Problem 6.3.18: Determine the function to which the Fourrier series of

$$
\begin{equation*}
f(x)=|x|, \quad-\pi<x<\pi \tag{504}
\end{equation*}
$$

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined. Luckily, the precise definition of $f(x)$ or its periodic extension at these endpoints does not change the final answer to this question.

Solution: We begin by examining a graph of $f(x)$ and a graph of $g(x)$, the 2π-periodic extension of $f(x)$.

Figure 13. Graph of $f(x)$.

Figure 14. Graph of $g(x)$.

We see that if we define $g(n \pi)=1$ for every odd integer n (since these are precisely the points at which $g(x)$ is currently undefined), then $g(x)$ is a continuous function whose derivative is piecewise continuous. It follows from Theorem 6.3.3 (stated below) that the Fourrier series of $f(x)$ converges pointwise (actually, uniformly) to $g(x)$ (after declaring that $g(n)=1$ for every odd integer $n)$.

Theorem 6.3.3 (Page 504): Let f (or g in this problem) be a continuous function on $(-\infty, \infty)$ and periodic of period $2 L$. If f^{\prime} is piecewise continuous on $[-L, L]$, then the Fourrier series of f converges uniformly to f on $[-L, L]$ and hence on any interval. That is, for each $\epsilon>0$, there exists an integer N_{0} (that depends on ϵ) such that

$$
\begin{equation*}
\left|f(x)-\left[\frac{a_{0}}{2}+\sum_{n=1}^{N}\left\{a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right\}\right]\right|<\epsilon, \tag{505}
\end{equation*}
$$

for all $N \geq N_{0}$, and all $x \in(-\infty, \infty)$.
Remark: The astute reader will notice that Theorem 6.3.3 actually gives us more than what the problem originally asked for since uniform convergence is better than pointwise convergence.

Problem 6.3.20: Determine the function to which the Fourrier series of

$$
f(x)= \begin{cases}0 & \text { if }-\pi<x<0, \tag{506}\\ x^{2} & \text { if } 0<x<\pi\end{cases}
$$

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined. Luckily, the precise definition of $f(x)$ or its periodic extension at these endpoints does not change the final answer to this question.

Solution: We begin by examining a graph of $f(x)$ and a graph of $g(x)$, the 2π-periodic extension of $f(x)$.

Figure 15. Graph of $f(x)$.

Figure 16. Graph of $g(x)$.

We apply Theorem 6.3.2 (stated below) in order to find the answer.
Theorem 6.3.2 (Page 503): If f and f^{\prime} are piecewise continuous on $[-L, L]$, then for any $x \in(-L, L)$,
(507) $\underbrace{\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right\}}_{\text {Fourrier series of } \mathrm{f}(\mathrm{x})}=\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]$.

For $x= \pm L$, the series converges to $\frac{1}{2}\left[f\left(-L^{+}\right)+f\left(L^{-}\right)\right]$.
Noting that $L=\pi$ in this problem, let us first determine the function that the Fourrier series of $f(x)$ converges pointwise to on $[-\pi, \pi]$. We see that on $(-\pi, 0) \cup(0, \pi), f(x)$ is continuous, so the Fourrier series of $f(x)$ converges pointwise to $f(x)$ for every $x \in(-\pi, 0) \cup(0, \pi)$. Since $f\left(0^{-}\right)=f\left(0^{+}\right)=0$, we see that the Fourrier series of $f(x)$ converges to 0 when $x=0$. Since $f\left(-\pi^{+}\right)=0$ and $f\left(\pi^{-}\right)=\pi^{2}$, we see that the Fourrier series of $f(x)$ converges to $\frac{1}{2} \pi^{2}$ when $x= \pm \pi$. Recalling that the Fourrier series of $f(x)$ is 2π-periodic, we first define $g(n \pi)=\frac{1}{2} \pi^{2}$ whenever n is an odd integer and $g(n \pi)=0$ whenever n is an even integer (so that we may give a definition to $g(x)$ in the places that it is currently undefined), and then we see that the Fourrier series of $f(x)$ converges to $g(x)$.

Problem 6.4.17: Find the solution $u(x, t)$ to the heat flow problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \tag{508}\\
\mu(0, t)=\mu(L, t)=0, \quad t>0 \tag{509}\\
u(x, 0)=f(x), \quad 0<x<L \tag{510}
\end{gather*}
$$

with $\beta=5, L=\pi$, and the initial value function

$$
\begin{equation*}
f(x)=1-\cos (2 x) . \tag{511}
\end{equation*}
$$

Solution: We know that a general solution to the heat flow problem is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\beta\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)=\sum_{n=1}^{\infty} c_{n} e^{-5 n^{2} t} \sin (n x) . \tag{512}
\end{equation*}
$$

From equation (510), we see that

$$
\begin{equation*}
1-\cos (2 x)=u(x, 0)=\sum_{n=1}^{\infty} c_{n} e^{-5 n^{2} \cdot 0} \sin (n x)=\sum_{n=1}^{\infty} c_{n} \sin (n x), \tag{513}
\end{equation*}
$$

So we have to compute the fourier sine series of $1-\cos (x)^{1}$. Before doing so, we recall the following helpful trigonometric identity.

$$
\begin{equation*}
\sin (n+m)+\sin (n-m)=2 \sin (n) \cos (m) \tag{514}
\end{equation*}
$$

We see that for $n \geq 1$, we have

$$
\begin{equation*}
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}(1-\cos (2 x)) \sin (n x) d x \tag{515}
\end{equation*}
$$

[^0](516)
$$
=\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x-\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) \cos (2 x) d x
$$
$(517) \stackrel{\text { by }}{\stackrel{(514)}{=}} \frac{2}{\pi}\left(-\left.\frac{\cos (n x)}{n}\right|_{x=0} ^{\pi}\right)-\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}(\sin ((n+2) x)+\sin ((n-2) x)) d x$
$(518)=\frac{2(-\cos (n \pi)+1)}{n \pi}-\frac{1}{\pi}\left(\frac{-\cos ((n+2) x)}{n+2}+\left.\frac{-\cos ((n-2) x)}{n-2}\right|_{x=0} ^{\pi}\right)$
(522) $=\left(\frac{-\cos (n \pi)+1}{\pi}\right)\left(\frac{2(n+2)(n-2)-n(n-2)-n(n+2)}{n(n+2)(n-2)}\right)$
\[

$$
\begin{equation*}
=\left(\frac{-\cos (n \pi)+1}{\pi}\right)\left(\frac{-4}{n^{3}-4 n}\right)=\frac{4 \cos (n \pi)-4}{L\left(n^{3}-4 n\right)} \tag{523}
\end{equation*}
$$

\]

$$
= \begin{cases}0 & \text { if } \mathrm{n} \text { is even } \tag{524}\\ -\frac{8}{\left(n^{3}-4 n\right) \pi} & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

It follows that our solution is given by
(525) $u(x, t)=\sum_{n=1}^{\infty}-\frac{8}{\left((2 n-1)^{3}-4(2 n-1)\right) \pi} e^{-5(2 n-1)^{2} t} \sin ((2 n-1) x)$.

Problem 6.2.24: Formally solve the vibrating string problem

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\alpha \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \tag{526}
\end{equation*}
$$

$$
\begin{equation*}
u(0, t)=u(L, t)=0, \quad t>0 \tag{527}
\end{equation*}
$$

$$
\begin{equation*}
u(x, 0)=f(x), \quad 0 \leq x \leq L \tag{528}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial t}(x, 0)=g(x), \quad 0 \leq x \leq L \tag{529}
\end{equation*}
$$

with $\alpha=4, L=\pi$, and the initial value functions

$$
\begin{gather*}
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin (n x) \tag{530}\\
g(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)
\end{gather*}
$$

Solution: We know that a general solution of the vibrating string problem is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi \alpha}{L} t\right)+b_{n} \sin \left(\frac{n \pi \alpha}{L} t\right)\right] \sin \left(\frac{n \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[a_{n} \cos (4 n t)+b_{n} \sin (4 n t)\right] \sin (n x) . \tag{532}
\end{equation*}
$$

From equation (528), we see that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin (n x)=f(x)=u(x, 0) \tag{533}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{n=1}^{\infty}\left[a_{n} \cos (4 n \cdot 0)+b_{n} \sin (4 n \cdot 0)\right] \sin (n x) \tag{534}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{n=1}^{\infty}\left[a_{n} \cdot 1+b_{n} \cdot 0\right] \sin (n x)=\sum_{n=1}^{\infty} a_{n} \sin (n x) \tag{535}
\end{equation*}
$$

so $a_{n}=\frac{1}{n^{2}}$ for every $n \geq 1$. Next, from equation (529), we see that

$$
\begin{equation*}
=\left.\frac{\partial}{\partial t} \sum_{n=1}^{\infty}\left[a_{n} \cos (4 n t)+b_{n} \sin (4 n t)\right] \sin (n x)\right|_{t=0} \tag{537}
\end{equation*}
$$

$$
\begin{equation*}
=\left.\sum_{n=1}^{\infty} \frac{\partial}{\partial t}\left[a_{n} \cos (4 n t)+b_{n} \sin (4 n t)\right] \sin (n x)\right|_{t=0} \tag{538}
\end{equation*}
$$

$$
\begin{equation*}
=\left.\sum_{n=1}^{\infty}\left[-4 n a_{n} \sin (4 n t)+4 n b_{n} \cos (4 n t)\right] \sin (n x)\right|_{t=0} \tag{539}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{n=1}^{\infty}\left[-4 n a_{n} \sin (4 n \cdot 0)+4 n b_{n} \cos (4 n \cdot 0)\right] \sin (n x) \tag{540}
\end{equation*}
$$

(541) $\quad=\sum_{n=1}^{\infty}\left[-4 n a_{n} \cdot 0+4 n b_{n} \cdot 1\right] \sin (n x)=\sum_{n=1}^{\infty} 4 n b_{n} \sin (n x)$.

The conclusion of equations (536) - (541) is
(542)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)=\sum_{n=1}^{\infty} 4 n b_{n} \sin (n x)
$$

which shows us that
(543) $\quad \frac{(-1)^{n+1}}{n}=4 n b_{n} \rightarrow b_{n}=\frac{(-1)^{n+1}}{4 n^{2}}$ for all $n \geq 1$.

It follows that our solution is given by
(544)

$$
u(x, t)=\sum_{n=1}^{\infty}\left[\frac{1}{n^{2}} \cos (4 n t)+\frac{(-1)^{n+1}}{4 n^{2}} \sin (4 n t)\right] \sin (n x) .
$$

[^0]: $1_{\text {Sometimes the function }} f(x)$ is a sum of sine functions, such as $f(x)=2 \sin (3 x)-\pi \sin (4 x)$. In cases such as these, we are (luckily) already given the fourrier sine series of $f(x)$! We see that $c_{3}=2, c_{4}=-\pi$, and $c_{n}=0$ for all other $n \geq 1$.

