    Q = (W* (H^3)*D)/(12*V*L);
    Q = missing;
    fprintf ('The Volumetric Flow Rate is %1.2f\n',missing);
end
        %find average velocity, shear stress at walls, reynolds number, and
    %elevation Length
    avgv= ((H^2)*D)/(12*V*L);
    Twall = ((H/2)*D)/L;
    DH = (4*W*H)/(2*W+2*H);
    Re = (avgv*DH)/v;
    EL = 0.06*Re*DH;
    fprintf('\nAverage Velocity - %2.4f cm/s\nShear Stress at Wall -
%1.1f dyne/cm2\nReynolds Number - %3f\nEntrance Length - %2.3f
cm\n',avgv,Twall,Re,EL)
    %velocity function and shear stress fuction
    vf=1;
    tf=1;
    i=1;
    %the position is the height
    for k = -H/2:.01:H/2
        j(i)=k;
    vf(i)= (D/(8*V*L))*(H^2-4*(k^2));
    tf(i)= (D*abs(k))/L;
    i=1+i;
end
%plot the velocity graph
plot(j,vf)
xlabel('Position (cm)');
ylabel('Velocity cm/s');
title('Velocity Function (m/s)');
figure
%plot the shear stress graph
plot(j,tf)
xlabel('Position (cm)');
ylabel('Shear Stress (dyne/cm2)');
```

```
        title('Shear Stress Function (dyne/cm2)')
    YES = input('\nWould you like to do again? Type 1 for yes, 2 for no.');
end
```

Output \rightarrow

* Name: Mahnoor Naqvi Date: 2/26/15 *
* File: Fluid Mechanics Program *
* Instructor: DMG 3:00 *

This program calculates the key parameters for a rectangular channel.
The input parameters are Volumetric Flow Rate, Width, Height, Length, Delta P, Viscosity.
The user must input n-1 of these parameters to calculate the nth parameter, average velocity, shear stress at the wall, Reynolds number, and Entrance length

Which parameter is missing? Input
Q - Volumetric Flow Rate
W - Width
H-Height
L-Length
D - Delta P
V - Viscosity

Q

What is the change in pressure?1000
What is the Width?3
What is the Height?. 2
What is the Length?25
What is the Viscosity?. 01

The Volumetric Flow Rate is 81.00

Average Velocity $-13.3333 \mathrm{~cm} / \mathrm{s}$
Shear Stress at Wall-4.0 dyne/cm2
Reynolds Number -500.000000
Entrance Length -11.250 cm

Would you like to do again? Type 1 for yes, 2 for no.

