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Problem 6.3.18: Determine the function to which the Fourrier series of

(504) f (x) = |x|, −π < x < π

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined.

Luckily, the precise definition of f(x) or its periodic extension at these endpoints does not change the final answer

to this question.

Solution: We begin by examining a graph of f (x) and a graph of g(x), the
2π-periodic extension of f (x).

Figure 13. Graph of f(x).

Figure 14. Graph of g(x).
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We see that if we define g(nπ) = 1 for every odd integer n (since these are
precisely the points at which g(x) is currently undefined), then g(x) is a contin-
uous function whose derivative is piecewise continuous. It follows from Theorem
6.3.3 (stated below) that the Fourrier series of f (x) converges pointwise (ac-
tually, uniformly) to g(x) (after declaring that g(n) = 1 for every odd integer
n).

Theorem 6.3.3 (Page 504): Let f (or g in this problem) be a continuous
function on (−∞,∞) and periodic of period 2L. If f ′ is piecewise continuous
on [−L,L], then the Fourrier series of f converges uniformly to f on [−L,L]
and hence on any interval. That is, for each ε > 0, there exists an integer N0

(that depends on ε) such that

(505)

∣∣∣∣∣f (x)−

[
a0

2
+

N∑
n=1

{
an cos(

nπx

L
) + bn sin(

nπx

L
)
}]∣∣∣∣∣ < ε,

for all N ≥ N0, and all x ∈ (−∞,∞).

Remark: The astute reader will notice that Theorem 6.3.3 actually gives us
more than what the problem originally asked for since uniform convergence is
better than pointwise convergence.
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Problem 6.3.20: Determine the function to which the Fourrier series of

(506) f (x) =

{
0 if − π < x < 0,

x2 if 0 < x < π

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined.

Luckily, the precise definition of f(x) or its periodic extension at these endpoints does not change the final answer

to this question.

Solution: We begin by examining a graph of f (x) and a graph of g(x), the
2π-periodic extension of f (x).

Figure 15. Graph of f(x).

Figure 16. Graph of g(x).

Page 112



Sohail Farhangi Recitation Notes for 12/1/2020

We apply Theorem 6.3.2 (stated below) in order to find the answer.

Theorem 6.3.2 (Page 503): If f and f ′ are piecewise continuous on
[−L,L], then for any x ∈ (−L,L),

(507)
a0

2
+

∞∑
n=1

{
an cos(

nπx

L
) + bn sin(

nπx

L
)
}

︸ ︷︷ ︸
Fourrier series of f(x)

=
1

2
[f (x+) + f (x−)].

For x = ±L, the series converges to 1
2[f (−L+) + f (L−)].

Noting that L = π in this problem, let us first determine the function that
the Fourrier series of f (x) converges pointwise to on [−π, π]. We see that on
(−π, 0) ∪ (0, π), f (x) is continuous, so the Fourrier series of f (x) converges
pointwise to f (x) for every x ∈ (−π, 0) ∪ (0, π). Since f (0−) = f (0+) = 0,
we see that the Fourrier series of f (x) converges to 0 when x = 0. Since
f (−π+) = 0 and f (π−) = π2, we see that the Fourrier series of f (x) converges
to 1

2π
2 when x = ±π. Recalling that the Fourrier series of f (x) is 2π-periodic,

we first define g(nπ) = 1
2π

2 whenever n is an odd integer and g(nπ) = 0
whenever n is an even integer (so that we may give a definition to g(x) in the
places that it is currently undefined), and then we see that the Fourrier series
of f (x) converges to g(x).
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Problem 6.4.17: Find the solution u(x, t) to the heat flow problem

(508)
∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0,

(509) µ(0, t) = µ(L, t) = 0, t > 0

(510) u(x, 0) = f (x), 0 < x < L,

with β = 5, L = π, and the initial value function

(511) f (x) = 1− cos(2x).

Solution: We know that a general solution to the heat flow problem is

(512) u(x, t) =

∞∑
n=1

cne
−β(nπL )2t sin(

nπx

L
) =

∞∑
n=1

cne
−5n2t sin(nx).

From equation (510), we see that

(513) 1− cos(2x) = u(x, 0) =

∞∑
n=1

cne
−5n2·0 sin(nx) =

∞∑
n=1

cn sin(nx),

So we have to compute the fourier sine series of 1 − cos(x)1. Before doing so,
we recall the following helpful trigonometric identity.

(514) sin(n + m) + sin(n−m) = 2 sin(n) cos(m).

We see that for n ≥ 1, we have

(515) cn =
2

L

∫ L

0

f (x) sin(nx)dx =
2

π

∫ π

0

(1− cos(2x)) sin(nx)dx

1Sometimes the function f(x) is a sum of sine functions, such as f(x) = 2 sin(3x)− π sin(4x). In cases such as these, we are (luckily) already

given the fourrier sine series of f(x)! We see that c3 = 2, c4 = −π, and cn = 0 for all other n ≥ 1.
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(516) =
2

π

∫ π

0

sin(nx)dx− 2

π

∫ π

0

sin(nx) cos(2x)dx

(517)
by (514)

=
2

π

(
−cos(nx)

n

∣∣∣π
x=0

)
− 2

π

∫ π

0

1

2
(sin((n+ 2)x) + sin((n− 2)x))dx

(518) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n + 2)x)

n + 2
+
− cos((n− 2)x)

n− 2

∣∣∣π
x=0

)

(519) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n+ 2)π) + 1

n+ 2
+
− cos((n− 2)π) + 1

n− 2

)

(520) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos(nπ) + 1

n + 2
+
− cos(nπ) + 1

n− 2

)

(521) =

(
− cos(nπ) + 1

π

)(
2

n
− (

1

n + 2
+

1

n− 2
)

)

(522) =

(
− cos(nπ) + 1

π

)(
2(n + 2)(n− 2)− n(n− 2)− n(n + 2)

n(n + 2)(n− 2)

)

(523) =

(
− cos(nπ) + 1

π

)(
−4

n3 − 4n

)
=

4 cos(nπ)− 4

L(n3 − 4n)

(524) =

{
0 if n is even

− 8
(n3−4n)π

if n is odd
.

It follows that our solution is given by
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(525) u(x, t) =

∞∑
n=1

− 8

((2n− 1)3 − 4(2n− 1))π
e−5(2n−1)2t sin((2n− 1)x) .
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Problem 6.2.24: Formally solve the vibrating string problem

(526)
∂2u

∂t2
= α

∂2u

∂x2
, 0 < x < L, t > 0,

(527) u(0, t) = u(L, t) = 0, t > 0,

(528) u(x, 0) = f (x), 0 ≤ x ≤ L,

(529)
∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ L,

with α = 4, L = π, and the initial value functions

(530) f (x) =

∞∑
n=1

1

n2
sin(nx),

(531) g(x) =

∞∑
n=1

(−1)n+1

n
sin(nx).

Solution: We know that a general solution of the vibrating string problem is

(532) u(x, t) =
∞∑
n=1

[
an cos(

nπα

L
t) + bn sin(

nπα

L
t)
]

sin(
nπx

L
) =

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx).

From equation (528), we see that

(533)

∞∑
n=1

1

n2
sin(nx) = f (x) = u(x, 0)

(534) =

∞∑
n=1

[an cos(4n · 0) + bn sin(4n · 0)] sin(nx)
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(535) =

∞∑
n=1

[an · 1 + bn · 0] sin(nx) =

∞∑
n=1

ansin(nx),

so an = 1
n2

for every n ≥ 1. Next, from equation (529), we see that

(536)

∞∑
n=1

(−1)n+1

n
sin(nx) = g(x) =

∂u

∂t
(x, 0)

(537) =
∂

∂t

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx)
∣∣∣
t=0

(538) =

∞∑
n=1

∂

∂t
[an cos(4nt) + bn sin(4nt)] sin(nx)

∣∣∣
t=0

(539) =

∞∑
n=1

[−4nan sin(4nt) + 4nbn cos(4nt)] sin(nx)
∣∣∣
t=0

(540) =

∞∑
n=1

[−4nan sin(4n · 0) + 4nbn cos(4n · 0)] sin(nx)

(541) =

∞∑
n=1

[−4nan · 0 + 4nbn · 1] sin(nx) =

∞∑
n=1

4nbnsin(nx).

The conclusion of equations (536)− (541) is

(542)

∞∑
n=1

(−1)n+1

n
sin(nx) =

∞∑
n=1

4nbnsin(nx),

which shows us that
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(543)
(−1)n+1

n
= 4nbn → bn =

(−1)n+1

4n2
for all n ≥ 1.

It follows that our solution is given by

(544) u(x, t) =

∞∑
n=1

[
1

n2
cos(4nt) +

(−1)n+1

4n2
sin(4nt)

]
sin(nx) .
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