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Abstract. A set of integers D is said to be 2-Large if for any 2-coloring of the integers, one
of the color classes contains arbitrarily long arithmetic progressions with common differences
coming from D. In [1] it is asked whether the Fibonacci numbers are 2-Large. This question
was answered in the negative in [3] and [4] by using the fact that the Fibonacci numbers
are a lacunary sequence. However, neither of [3] or [4] provide an explicit 2-coloring of the
integers which avoids long monochromatic arithmetic progressions whose common difference
is a Fibonacci, or a bound on the length of the longest monochromatic arithmetic progression
whose common difference is a Fibonacci number that can appear in any 2-coloring of the
integers. In light of this, we will use the recurrence relation that defines the Fibonacci numbers
to construct an explicit 2-coloring of the integers that does not contain a monochromatic 18-
term arithmetic progression whose common difference is a Fibonacci number.

1. Introduction

A r-coloring of N is a function f : N → [1, r], and a set A ⊆ N is monochromatic with
respect to the coloring f if A ⊆ f−1{i} for some 1 ≤ i ≤ r. Ramsey Theory on N studies the
monochromatic structures that can be found in any finite coloring (partition) of N. A classical
result in Ramsey Theory is van der Waerden’s Theorem on arithmetic progressions.

Theorem 1.1 (van der Waerden, [6]). For any finite coloring of N there exists a color class
containing arbitrarily long arithmetic progressions.

In [2] the set of common differences that can appear in the monochromatic arithmetic
progressions guaranteed by van der Waerden’s Theorem is studied.

Definition 1.2. Given D ⊆ N and r ∈ N, the set D is r-large if for r-coloring of N and any
` ∈ N, there exists a ∈ N and d ∈ D for which {a + id}`i=0 is monochromatic.

Theorem 2.2 of [2] shows that if D = {di}∞i=1 is a set satisfying di+1 ≥ 3di for all i ∈ N,
then D is not 2-Large. In fact, it is even shown that for such sets D there is a 2-coloring of N
that does not admit a monochromatic 5-term arithmetic progression with common difference
coming from D. Since the Fibonacci sequence {Fn}∞n=0 satisfies 3

2Fn ≤ Fn+1 ≤ 2Fn, we are
unable to use the previous result to show that {Fn}∞n=0 is not 2-large. In [1] it is shown that
the Fibonacci numbers are not 4-Large (see also [5]). A partial generalization of Theorem
2.2 of [2] appears in both [3] (Corollary 8.12) and [4] (page 3) in which is it shown that
any lacunary sequence is not 2-large. In [4] a bound is given for the maximum length of a
monochromatic arithmetic progression with common difference coming from a specific type of
lacunary sequence D = {di}∞i=1 that can be found in any 2-coloring of N, but this bound does
not apply when D is the set of Fibonacci numbers. We will construct a 2-coloring of N that
does not admit a monochromatic 18-term arithmetic progression whose common difference is
a Fibonacci number.

This research was conducted at the 2014 research experience for undergraduates at the University of West
Georgia under the direction of Bruce Landman and was funded by the NSF. The author would like to thank
Bruce Landman for proposing the problem and the NSF for funding the research.
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2. A Special 2-Coloring of N

Theorem 2.1. There is a 2-coloring of N which does not admit a monochromatic 18-term
arithmetic progression whose common difference is a Fibonacci number.

Proof. Letting Fn denote the nth Fibonacci number, we will begin by inductively constructing
colorings fn : [1, Fn]→ {1, 2} that will be used later on to construct a coloring f : N→ {1, 2}
for which neither of f−1({1}) or f−1({2}) contain a 18-term arithmetic progression whose
common difference is a Fibonacci number.

To this end, let fn : [1, Fn] → {1, 2} be arbitrary for 0 ≤ n ≤ 2. We will now inductively
construct fn : [1, Fn] → {1, 2} for n ≥ 3. Assuming that {fn}Nn=0 have been constructed,

let fn = 3 − fn (intuitively, fn switches the 1s and 2s in the range of fn). Noting that
FN+1 = 2FN−1 + FN−2, we may define fN+1 : [1, FN+1]→ {1, 2} by

fN+1(x) =


fN−1(x) if x ∈ [1, FN−1]

fN−1(x− FN−1) if x ∈ [FN−1 + 1, 2FN−1]

fN−2(x− 2FN−1) if x ∈ [2FN−1 + 1, FN+1]

. (2.1)

Since fn and fn+2 agree on [1, Fn], we may define f : N → {1, 2} by f(x) = fn(x), where
n is the least odd integer for which x ≤ Fn. We will now show that neither of f−1({1}) or
f−1({2}) contain a 18-term arithmertic progression whose common difference is a Fibonacci
number.

Let us begin by giving an alternative description of our coloring f . Let Fn ∈ {1, 2}FN be
the string satisfying Fn(m) = fn(m) for all 1 ≤ m ≤ Fn. We want to view the functions fn
as strings Fn so that we can view (2.1) as a simple concatenation. For a finite string F of 1s
and 2s, let F denote the finite string obtained by converting all of the 1s into 2s and all of
the 2s into 1s, i.e., F(m) = 3−F(m). We now see that (2.1) is equivalent to the relation

FN+1 = FN−1FN−1FN−2. (2.2)

By using (2.2) repeatedly, we observe a few relations that will be useful later.

FN+2 = FNFNFN−1

FN+3 = FN+1FN+1FN

= FN−1FN−1FN−2FN−1FN−1FN−2FN

FN+4 = FN+2FN+2FN+1

= FNFNFN−1FNFNFN−1FN−1FN−1FN−2

FN+5 = FN+3FN+3FN+2

= FN+3FN+3FNFNFN−1

= FN−1FN−1FN−2FN−1FN−1FN−2FNFN−1FN−1(concatenated with)

FN−2FN−1FN−1FN−2FNFNFNFN−1

FN+6 = FN+4FN+4FN+3

= FNFNFN−1FNFNFN−1FN−1FN−1FN−2FNFN (concatenated with)

FN−1FNFNFN−1FN−1FN−1FN−2FN−1FN−1FN−2FN−1FN−1FN−2FN

(2.3)

2



HYPERGEOMETRIC TEMPLATE

We will now demonstrate that for any N ∈ N and any m ≥ 7, the string FN+m has occur-
rences of FNFN or FNFN that occur sufficiently often so that they prohibit any monochro-
matic 18-term arithmetic progression whose common difference is FN .. To this end, let us fix
N ∈ N, and for m ≥ 4, let sN+m denote the number of characters in the string FN+m before
the first occurrence of FNFN or FNFN , let eN+m denote the number of characters in the
string FN+m after the last occurrence of FNFN or FNFN , and let bN+m denote the maximum
number of characters between consecutive occurrence of FNFN and/or FNFN with bN+m = 0
if there is only one occurrence of FNFN or FNFN in FN+m. We see that

sN+4 = 0, bN+4 = FN−1, eN+4 = 3FN−1 + FN−2
sN+5 = 2FN+3 − FN , bN+5 = 0, eN+5 = FN−1
sN+6 = 0, bN+6 = 3FN−1 + FN−2 eN+6 = 7FN−1 + 3FN−2 + FN

.

(2.4)
We now see from induction that for all m ≥ 7 we have

sN+m ≤ max(sN+4, sN+5) = 2FN+3 − FN , (2.5)

eN+m ≤ max(eN+4, eN+5, eN+6) = 7FN−1 + 3FN−2 + FN , and (2.6)

bN+m ≤ max(bN+m−2, eN+m−2 + sN+m−2, eN+m−2 + sN+m−3, bN+m−3) ≤ eN+6 + sN+5 (2.7)

= 2FN+3 − FN + 7FN−1 + 3FN−2 + FN = 2FN+3 + 7FN−1 + 3FN−2. (2.8)

Recalling that Fn+1 ≥ 3
2Fn for all n ≥ 1, we see that

1

FN
sup
m≥7

max(sN+m, bN+m, eN+m) =
2FN+3 + 7FN−1 + 3FN−2

FN
(2.9)

=
2FN+2 + 2FN+1 + 3FN + 4FN−1

FN
(2.10)

=
2(FN+1 + FN ) + 2(FN + FN−1) + 3FN + 4FN−1

FN
=

2FN+1 + 7FN + 6FN−1
FN

(2.11)

=
9FN + 8FN−1

FN
≤

9FN + 8(23FN )

FN
< 15. (2.12)

We are finally ready to finish proving the desired result. Let {a+ iFN}17i=0 be an arithmetic
progression, and let m ≥ 7 be such that a + 17FN ≤ FN+m and N + m is odd. We consider 3
cases. If a ≤ sN+m+FN , then we use the fact that 15FN > sN+m to see that a+iFN must enter
a block of the form FNFN or FNFN for some 0 ≤ i ≤ 15, so f(a + iFN ) 6= f(a + (i + 1)FN ),
so {a+ iFN}17i=0 is not monochromatic in this case. If sN+m +FN < a ≤ FN+m− eN+m−FN ,
then we use the fact that 16FN > bN+m + FN to see that a + iFN must enter a block of the
form FNFN or FNFN for some 0 ≤ i ≤ 16, so f(a+ iFN ) 6= f(a+ (i+ 1)FN ), so {a+ iFN}17i=0
is not monochromatic in this case as well. Lastly, if a > FN+m − eN+m − FN , we recall that
FN+m+2 = FN+mFN+mFN+m−1 and use the fact that 16FN > bN+m+2 + FN to once again
see that a + iFN must enter a block of the form FNFN or FNFN for some 0 ≤ i ≤ 16, so
f(a + iFN ) 6= f(a + (i + 1)FN ), so {a + iFN}17i=0 is not monochromatic. �
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3. Closing Remarks

Let D = {di}∞i=0 be a sequence defined by a recurrence relation of the form di+m = a0di +
a1di+1 + · · · + am−1di+m−1 with aj ∈ N ∪ {0} for 0 ≤ j < m. We see that the method of
proof of Theorem 2.1 can be used to construct a 2-coloring of N in which there are no long
monochromatic arithmetic progressions whose common difference is in D. However, we note
that if di+1 ≥ 3di for all i ∈ N, then the method of proof of Theorem 2.1 will produce a worse
upper bound on the length of such monochromatic progressions than Theorem 2.2 of [2]. This
observation naturally leaves us with the following question. What is the least ` ∈ N for which
there exists a 2-coloring of N admitting no monochromatic `-term arithmetic progression whose
common difference is a Fibonacci number? We leave it as an exercise to the reader to show
that ` ≥ 3 by showing that any 2-coloring of N admits a monochromatic 3-term arithmetic
progression whose common difference is 1, 2, or 3.
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