
Problem 2.1.16: Solve the initial value problem

(0.1) y′ +
2

t
y =

cos(t)

t2
, y(π) = 0, t > 0.

Solution: We see that this first order differential equation is given to us in
the standard form of

(0.2) y′ + p(t)y = g(t),

so our integrating factor is just

(0.3) ν(t) = e
∫
p(t)dt = e

∫ 2
t dt = e2 ln(t) = t2,

where we have chosen the constant of integration to be 0 for convenience.
Multiplying both sides of equation (0.1) by our integrating factor ν(t) gives us

(0.4) cos(t) = t2y′ + 2ty = (t2y)′

(0.5) → t2y =

∫
cos(t)dt = sin(t) + C

(0.6) → y(t) = y =
sin(t) + C

t2
.

We will now use our initial condition of y(π) = 0 in order to solve for the
constant C. We see that

(0.7) 0 = y(π) =
sin(π) + C

π2
=
C

π2
→ C = 0.

In conclusion, we see that the solution to the initial value problem is

(0.8)
sin(t)

t2
, t > 0 .
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Problem 2.1.33: Show that if a and λ are positive constants and b is any
real number, then every solution of the equation

(0.9) y′ + ay = be−λt

has the property that y → 0 as t→∞.

Solution: Just as in problem 2.1.16, we see that the differential equation is
already given to us in standard form, so our integrating factor is

(0.10) ν(t) = e
∫
adt = eat,

where we have once again chosen our constant of integration to be 0 for
convenience. Multiplying both sides of equation (0.10) by our integrating factor
ν(t) gives us

(0.11) be(a−λ)t = be−λteat = eaty′ + aeaty = (eaty)′

(0.12) → eaty =

∫
be(a−λ)tdt =

{
b

a−λe
(a−λ)t + C if a 6= λ

bt + C if a = λ

(0.13) y(t) = y =

{
b

a−λe
−λt + Ce−at if a 6= λ

bte−at + Ce−at if a = λ
.

Since a > 0, we see that

(0.14) lim
t→∞

Ce−at = lim
t→∞

bte−at = 0,

so when a = λ we have

(0.15) lim
t→∞

y(t) = 0.

Similarly, since λ > 0, we see that if a 6= λ then

(0.16) lim
t→∞

b

a− λ
e−λt = 0,

which shows us that in this case we also have
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(0.17) lim
t→∞

y(t) = 0.
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Problem 2.2.17: Solve the initial value problem

(0.18) y′ =
3x2 − ex

2y − 5
, y(0) = 1.

Solution: This differential equation is not linear, but it is separable, so we
will separate the variables and integrate in order to solve it. In this case, all we
have to do to separate the variables is multiple both sides of equation (0.18) by
(2y − 5) to obtain

(0.19) (2y − 5)y′ = 3x2 − ex

(0.20) → (2y − 5)dy = (3x2 − ex)dx

(0.21)

∫
(2y − 5)dy =

∫
(3x2 − ex)dx

(0.22) y2 − 5y = x3 − ex + C.

To solve for C, we use the initial condition y(0) = 1 to obtain

(0.23) 12 − 5× 1 = 03 − e0 + C

(0.24) → C = 1− 5 + e0 = −3

(0.25) → y2 − 5y = x3 − ex − 3.

We currently have an implicit relationship betwen x and y. Luckily, in this
case we can just apply the quadratic formula to obtain an explicit relationship
between x and y. We see that

(0.26) y2 − 5y + (ex + 3− x3) = 0

(0.27) → y =
5±

√
25− 4(ex + 3− x3)

2
=

5±
√

13− 4ex + 4x3

2
.
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Recalling that y(0) = 1, we see that

(0.28) y(x) =
5−
√

13− 4ex + 4x3

2
.

We see that the solution is defined when

(0.29) 13− 4ex + 4x3 ≥ 0.

We see that inequality (0.29) holds when x ∈ (−1, 1) (the details of this are
left as an exercise to the reader), so we know that our solution exists on this
interval. The solution actually exists on an interval larger than (−1, 1), but it
is difficult to calculate the entire interval on which the solution exists, so we
will settle for this approximation.
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Problem 2.2.31: Solve the differential equation

(0.30)
dy

dx
=
x2 + xy + y2

x2
.

Solution: Letting

(0.31) F (x, y) =
x2 + xy + y2

x2
,

we see that for any real number c we have

(0.32) F (cx, cy) =
(cx)2 + (cx)(cy) + (cy)2

(cx)2
=
c2x2 + c2xy + c2y2

c2x2

(0.33) =
x2 + xy + y2

x2
= F (x, y),

so equation (0.31) is a homogeneous equation. Letting v = y
x, we see that

(0.34) v′ =
dv

dx
=
y′

x
− y

x2
=
y′

x
− v

x

(0.35) → xv′ + v = y′.

We may now rewrite equation (0.31) as a differential equation in v. Observe
that

(0.36) xv′ + v = y′ =
x2 + xy + y2

x2
=
x2

x2
+
xy

x2
+
y2

x2

(0.37) = 1 +
y

x
+ (

y

x
)2 = 1 + v + v2

(0.38) → xv′ = 1 + v2.

We see that equation (0.38) is a separable differential equation, so we may go
ahead and solve it by separating the variables. We see that

(0.39)
dv

1 + v2
=
dx

x
Page 6



Sohail Farhangi Recitation Notes for 6/11/2020

(0.40) →
∫

dv

1 + v2
=

∫
dx

x

(0.41) → tan−1(v) = ln(x) + C.

(0.42) → tan−1(
y

x
) = ln(x) + C

(0.43) → y

x
= tan(ln(x) + C)

(0.44) → y(x) = y = x tan(ln(x) + C) ,

Since there were no initial values, we did not need to solve for C, but we do
need to find an interval on which the solution is valid. We see that we need
x 6= 0 in order for equation (0.31) to be well defined, x > 0 in order for the ln(x)
in equation (0.44) to be well defined, and we need ln(x) + C to be contained
between 2 consecutive odd multiples of π2 in order for the tan in equation (0.44)
to be well defined. This last conditions results in the following calculations.

(0.45)

ln(x) + C ∈ (
2n− 1

2
π,

2n + 1

2
π)⇔ ln(x) ∈ (

2n− 1

2
π − C, 2n + 1

2
π − C)

(0.46) ⇔ x ∈ (e
2n−1
2 π−C, e

2n+1
2 π−C) (for some integer n) .
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Problem 2.4.22:
Part a: Verify that y1(t) = 1− t and y2(t) = −t2

4 are both solutions of the
initial value problem

(0.47) y′ =
−t +

√
t2 + 4y

2
, y(2) = −1.

Where are these solutions valid?

Part b: Explain why the existence of two solutions of the given problem
does not contradict the uniqueness part of Theorem 2.4.2.

Part c: Show that y(t) = ct+ c2, where c is an arbitrary constant, satisfies
the differential equation in part (a) for t ≥ −2c. If c = −1, then the initial
condition is also satisfied and the solution y = y1(t) is obtained. Show that
no other choice of c gives a second solution. Note that no choice of c gives the
solution y = y2(t).

Solution to (a): We see that y1(2) = y2(2) = −1. We also see that

(0.48) y′1 = −1 and

(0.49)
−t +

√
t2 + 4(1− t)

2
=
−t +

√
t2 − 4t + 4

2
=
−t +

√
(t− 2)2

2

(0.50)
∗
=
−t + (t− 2)

2
= −1,

so y1(t) is indeed a solution to the initial value problem in equation (0.47)
that is valid for t ∈ [2,∞) (as seen from equation (*)). Lastly, we see that

(0.51) y′2 = − t
2

and

(0.52)
−t +

√
t2 + 4(−t2

4 )

2
=
−t
2
,

so y2(t) is also a solution to the initial value problem in equation (0.47) that
is valid for all t ∈ (−∞,∞).
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Solution to (b): We see that in this problem we have

(0.53) f = f (t, y) =
−t +

√
t2 + 4y

2
,

so

(0.54)
∂f

∂y
=

1√
t2 + 4y

.

Since ∂f
∂y (2,−1) is not defined, ∂f

∂y is not continuous in any open rectangle

containing (2,−1), so the conditions of Theorem 2.4.2 are not satisfied, which
means that we cannot apply the uniqueness part of Theorem 2.4.2.

Solution to (c): Letting c be any real number and letting y(t) = ct + c2

we see that

(0.55) y′ = c and

(0.56)
−t +

√
t2 + 4(ct + c2)

2
=
−t +

√
t2 + 4ct + 4c2

2
=
−t +

√
(t + 2c)2

2

(0.57)
∗
=
−t + t + 2c

2
= c,

so y(t) is a solution to the differential equation in (0.47). In order to satisfy
the initial condition of y(2) = −1, we see that we must have

(0.58) −1 = 2c + c2 → 0 = 1 + 2c + c2 = (1 + c)2 → c = −1.

When c = −1, we see that we do indeed recover the solution y1(t). Further-
more, we see that y2(t) is a solution to the initial value problem in equation
(0.47) that does not come from y(t) for any choice of c.
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