
Problem 1.8.37: A lidless cardboard box is to be made with a volume of 4
m3. Find the dimensions of the box that require the least cardboard.

Solution: If the box has a width of w, a length of ` and a height of h, then
the volume V is given by V = wh`. We also see from figure 1 that the amount
of cardboard it takes to make such a box is 2hw + 2h` + wl.

Figure 1

It follows that we are trying to optimize the function

(1) f (w, h, `) = 2hw + 2h` + w`

subject to the constraint

(2) wh` = 4.

Noting that
1
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(3) h =
4

w`
,

we now want to optimize the function

(4) g(w, `) = f (w, h, `) = f (w,
4

w`
, `) = 2

4

w`
w + 2

4

w`
`+w` =

8

`
+

8

w
+w`

over the first quadrant of R2. We see that

(5)
∂g

∂w
= − 8

w2
+ ` and

∂g

∂`
= − 8

`2
+ w, so

(6)
∂g
∂w(w, `) = 0
∂g
∂`(w, `) = 0

⇔
− 8
w2 + ` = 0

− 8
`2

+ w = 0
⇔ 8 = w`2 = w2`

∗→ w = `

(7) → 8 = w3 → (w, h, `) = (2, 1, 2) .

To verify that g(w, `) does indeed attain its minimum value at (w, `) = (2, 2)
we will use the second derivative test. We note that

(8)
∂2g

∂w2
(w, `) =

∂

∂w

∂g

∂w
(w, `) =

∂

∂w
(− 8

w2
+ `) =

16

w3
,

(9)
∂2g

∂`2
(w, `) =

∂

∂`

∂g

∂`
(w, `) =

∂

∂`
(− 8

`2
+ w) =

16

`3
, and

(10)
∂2g

∂w∂`
(w, `) =

∂

∂w

∂g

∂`
(w, `) =

∂

∂w
(− 8

`2
+ w) = 1, so

(11) D(w, `) =
∂2g

∂w2
(w, `)

∂2g

∂`2
(w, `)− (

∂2g

∂w∂`
(w, `))2

=
16

w3
· 16

`3
− 12 =

256

w3`3
− 1.

Since
Page 2
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(12) D(2, 2) =
256

8 · 8
− 1 = 3 > 0 and

∂2g

∂w2
(2, 2) =

16

23
= 2 > 0,

the second derivative test tells us that g(w, `) attains a local minimum at the
critical point (2, 2).

Page 3
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Problem 1.8.39: Consider the function f (x, y) = 3 + x4 + 3y4. Show that
(0, 0) is a critical point for f (x, y) and show that the second derivative test is
inconclusive at (0, 0). Then describe the behavior of f (x, y) at (0, 0).

Solution We see that

(13)
∂f

∂x
(x, y) = 4x3 and

∂f

∂y
(x, y) = 12y3, so

(14)
∂f
∂x(x, y) = 0
∂f
∂y (x, y) = 0

⇔
4x3 = 0

12y3 = 0
⇔ (x, y) = (0, 0).

It follows that (0, 0) is the only critical point of f in all of R2. We also note
that

(15)
∂2f

∂x2
(x, y) =

∂

∂x

∂f

∂x
(x, y) =

∂

∂x
(4x3) = 12x2,

(16)
∂2f

∂y2
(x, y) =

∂

∂y

∂f

∂y
(x, y) =

∂

∂y
(12y3) = 36y2, and

(17)
∂2f

∂x∂y
(x, y) =

∂

∂x

∂f

∂y
=

∂

∂x
(12y3) = 0, so

(18) D(x, y) =
∂2f

∂x2
(x, y)

∂2f

∂y2
(x, y)− (

∂2f

∂x∂y
(x, y))2

= 12x2 · 36y2 − 02 = 432x2y2.

Since D(0, 0) = 0, we see that the second derivative test is inconclusive. How-
ever, we are still able to describe the behavior of f (x, y) at (0, 0). Note that
x4 ≥ 0 for all x ∈ R, and 3y4 ≥ 0 for all y ∈ R. Furthermore, x4 = 0 if and
only if x = 0, and 3y4 = 0 if and only if y = 0. It follows that x4 + 3y4 ≥ 0
for all (x, y) ∈ R2, and x4 + 3y4 = 0 if and only if (x, y) = (0, 0). From this
we are able to see that f (x, y) = 3 + x4 + 3y4 attains an absolute minimum at
(0, 0).

Page 4
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Problem 1.8.47: Find the absolute minimum and maximum value of the
function

(19) f (x, y) = 2x2 − 4x + 3y2 + 2 = 2(x− 1)2 + 3y2

over the region

(20) R := {(x, y) ∈ R2 | (x− 1)2 + y2 ≤ 1}.

Solution: Note that the interior of R is given by

(21) R◦ = {(x, y) ∈ R2 | (x− 1)2 + y2 < 1}

and the boundary of R is given by

(22) ∂R = {(x, y) ∈ R2 | (x− 1)2 + y2 = 1}.

We will first find all critical points in the interior of R. We note that

(23)
∂f

∂x
= 4x− 4 and

∂f

∂y
= 6y, so

Page 5
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(24)
∂f
∂x(x, y) = 0
∂f
∂y (x, y) = 0

⇔
4x− 4 = 0

6y = 0
⇔ (x, y) = (1, 0).

We see that (1, 0) is the only critical point of f in all of R2. Since (1, 0) ∈ R,
we have to take this critical point into consideration when searching for our
absolute minimum and maximum values. Now that we have addressed the
interior of R, we will proceed to address the boundary of R. We note that ∂R
can be parameterized by ~r(t), where

(25) ~r(t) = (1 + cos(t), sin(t)), 0 ≤ t ≤ 2π,

so on ∂R we have

(26) f (x, y) = f (~r(t)) = f (1 + cos(t), sin(t))

= 2(1 + cos(t)− 1)2 + 3 sin2(t) = 2 cos2(t) + 3 sin2(t) = 2 + sin2(t).

We may now use the (single variable) first derivative test to optimize f (~r(t)) =
2+sin2(t) on the interval [0, 2π], but we may also directly notice that the maxi-
mum is attained for t ∈ {π2 ,

3π
2 } which corresponds to (x, y) ∈ {(1, 1), (1,−1)}

and the minimum is attained for t ∈ {0, π, 2π} which corresponds to (x, y) ∈
{(0, 0), (2, 0)}. We now evaluate f at all of the critical points that we have
found so far to determine the absolute minimum and maximum values. Noting
that

(x,y) f(x,y)

(1,0) 0

(1,1) 3

(1,-1) 3

(0,0) 2

(2,0) 2

so f (x, y) attains a minimum value of 0 at (1, 0), and f (x, y) attains a maximum
value of 3 at any of {(1, 1), (1,−1)}.

Page 6
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Remark: In this problem, one may also try to address the boundary of R by
noting that (x − 1)2 = 1 − y2 on the boundary, so f (x, y) = 2 + y2 on the
boundary.

Page 7
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Problem 1.9.16: Use the method of Lagrange multipliers to find the absolute
maximum and minimum of the function

(27) f (x, y, z) = xyz

subject to the constraint

(28) x2 + 2y2 + 4z2 = 9.

Solution: We see that

(29) x2 + 2y2 + 4z2 = 9⇔ x2 + 2y2 + 4z2 − 9 = 0,

so we may take our constraint function to be g(x, y, z) = x2 + 2y2 + 4z2 − 9.
We see that

(30) ~∇f (x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉 = 〈yz, xz, xy〉, and

(31) ~∇g(x, y, z) = 〈gx(x, y, z), gy(x, y, z), gz(x, y, z) = 〈2x, 4y, 8z〉.

We now want to find all (x, y, z, λ) (although we don’t really care about the
value of λ) such that

(32)
g(x, y, z) = 0

~∇f (x, y, z) = λ~∇g(x, y, z)
⇔ x2 + 2y2 + 4z2 − 9 = 0
〈yz, xz, xy〉 = λ〈2x, 4y, 8z〉

(33)

x2 + 2y2 + 4z2 − 9 = 0
yz = 2λx
xz = 4λy
xy = 8λz

By cross-multiplying the second and third equations in (33) we see that

(34) 4λy2z = 2λx2z → 0 = 4λy2z − 2λx2z = 2λz(2y2 − x2),
Page 8
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so by the zero product property we see that either λ = 0, z = 0, or 2y2−x2 = 0.
We will handle each case separately.

Case 1 (λ = 0): By plugging λ = 0 back into (33) we see that

(35)

x2 + 2y2 + 4z2 − 9 = 0
yz = 0
xz = 0
xy = 0

.

Using the zero product property once again on the second, third, and fourth
equations of (35), we see that 2 of x, y, and z must be 0. In conjunction with
the first equation of (33) (the constraint equation) we see that (x, y, z, λ) ∈
{(0, 0,±3

2, 0), (0,± 3√
2
, 0, 0), (±3, 0, 0, 0)} are the solutions that we obtain from

this case.

Case 2 (z = 0): By plugging z = 0 back into (33) we see that

(36)

x2 + 2y2 − 9 = 0
0 = 2λx
0 = 4λy
xy = 0

.

Since we are done with case 1, we may also assume that λ 6= 0. It now follows
from the second and third equations in (36) that x = y = 0, but this contradicts
the first equation in (36), so we obtain no additional solutions in this case.

Case 3 (2y2 − x2 = 0): In this case we see that x2 = 2y2 so x = ±
√

2y.
Plugging x =

√
2y back into (33) gives us

(37)

2y2 + 2y2 + 4z2 − 9 = 0

yz = 2
√

2λy√
2yz = 4λy√
2y2 = 8λz

.

By cross-multiplying the third and fourth equations in (37) we see that
Page 9
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(38) 8
√

2λyz2 = 4
√

2λy3 → 0 = 8
√

2λyz2 − 4
√

2λy3 = 4
√

2λy(2z2 − y2).

Since we are no longer in case 1, we may assume that λ 6= 0, so either y = 0
or 2z2 − y2 = 0. If y = 0, then x =

√
2y = 0, and we reobtain the solution

(x, y, z) = (0, 0, 3
2). If 2z2 − y2 = 0, then y2 = 2z2. Plugging this back into

the first equation of (37) yields

(39) 12z2 = 9→ z = ±
√

3

2
,

so we obtain the solutions

(40) (x, y, z) ∈ {(
√

3,

√
3√
2
,

√
3

2
), (−
√

3,−
√

3√
2
,

√
3

2
),

(−
√

3,−
√

3√
2
,−
√

3

2
), (
√

3,

√
3√
2
,−
√

3

2
)}.

If x = −
√

2y then a similar calculation yields the additional solutions

(41) (x, y, z) ∈ {(−
√

3,

√
3√
2
,

√
3

2
), (
√

3,−
√

3√
2
,

√
3

2
),

(
√

3,−
√

3√
2
,−
√

3

2
), (−
√

3,

√
3√
2
,−
√

3

2
)}.

Now that we have found all solutions to the system of equations in (33), we see
that

Page 10



Sohail Farhangi Recitation Notes for 12/1/2020

(x,y,z) f(x,y,z)

(0,0,3
2) 0

(0, 3√
2
,0) 0

(3,0,0) 0

(0,0,−3
2) 0

(0,− 3√
2
,0) 0

(-3,0,0) 0

(
√

3,
√

3√
2
,
√

3
2 ) 3

√
3

2
√

2

(
√

3,
√

3√
2
,−
√

3
2 ) −3

√
3

2
√

2

(
√

3,−
√

3√
2
,
√

3
2 ) −3

√
3

2
√

2

(
√

3,−
√

3√
2
,−
√

3
2 ) 3

√
3

2
√

2

(−
√

3,
√

3√
2
,
√

3
2 ) −3

√
3

2
√

2

(−
√

3,
√

3√
2
,−
√

3
2 ) 3

√
3

2
√

2

(−
√

3,−
√

3√
2
,
√

3
2 ) 3

√
3

2
√

2

(−
√

3,−
√

3√
2
,−
√

3
2 ) −3

√
3

2
√

2

In conclusion, we see that the minimum value of f (x, y, z) subject to g(x, y, z) =

0 is −3
√

3
2
√

2
and the maximum value of f (x, y, z) subject to g(x, y, z) = 0 is 3

√
3

2
√

2
.
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Problem 2.2.91: Let R be the region that is bounded by both branches of
y = 1

x, the line y = x + 3
2, and the line y = x− 3

2.

(a) Find the area of R.
(b) Evaluate

(42)

∫∫
R

xydA.

Solution to (a): We first sketch a picture of the region R.

We now solve for the intersection points of the curves y = 1
x and y = x + 3

2 to
see that

(43)
y = 1

x
y = x + 3

2

→ 1

x
= x +

3

2
→ x2 +

3

2
x− 1 = 0

(44) → x = −2,
1

2
→ (x, y) = (−2,−1

2
), (

1

2
, 2).

Similarly, we solve for the intersection points of the curves y = 1
x and y = x− 3

2
to see that

(45)
y = 1

x
y = x− 3

2

→ 1

x
= x− 3

2
→ x2 − 3

2
x− 1 = 0

Page 12
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(46) → x = −1

2
, 2→ (x, y) = (−1

2
,−2), (2,

1

2
).

We now see that the area of R is

(47)

∫∫
R

1dA =

∫∫
R

1dydx

(48) =

∫ −1
2

−2

∫ x+3
2

1
x

1dydx +

∫ 1
2

−1
2

∫ x+3
2

x−3
2

1dydx +

∫ 2

1
2

∫ 1
x

x−3
2

1dydx

(49) =

∫ −1
2

−2

(
y
∣∣∣x+3

2

y= 1
x

)
dx +

∫ 1
2

−1
2

(
y
∣∣∣x+3

2

y=x−3
2

)
dx +

∫ 2

1
2

(
y
∣∣∣ 1x
y=x−3

2

)
dx

(50) =

∫ −1
2

−2

(
x +

3

2
− 1

x

)
dx +

∫ 1
2

−1
2

3dx +

∫ 2

1
2

(
1

x
− x +

3

2

)
dx

(51)

(
1

2
x2 +

3

2
x− ln |x|

) ∣∣∣−1
2

−2
+ 3x

∣∣∣12
−1

2

+

(
ln |x| − 1

2
x2 +

3

2
x

) ∣∣∣2
1
2

(52) = (1 + 2 ln(2)− 5

8
) + 3 + (1 + 2 ln(2)− 5

8
) =

15

4
+ 4 ln(2) .

Solution to (b): Using our diagram from part (a) we see that

(53)

∫∫
R

xydA =

∫∫
R

xydydx

(54) =

∫ −1
2

−2

∫ x+3
2

1
x

xydydx +

∫ 1
2

−1
2

∫ x+3
2

x−3
2

xydydx +

∫ 2

1
2

∫ 1
x

x−3
2

xydydx

(55) =

∫ −1
2

−2

(
1

2
xy2
∣∣∣x+3

2

y= 1
x

)
dx +

∫ 1
2

−1
2

(
1

2
xy2
∣∣∣x+3

2

y=x−3
2

)
dx

+

∫ 2

1
2

(
1

2
xy2
∣∣∣ 1x
y=x−3

2

)
dx

Page 13
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(56) =

∫ −1
2

−2

(
1

2
x(x +

3

2
)2 − 1

2
x(

1

x
)2

)
dx

+

∫ 1
2

−1
2

(
1

2
x(x +

3

2
)2 − 1

2
x(x− 3

2
)2

)
dx +

∫ 2

1
2

(
1

2
x(

1

x
)2 − 1

2
x(x− 3

2
)2

)
dx

(57) =
1

2

∫ −1
2

−2

(
x3 + 3x2 +

9

4
x− 1

x

)
dx +

∫ 1
2

−1
2

3x2dx

+
1

2

∫ 2

1
2

(
1

x
− x3 + 3x2 − 9

4
x

)
dx

(58) =
1

2

(
1

4
x4 + x3 +

9

8
x2 − ln |x|

) ∣∣∣−1
2

−2
+ x3

∣∣∣12
−1

2

+
1

2

(
ln |x| − 1

4
x4 + x3 − 9

8
x2

) ∣∣∣2
1
2

(59) = 2 ln(2)− 5

64
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Problem 2.2.92: Let R be the region inside of the ellipse x2

18 + y2

36 = 1 for
which we also have y ≤ 4

3x.

(a) Find the area of R.
(b) Evaluate

(60)

∫∫
R

xydA.

Solution to (a): We first sketch a picture of the region R.

We now solve for the intersection points of the curves x2

18 + y2

36 = 1 and y = 4
3x.

We see that

(61)
x2

18 + y2

36 = 1
y = 4

3x
→ x2

18
+

16
9 x

2

36
= 1

(62) → x = ±9
√

2√
17
→ (x, y) = (−9

√
2√

17
,−12

√
2√

17
), (

9
√

2√
17
,

12
√

2√
17

).

We now see that the area of R is

(63)

∫∫
R

1dA =

∫∫
R

1dydx

Page 15
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(64) =

∫ 9
√
2√
17

−9
√
2√

17

∫ 4
3x

−
√

36−2x2
1dydx +

∫ 3
√

2

9
√
2√
17

∫ √36−2x2

−
√

36−2x2
1dydx

(65) =

∫ 9
√
2√
17

−9
√
2√

17

y
∣∣∣43x
y=−

√
36−2x2

dx +

∫ 3
√

2

9
√
2√
17

y
∣∣∣√36−2x2

y=−
√

36−2x2
dx

(66) =

∫ 9
√
2√
17

−9
√
2√

17

(
4

3
x +

√
36− 2x2

)
dx +

∫ 3
√

2

9
√
2√
17

2
√

36− 2x2dx

Since

(67)

∫ √
1− x2 =

1

2
x
√

1− x2 +
1

2
sin−1(x), (substitute x = sin(θ))

we see that

(68)

∫ √
36− 2x2dx =

∫
6

√
1− (

x

3
√

2
)2dx

y= x
3
√
2

=

∫
18
√

2
√

1− y2dy

(69) = 9
√

2y
√

1− y2 + 9
√

2 sin−1(y) =
1

2
x
√

36− 2x2 + 9
√

2 sin−1(
x

3
√

2
).

It follows that

(70) =

∫ 9
√
2√
17

−9
√
2√

17

(
4

3
x +

√
36− 2x2

)
dx +

∫ 3
√

2

9
√
2√
17

2
√

36− 2x2dx

(71) =

(
2

3
x2 +

1

2
x
√

36− 2x2 + 9
√

2 sin−1(
x

3
√

2
)

) ∣∣∣9√2√17
−9
√
2√
17

+

(
x
√

36− 2x2 + 18
√

2 sin−1(
x

3
√

2
)

) ∣∣∣3√2

9
√
2√

17
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(72) 2

(
1

2
x
√

36− 2x2 + 9
√

2 sin−1(
x

3
√

2
)

) ∣∣∣
9
√
2√

17

+ x
√

36− 2x2
∣∣∣3√2

9
√
2√
17

+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣3√2

9
√
2√

17

(73) x
√

36− 2x2
∣∣∣
9
√
2√
17

+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣
9
√
2√
17

+ x
√

36− 2x2
∣∣∣
3
√

2

− x
√

36− 2x2
∣∣∣
9
√
2√
17

+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣
3
√

2
− 18
√

2 sin−1(
x

3
√

2
)
∣∣∣
9
√
2√
17

(74) = x
√

36− 2x2
∣∣∣
3
√

2
+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣
3
√

2

(75) = 0 + 18
√

2 sin−1(1) = 9
√

2π .

Remark: For the ellipse y2

36 + x2

18 = 1 we see that the major radius is 6 and

the minor radius is 3
√

2, so the area of the ellipse is 6 · 3
√

2 · π = 18
√

2π. We
now see that our region R has half the area of the ellipse containing it. In fact,
we can prove this directly with symmetry and no calculus at all! We just have
to remember that when we reflect the point (x, y) across the origin we get the
point (−x,−y), and that reflection across the origin (or reflection across any
other point) preserves area.

Solution to (b): Using our diagram from part (a) we see that

(76)

∫∫
R

xydA =

∫∫
R

xydydx

(77) =

∫ 9
√
2√
17

−9
√
2√
17

∫ 4
3x

−
√

36−2x2
xydydx +

∫ 3
√

2

9
√
2√
17

∫ √36−2x2

−
√

36−2x2
xydydx

(78) =

∫ 9
√
2√
17

−9
√
2√

17

(
1

2
xy2

) ∣∣∣43x
y=−

√
36−2x2

dx +

∫ 3
√

2

9
√
2√
17

(
1

2
xy2

) ∣∣∣√36−2x2

y=−
√

36−2x2
dx
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(79) =

∫ 9
√
2√
17

−9
√
2√
17

(
1

2
x(

4

3
x)2 − 1

2
x(−

√
36− 2x2)2

)
dx

+

∫ 3
√

2

9
√
2√
17

(
1

2
x(
√

36− 2x2)2 − 1

2
x(−

√
36− 2x2)2

)
dx

(80) =

∫ 9
√
2√
17

−9
√
2√
17

(
16

9
x3 − 18x + x3

)
dx = 0 .

Remark: We see that both integrals appearing in equation (77) are 0. It turns
out that this can also be shown directly with symmetry instead of evaluating
the integrals! Firstly, we recall that (x, y) turns into (−x,−y) when reflected
across the origin and that reflection across the origin preserves area. We also
note that xy = (−x)(−y), so we can rewrite our double integral as a double
integral that takes place over the right (or left) half of the ellipse instead of the
region R. We then notice that x(−y) = −(xy), so the integrals over the top
right and lower right quarters of the ellipse cancel each other out to yield 0!
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Problem 2.2.97: Find the volume of the solid bounded by the planes x =
0, x = 5, z = y − 1, z = −2y − 1, z = 0, and z = 2.

Solution: Let us first examine our solid from a few different angles.

Page 19



Sohail Farhangi Recitation Notes for 12/1/2020

Due to the third and fourth pictures, we will choose to view the ’base’ of our
solid in the xz-plane so that it is simply the rectangle R = {(x, z) ∈ R2 | 0 ≤
x ≤ 5, 0 ≤ z ≤ 2}. We then see that the ’heights’ of our solid are along the
y-axis. Solving for y in terms of x and z we see that y = z + 1 and y = −z+1

2
are the surfaces bounding the ’heights’ of our solid. By examining the values
of y for some (x, z) ∈ R (such as (0, 0)), we see that y = z + 1 is the upper
bound for our heights and y = z+1

2 is the lower bound for our heights. We now
see that the volume V of our solid is given by

(81) V =

∫∫
R

(ytop − ybottom) dA =

∫∫
R

(
z + 1− (−z + 1

2
)

)
dA
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(82) =

∫ 5

0

∫ 2

0

3
z + 1

2
dzdx =

∫ 5

0

(
3

4
z2 +

3

2
z

) ∣∣∣2
z=0
dx =

∫ 5

0

6dx = 30 .
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Problem 2.3.67: The limaçon r = b + a cos(θ) has an inner loop if b < a
and no inner loop if b > a.

Figure 2. From page 139 of the course textbook.

(a) Find the area of the region bounded by the limaçon r = 2 + cos(θ).
(b) Find the area of the region outside the inner loop and inside the outer loop

of the limaçon r = 1 + 2 cos(θ).
(c) Find the area of the region inside the inner loop of the limaçon r =

1 + 2 cos(θ).

Solution to (a): Letting R denote the interior of the limaçon r = 2 + cos(θ),
we see that

(83) Area(R) =

∫∫
R

1dA =

∫∫
R

rdrdθ =

∫ 2π

0

∫ 2+cos(θ)

0

rdrdθ

(84) =

∫ 2π

0

1

2
r2
∣∣∣2+cos(θ)

r=0
dθ =

∫ 2π

0

1

2
(2 + cos(θ))2dθ

(85) =

∫ 2π

0

(2+2 cos(θ)+
1

2
cos2(θ))dθ =

∫ 2π

0

(2+2 cos(θ)+
1

4
cos(2θ)+

1

4
)dθ
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(86) (
9

4
θ + 2 sin(θ) +

1

8
sin(2θ))

∣∣∣2π
0

=
9

2
π .

Solution to (c): Let R denote the region inside of the inner loop of the
limaçon r = 1 + 2 cos(θ). We see that the inner loop of the limaçon begins
and ends when r = 0, which occurs when cos(θ) = −1

2, which occurs when
θ = 2π

3 ,
4π
3 . It follows that

(87) Area(R) =

∫∫
R

1dA =

∫∫
R

rdrdθ =

∫ 4π
3

2π
3

∫ 1+2 cos(θ)

0

rdrdθ

(88) =

∫ 4π
3

2π
3

1

2
r2
∣∣∣1+2 cos(θ)

r=0
dθ =

∫ 4π
3

2π
3

1

2
(1 + 2 cos(θ))2dθ

(89) =

∫ 4π
3

2π
3

(
1

2
+ 2 cos(θ) + 2 cos2(θ))dθ =

∫ 4π
3

2π
3

(
1

2
+ 2 cos(θ) + cos(2θ) + 1)dθ

(90) = (
3

2
θ + 2 sin(θ) +

1

2
sin(2θ))

∣∣∣4π3
2π
3

= π − 3

2

√
3 .

Solution to (b): Letting R′ denote the region inside of the outer loop and
outside of the inner loop of the limaçon r = 1 + 2 cos(θ), we see that

(91) Area(R′) + 2Area(R) =

∫ 2π

0

∫ 1+2 cos(θ)

0

rdrdθ

(92) = (
3

2
θ + 2 sin(θ) +

1

2
sin(2θ))

∣∣∣2π
0

= 3π.

Using our answer from part (c), we see that

(93) Area(R′) = 3π − 2Area(R) = 3π − 2(π − 3

2

√
3) = π + 3

√
3 .
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Problem 2.4.24: Find the volume of the solid S in the first octant that is
bounded by the cone z = 1−

√
x2 + y2 and the plane x + y + z = 1.

Figure 3. From page 150 of the course textbook

Figure 4. The cross section of S at a particular height z.

Solution: We see that

(94) Volume(S) =

∫∫∫
S

1dV =

∫ 1

0

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdydz

(95) =

∫ 1

0

∫ 1−z

0

x
∣∣∣√(1−z)2−y2

1−z−y
dydz
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(96) =

∫ 1

0

∫ 1−z

0

(√
(1− z)2 − y2 − (1− z − y)

)
dydz.

We see that evaluating (the difficult part of) the inner integral in (96) is tanta-
mount to evaluating

(97)

∫ √
1− y2dy,

which is certainly possible, but it is difficult and computationally intensive,
so we will evaluate the volume by an alternative method. If we more closely
examine the integrals in (94), then we see that

(98)

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdy

calculates the area of the cross section Cz shown in figure 4. Using elementary
Euclidena geometry, we see that

(99)

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdy = Area(Cz)

=
1

4
π(1− z)2 − 1

2
(1− z)2 =

π − 2

4
(1− z)2.

It follows that

(100)

∫ 1

0

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdydz =

∫ 1

0

π − 2

4
(1− z)2dz

= −π − 2

12
(1− z)3

∣∣∣1
0

=
π − 2

12
.
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Problem 2.4.50: Evaluate

(101)

∫ 4

1

∫ 4z

z

∫ π2

0

sin(
√
yz)

x
3
2

dydxdz.

Hint: Try a different order of integration.

Solution: We see that trying to evaluate the inner integral in the current
order of integration is tantamount to evaluating

(102)

∫
c1 sin(c2

√
y)dy,

which is very difficult, so we decide to change the order of integration in hopes
that the inner integral becomes easier to evaluate. We see that integrating with
respect to z in the inner integral is not any easier since z and y are symmetric
in the integrand, so we decide to integrate with respect to x in the inner integral
in our new order of integration. Since z and y are symmetric in the integrand,
the difficulty of the integrations doesn’t seem to change if we use dxdydz or
dxdzdy, so we will use the order dxdydz in order to reduce our workload by
only changing the order of dx and dy instead of changing the order of dx, dy,
and dz. We see that the bounds that we have in (101) tell us that

(103)
1 ≤ z ≤ 4
z ≤ x ≤ 4z
0 ≤ y ≤ π2

→
1 ≤ z ≤ 4
0 ≤ y ≤ π2

z ≤ x ≤ 4z
.

Thankfully, we didn’t have to do any work to interchange the order of dx and
dy since the bounds for y in the first order of integration were independent of
x. We now see that

(104)

∫ 4

1

∫ 4z

z

∫ π2

0

sin(
√
yz)

x
3
2

dydxdz =

∫ 4

1

∫ π2

0

∫ 4z

z

sin(
√
yz)x−

3
2dxdydz

(105) =

∫ 4

1

∫ π2

0

−2 sin(
√
yz)x−

1
2

∣∣∣4z
x=z

dydz
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(106) =

∫ 4

1

∫ π2

0

(
−2 sin(

√
yz)(4z)−

1
2 + 2 sin(

√
yz)z−

1
2

)
dydz

(107)

=

∫ 4

1

∫ π2

0

(
−

sin(
√
yz)

z
1
2

+ 2
sin(
√
yz)

z
1
2

)
dydz =

∫ 4

1

∫ π2

0

sin(
√
yz)

z
1
2

dydz.

We see that evaluating the inner integral at the end of (107) is again tanta-
mount to evaluating the integral in (102), so we decide to change the order of
integration once again. Note that this is equivalent to having decided to use
the order dxdzdy from the beginning, but we were not able to see that dxdzdy
was the best order of integration until now. Nonetheless, our initial change in
the order of integration did allow us to make progress despite not being the
best possible order of integration.

(108)

∫ 4

1

∫ π2

0

sin(
√
yz)

z
1
2

dydz =

∫ π2

0

∫ 4

1

sin(
√
yz)

z
1
2

dzdy.

Recalling that y does not change when evaluating the inner integral with respect
to z, we treat y as a constant (relative to z) to perform the u-substituion

(109) u =
√
yz, du =

√
y

2
√
z
dz, dz =

2
√
z

√
y
du.

We now see that

(110)

∫ π2

0

∫ 4

1

sin(
√
yz)

z
1
2

dzdy =

∫ π2

0

∫ 4

z=1

2 sin(u)
√
y

dudy

(111) =

∫ π2

0

−2 cos(u)
√
y

∣∣∣4
z=1
dy =

∫ π2

0

−2 cos(
√
yz)

√
y

∣∣∣4
z=1
dy

(112) =

∫ π2

0

(
−2 cos(

√
4y)

√
y

+
2 cos(

√
y)

√
y

)
dy
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(113)
u=
√
y

=

∫ π2

y=0

(−4 cos(2u) + 4 cos(u)) du = (−2 sin(2u) + 4 sin(u))
∣∣∣π2
y=0

(114) = (−2 sin(2
√
y) + 4 sin(

√
y))
∣∣∣π2
y=0

= 0 .
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Problem 2.5.49: Find the volume of the solid region S outside the cone
ϕ = π

4 and inside the sphere ρ = 4 cos(ϕ).

Figure 5. From page 167 of the textbook.

First Solution: We will proceed by using spherical coordinates. Due to the
symmetry of our solid with respect to θ we begin by taking a cross section with
the xz-plane. Since we are working in spherical coordinates, the cross section
will be in coordinates similar to polar coordinates. Remember that the angle
ϕ is measured from the z-axis and satisfies 0 ≤ ϕ ≤ π, not 0 ≤ ϕ ≤ 2π. Also
remember that this cross section is showing you the portions of the solid from
θ = 0 and θ = π.

Figure 6. The xz-plane cross section in spherical coordinates.
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We now see that for any θ ∈ [0, 2π) we have that π
4 ≤ ϕ ≤ π

2 . Recalling that
the blue circle is defined by ρ = 4 cos(ϕ), we see that once ϕ is also chosen we
have that 0 ≤ ρ ≤ 4 cos(ϕ). We now see that the volume of the solid is given
by

(115) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ π
2

π
4

∫ 4 cos(ϕ)

0

ρ2 sin(ϕ)dρdϕdθ

(116) =

∫ 2π

0

∫ π
2

π
4

1

3
ρ3 sin(ϕ)

∣∣∣4 cos(ϕ)

ρ=0
dϕdθ =

∫ 2π

0

∫ π
2

π
4

64

3
cos3(ϕ)︸ ︷︷ ︸

u3

sin(ϕ)dϕ︸ ︷︷ ︸
−du

dθ

(117) = −64

3

∫ 2π

0

∫ π
2

ϕ=π
4

u3dudθ = −64

3

∫ 2π

0

1

4
u4
∣∣∣π2
ϕ=π

4

dθ

(118) = −64

3

∫ 2π

0

1

4
cos4(ϕ)

∣∣∣π2
π
4

dθ = −64

3

∫ 2π

0

− 1

16
dθ = −64

3
·2π · −1

16
=

8π

3
.

Second Solution: We will proceed by using cylindrical coordinates. Due
to the symmetry of our solid with respect to θ we begin by taking a cross
section with the xz-plane. Since we are working in spherical coordinates, the
cross section will be in coordinates similar to Cartesian coordinates with (r, z)
taking the place of (x, y). Remember that this cross section is also showing you
the portions of the solid from θ = 0 and θ = π.

Figure 7. The xz-plane cross section in cylindrical coordinates.
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We now see that for any 0 ≤ θ < 2π we have that 0 ≤ z ≤ 2. Noting that we
have r =

√
4− (z − 2)2 =

√
4z − z2 on the blue circle, we see that once z is

chosen we have z ≤ r ≤
√

4z − z2. We now see that the volume of the solid is
given by

(119) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ 2

0

∫ √4z−z2

z

rdrdzdθ

(120) =

∫ 2π

0

∫ 2

0

1

2
r2
∣∣∣√4z−z2

z
dzdθ =

∫ 2π

0

∫ 2

0

(2z − z2)dzdθ

(121)

∫ 2π

0

(z2 − 1

3
z3)
∣∣∣2
0
dθ =

∫ 2π

0

4

3
dθ =

8π

3
.
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Problem 2.5.50: Find the volume of the solid region S that is bounded by
the cylinders r = 1 and r = 2, and the cones ϕ = π

6 and ϕ = π
3 .

Figure 8. From page 167 of the textbook.

First Solution: We will proceed by using spherical coordinates. Due to the
symmetry of our solid with respect to θ we begin by taking a cross section with
the xz-plane. Since we are working in spherical coordinates, the cross section
will be in coordinates similar to polar coordinates. This time we will focus
on the right of the z-axis (y-axis) in order to only see the part of the solid
corresponding to θ = 0.

Figure 9. The xz-plane cross section in spherical coordinates.
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We see that for any 0 ≤ θ < 2π we have π
6 ≤ ϕ ≤ π

3 . Noting that r = ρ sin(ϕ),
we see that when r = 1 we have ρ = csc(ϕ) and when r = 2 we have ρ =
2 csc(ϕ). It follows that once ϕ is also chosen we have csc(ϕ) ≤ ρ ≤ 2 csc(ϕ).
We now see that the volume of the solid is given by

(122) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ π
3

π
6

∫ 2 csc(ϕ)

csc(ϕ)

ρ2 sin(ϕ)dρdϕdθ

(123) =

∫ 2π

0

∫ π
3

π
6

1

3
ρ3 sin(ϕ)

∣∣∣2 csc(ϕ)

ρ=csc(ϕ)
dϕdθ =

∫ 2π

0

∫ π
3

π
6

7

3
csc2(ϕ)dϕdθ

(124) =

∫ 2π

0

−7

3
cot(ϕ)

∣∣∣π3
π
6

dθ =

∫ 2π

0

14

3
√

3
dθ =

28π

3
√

3
.

Second Solution: We will proceed by using cylindrical coordinates. Due
to the symmetry of our solid with respect to θ we begin by taking a cross
section with the xz-plane. Since we are working in spherical coordinates, the
cross section will be in coordinates similar to Cartesian coordinates with (r, z)
taking the place of (x, y). This time we will focus on the right of the z-axis
(y-axis) in order to only see the part of the solid corresponding to θ = 0.

Figure 10. The xz-plane cross section in cylindrical coordinates.
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We note that for any 0 ≤ θ < 2π we have 1 ≤ r ≤ 2. Once r is also chosen,
we see that 1√

3
r ≤ z ≤ r

√
3. We now see that the volume of the solid is given

by

(125) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ 2

1

∫ r
√

3

1√
3
r

rdzdrdθ

(126) =

∫ 2π

0

∫ 2

1

rz
∣∣∣r√3

1√
3
r
drdθ =

∫ 2π

0

∫ 2

1

2√
3
r2drdθ =

∫ 2π

0

2

3
√

3
r3
∣∣∣2
1
dθ

(127) =

∫ 2π

0

14

3
√

3
dθ =

28π

3
√

3
.
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Review Problem 1.92: What point on the plane x + y + 4z = 8 is closest
to the origin? Give an argument showing that you have found an absolute
minimum of the distance function.

Solution: Note that for any (x, y, z) on the plane x + y + 4z = 8 we have

(128) z = 2− 1

4
x− 1

4
y,

from which we see that

(129) d((x, y, z), (0, 0, 0)) =
√

(x− 0)2 + (y − 0)2 + (z − 0)2

(130) =

√
x2 + y2 + (2− 1

4
x− 1

4
y)2 =

√
4− x− y +

1

8
xy +

17

16
x2 +

17

16
y2.

We recall that if f (x, y) is any nonnegative function, then f (x, y) and f 2(x, y)
have their (local and global) minimums and maximums occur at the same values
of (x, y). It follows that we want to optimize the function

(131) f (x, y) = 4− x− y +
1

8
xy +

17

16
x2 +

17

16
y2.

Since any global minimum of f (x, y) is also a local minimum, we see that the
global minimum of f (if it exists) is at a critical point. We now begin finding
the critical points of f . We see that

(132)
0 = fx(x, y) = 17

8 x + 1
8y − 1

0 = fy(x, y) = 17
8 y + 1

8x− 1
→ 0 = (

17

8
x +

1

8
y − 1)− (

17

8
y +

1

8
x− 1)

(133) = 2x− 2y → x = y → x = y =
4

9
.

We see that (4
9,

4
9) is the only critical point. We will now use the second deriv-

ative test to verify that (4
9,

4
9) is a local minimum. We see that
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(134)

fxx(x, y) = 17
8

fyy(x, y) = 17
8

fxy(x, y) = 1
8

→ D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2

(135) =
17

8
· 17

8
− (

1

8
)2 =

9

2
→ D(

4

9
,

4

9
) =

9

2
> 0.

Since we also see that fxx(
4
9,

4
9) = 17

8 > 0, the second derivative test tells us that
(4

9,
4
9) is indeed a local minimum of f (x, y). It remains to show that f (x, y)

attains its global minimum at (4
9,

4
9). Firstly, we note that f (4

9,
4
9) = 4

√
2

3 . Since
4
√

2
3 < 5 (I picked 5 randomly, I just needed some larger number), let us consider

the region R of (x, y) for which (x, y, 2− 1

4
x− 1

4
y︸ ︷︷ ︸

z

) has a distance of at most

5 from the origin. This is the same as R = {(x, y) | f (x, y) ≤ 5}.
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Since R is a closed and bounded region, and f (x, y) is a continuous function
function, we know that g attains an absolute minimum on R. The point (4

9,
4
9)

is inside of R, so the minimum of g is not attained on the boundary of R (as
that is where the distance to the origin is exactly 5). Since the minimum of g
on R is attained on the interior, we see that it must be obtained at a critical
point of f (x, y), so it is attained at (4

9,
4
9). For any point (x, y) outside of R,

we have f (x, y) > 5 (by the very definition of R), so the global minimum of

f (x, y) is 4
√

2
3 and is attained at (4

9,
4
9). It follows that the point on the plane

x + y + 2z = 8 that is closest to the origin is (
4

9
,

4

9
,

16

9
) .
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Review Problem 1.98: Use Lagrange multipliers to find the dimensions of
the right circular cylinder of minimum surface area (including the circular ends)
with a volume of 32π in3.

Solution: We recall that a cylinder of radius r and height h has a volume of
V = πr2h and a surface area (including the 2 circular ends) of S = 2πr2+2πrh.
It follows that we want to optimize the function f (r, h) = 2πr2 + 2πrh subject
to the constraint 0 = g(r, h) = πr2h− 32π. Since

(136) ∇f (r, h) = 〈4πr + 2πh, 2πr〉 and ∇g(r, h) = 〈2πrh, πr2〉, we obtain

(137)
4πr + 2πh = 2πλrh

2πr = πλr2

πr2h = 32π

r 6=0→
2r + h = λrh

2 = λr
r2h = 32

→
2r + h = 2h

2 = λr
r2h = 32

(138) →
2r = h
2 = λr
r2h = 32

→
2r = h
2 = λr

2r3 = 32
→ r =

3
√

16 = 2
3
√

2→ h = 4
3
√

2.

Since the cylinder does not have a maximum surface area when subjected to
the constraint V = 32π, we see that the critical point that we found has to
correspond to a local minimum. The extreme/boundary cases occur when either
r →∞ or h→∞, in which case we also have S →∞. It follows that f (r, h)

attains a minimum value of 24π 3
√

4 when (r, h) = (2
3
√

2, 4
3
√

2) .
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Review Problem 2.26: Rewrite the the triple integral

(139)

∫ 2

0

∫ 9−x2

0

∫ x

0

f (x, y, z)dydzdx

using the order dzdxdy.

First Solution: We envision the 3-dimensional solid that is described by
the bounds of the triple integral in the currect order of dydzdx, and then we
traverse the solid using the new order of dzdxdy.
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(140)

∫ 2

0

∫ 2

y

∫ 9−x2

0

f (x, y, z)dzdxdy .

Second Solution: In order to avoid drawing and thinking about 3-dimensional
regions, we will perform 2 separate changes of order. We will first change the
order from dydzdx to dzdydx, and then we will change the order from dzdydx
to dzdxdy.
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(141)

∫ 2

0

∫ 9−x2

0

∫ x

0

f (x, y, z)dydzdx =

∫ 2

0

∫ x

0

∫ 9−x2

0

f (x, y, z)dzdydx

(142)

∫ 2

0

∫ x

0

∫ 9−x2

0

f (x, y, z)dzdydx =

∫ 2

0

∫ 2

y

∫ 9−x2

0

f (x, y, z)dzdxdy .
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Review Problem 2.34: Find the volume of the solid S that is bounded by
the parabolic cylinders z = y2 + 1 and z = 2− x2.

Solution: S is a 3 dimensional solid that is defined as the region inbetween
2 surfaces. First, we find the intersection I of z = y2 + 1 and z = 2 − x2 to
satisfy y2 + 1 = 2− x2 or x2 + y2 = 1.
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It follows that the (x, y)-coordinates of I are the circle of radius 1 centered
at the origin. Note that the intersection I is not itself a circle since the z-
coordinate is not constant on the intersection. NThankfully, for the purposes of
calculating the volume of S, we only need to know the projection R of I onto
the xy-plane (along with the interior of the projection), which is the same as
knowing the the (x, y)-coordinates of I .

(143) Volume(S) =

∫∫
R

(ztop − zbottom)dA

(144) =

∫ 2π

0

∫ 1

0

(
(2− (r cos(θ))2)− ((r sin(θ))2 + 1)

)
rdrdθ
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(145) =

∫ 2π

0

∫ 1

0

(
1− r2 cos2(θ)− r2 sin2(θ)

)
rdrdθ

(146) =

∫ 1

0

∫ 2π

0

(
r − r3

)
dθdr =

∫ √3

0

(
rθ − r3θ

) ∣∣∣2π
θ=0
dr

(147) =

∫ 1

0

2π
(
r − r3

)
dr = 2π

(
1

2
r2 − 1

4
r4

) ∣∣∣1
0

=
π

2
.

Remark: We could have also calculated the volume by using a triple integral
in cylindrical coordinates as follows.

(148) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ √3

0

∫ 2−r2 cos2(θ)

r2 sin2(θ)+1

rdzdrdθ = π .
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Problem 3.2.31: Use a scalar line integral to find the length of the curve

(149) ~r(t) = 〈20 sin(
t

4
), 20 cos(

t

4
),
t

2
〉, for 0 ≤ t ≤ 2.

Solution: Firstly, we note that

(150) ~r ′(t) = 〈5 cos(
t

4
),−5 sin(

t

4
),

1

2
〉.

We now see that

(151)

Arclength(C) =

∫
C

1ds =

∫ 2

0

|~r ′(t)|dt =

∫ 2

0

|〈5 cos(
t

4
),−5 sin(

t

4
),

1

2
〉|dt

(152) =

∫ 2

0

√(
5 cos(

t

4
)

)2

+

(
−5 sin(

t

4
)

)2

+

(
1

2

)2

dt

(153) =

∫ 2

0

√
25 cos2(

t

4
) + 25 sin2(

t

4
) +

1

4
dt =

∫ 2

0

√
25

1

4
dt

(154) =

√
25

1

4
t
∣∣∣2
0

= 2

√
25

1

4
=
√

101 .
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Problem 3.2.46: Find the work required to move an object along the line
segment from (1, 1, 1) to (8, 4, 2) through the forcefield ~F given by

(155) ~F =
〈x, y, z〉

x2 + y2 + z2
.

Solution 1: Firstly, we recall that one method of parameterizing the line
segment that starts at ~p and ends at ~q is to use the parameterization

(156) ~r(t) = (1− t)~p + t~q = ~p + t(~q − ~p), 0 ≤ t ≤ 1.

It follows that

(157)
~r(t) = 〈1, 1, 1〉 + t (〈8, 4, 2〉 − 〈1, 1, 1〉) = 〈1 + 7t, 1 + 3t, 1 + t〉, 0 ≤ t ≤ 1,

is a parameterization of the line segment from (1, 1, 1) to (8, 4, 2). We now see
that

(158) Work =

∫
C

~F · d~r =

∫ 1

0

~F (~r(t)) · ~r ′(t)dt

(159) =

∫ 1

0

〈1 + 7t, 1 + 3t, 1 + t〉
(1 + 7t)2 + (1 + 3t)2 + (1 + t)2︸ ︷︷ ︸

~F (~r(t))

· 〈7, 3, 1〉dt︸ ︷︷ ︸
d~r

(160) =

∫ 1

0

(1 + 7t) · 7 + (1 + 3t) · 3 + (1 + t) · 1
1 + 14t + 49t2 + 1 + 6t + 9t2 + 1 + 2t + t2

dt

(161) =

∫ 1

0

11 + 59t

3 + 22t + 59t2
dt =

∫ 1

0

t + 11
59

t2 + 22
59t + 3

59

dt =

∫ 1

0

t + 11
59

(t + 11
59)2 + 56

3481

dt

(162) =
1

2
ln

(
(t +

11

59
)2 +

56

3481

) ∣∣∣1
0

=
1

2
ln(28) .
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Solution 2: We note that for ϕ = 1
2 ln(x2 + y2 + z2) we have ∇ϕ = ~F , so

the Fundamental Theorem for Line Integrals (section 3.3) allows us to simplify
the calculations from equations (158)-(162) as follows.

(163) Work =

∫
C

~F · d~r =

∫
C

∇ϕ · d~r = ϕ ((8, 4, 2))− ϕ ((1, 1, 1))

(164) =
1

2
ln(82 +42 +22)− 1

2
ln(12 +12 +12) =

1

2
ln(84)− 1

2
ln(3) =

1

2
ln(28) .
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Problem (not from the book): Determine whether the vector field ~F
given by

(165) ~F = 〈y − ex+y, x− ex+y + 1,
1

z
〉

is a conservative vector field. If ~F is conservative, then find a potential function
ϕ.

Solution: Letting

(166) m(x, y, z) = y − ex+y, n(x, y, z) = x− ex+y + 1, p(x, y, z) =
1

z
,

we see that

(167) ~F = 〈m,n, p〉, and

(168)
∂m

∂y
= 1− ex+y =

∂n

∂x
,

∂n

∂z
= 0 =

∂p

∂y
,

∂m

∂z
= 0 =

∂p

∂x
,

so ~F is a conservative vector field, so we will now find the potential function ϕ.
We recall that

(169) 〈m,n, p〉 = ~F = ∇ϕ = 〈ϕx, ϕy, ϕz〉.

We will now handle the 3 scalar differential equations that arise from (169) in
order to find ϕ (but only up to a constant).

(170) ϕx(x, y, z) = m(x, y, z) = y−ex+y → ϕ(x, y, z) = xy−ex+y+h(y, z).

(171) x− ex+y + 1 = n(x, y, z) = ϕy(x, y, z) = x− ex+y + hy(y, z)

→ hy(y, z) = 1→ h(y, z) = y + g(z)→ ϕ(x, y, z) = xy − ex+y + y + g(z).
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(172)
1

z
= p(x, y, z) = ϕz(x, y, z) = gz(z) = g′(z)→ g(z) = ln |z| + C

→ ϕ(x, y, z) = xy − ex+y + y + ln |z| + C .
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Problem (not from the book): Evaluate

(173)

∫
C

〈 4
√
x + 6 + ln(ln(ln(ee

e
+ 4 + x)))− 1, y3 + 2 + ey

2〉 · d~r,

where C is the curve that is shown in the picture below.

Figure 11

Solution: Letting

(174) m(x, y, z) = 4
√
x + 6 + ln(ln(ln(ee

e
+ 4 + x)))− 1, and

(175) n(x, y, z) = y3 + 2 + ey
2
, we see that

(176) ~F := 〈m,n〉, satisfies

(177)
∂m

∂y
= 0 =

∂n

∂x

so ~F is a conservative vector field. We also see that
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(178)

∫
C

〈 4
√
x + 6 + ln(ln(ln(ee

e
+ 4 + x)))− 1, y3 + 2 + ey

2〉 · d~r =

∫
C

~F · d~r.

Since ~F is conservative and C is a (simple piecewise smooth oriented) closed
curve, we see that

(179)

∫
C

~F · d~r = 0 .

Challenge for the brave: Letting C once again denote the curve in figure
11, evaluate

(180)

∫
C

〈y, 0〉 · d~r.
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Problem 4.2.51: Three people play a game in which there are always 2
winners and 1 loser. They have the understanding that the loser always gives
each winner an amount equal to what the winner already has. After 3 games,
each has lost once and each has $24. With how much money did each begin?

Solution: Let us assume that player 1 begins with $x, player 2 begins with $y,
and player 3 begins with $z. We may further assume without loss of generality
that player 1 loses round 1, player 2 loses round 2, and player 3 loses round 3.
We then obtain the following table.

Player 1 Player 2 Player 3

Money at the Start x y z

Money at the end of round 1 x-y-z 2y 2z

Money at the end of round 2 2x-2y-2z -x+3y-z 4z

Money at the end of round 3 4x-4y-4z -2x+6y-2z -x-y+7z

We now obtain and solve the following system of equations.

(181)
4x − 4y − 4z = 24
−2x + 6y − 2z = 24
−x − y + 7z = 24

→

 4 −4 −4 24
−2 6 −2 24
−1 −1 7 24



(182)

R1 + 4R3

R2 − 2R3→

 0 −8 24 120
0 8 −16 −24
−1 −1 7 24

 R1↔R3→

−1 −1 7 24
0 8 −16 −24
0 −8 24 120


(183)

−R1→

1 1 −7 −24
0 8 −16 −24
0 −8 24 120

 R3+R2→

1 1 −7 −24
0 8 −16 −24
0 0 8 96

 1
8R2

1
8R3→

1 1 −7 −24
0 1 −2 −3
0 0 1 12
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(184)
R1−R2→

1 0 −5 −21
0 1 −2 −3
0 0 1 12

 R1 + 5R3

R2 + 2R3→

1 0 0 39
0 1 0 21
0 0 1 12


(185) → (x, y, z) = (39, 21, 12) .
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For the following problems, determine all possiblities for the solution set (from
among infinitely many solutions, a unique solution, or no solution) of the system
of linear equations described. After determining the possibilities for the solution
set create concrete examples of systems corresponding to each possibility.

Problem 4.3.8: A homogeneous system of 4 equations in 5 unknowns.

Problem 4.3.10: A system of 4 equations in 3 unknowns.

Problem 4.3.14: A system of 3 equations in 4 unknowns that has x1 = −1,
x2 = 0, x3 = 2, x4 = −3 as a solution.

Problem 4.3.16: A homogeneous system of 3 equations in 3 unknowns.

Problem 4.3.18: A homogeneous system of 3 equations in 3 unknowns that
has solution x1 = 1, x2 = 3, x3 = −1.

4.3.Bonus: A system of 2 equations in 3 unknowns.

You are free to make use of the following facts.

(1) Any homogeneous system of equations is consistent.
– This is seen by the fact that the trivial solution (the solution in which all

variables are equal to 0) is always a solution to a homogeneous system
of equations.

(2) If a consistent system of equations (a system of equations with at least 1
solution) has more than 1 solution, then it has infinitely many solutions.

(3) If a consistent system of equations has more variables than equations, then
it has infinitely many solutions.
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Solution to 4.3.8: By facts (1) and (3) we see that there are infinitely many
solutions.

(186)

x1 = 0
x2 = 0

x3 = 0
x4 + x5 = 0

has infinitely many solutions.

Solution to 4.3.10: Anything is possible. The system could be inconsistent,
it could have a unique solution, or it could have infinitely many solutions.

(187)

x1 = 0
x2 = 0

x3 = 0
2x3 = 2

has no solutions.

(188)

x1 = 0
x2 = 0

x3 = 0
2x3 = 0

has a unique solution.

(189)

x1 + x2 = 0
2x1 + 2x2 = 0

x3 = 0
2x3 = 0

has infinitely many solutions.

Solution to 4.3.14: By facts (1) and (3) we see that there are infinitely
many solutions.

(190)
x1 − x4 = 2

x2 = 0
x3 + 2x4 = −4

has infinitely many solutions.

Solution to 4.3.16: The system has to be consistent since it is homogeneous.
The system could have a unique solution, or it could have infinitely many
solutions.
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(191)
x1 = 0

x2 = 0
x3 = 0

has a unique solution.

(192)
x1 = 0

x2 + x3 = 0
2x2 + 2x3 = 0

has infinitely many solutions.

Solution to 4.3.18: The system is consistent by fact (1). Since we are given
a solution other than the trivial solution, fact (2) tells us that there are infinitely
many solutions.

(193)
x1 + x2 + 4x3 = 0

x2 + 3x3 = 0
x1 + x3 = 0

has infinitely many solutions.

Solution to 4.3.Bonus: It is possible that the system is inconsistent and
has no solutions. By fact 1, the only possible alternative is an infinite number
of solutions.

(194)
x1 + x2 + 4x3 = 0
x1 + x2 + 4x3 = 1

has no solutions.

(195)
x1 + x2 + 4x3 = 0

x2 + 3x3 = 0
has infinitely many solutions.
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Modified Problem 4.3.23: For what value(s) of a does the following system
have nontrivial solutions?

(196)
x1 + 2x2 + x3 = 0
−x1 + ax2 + x3 = 0
3x1 + 4x2 − x3 = 0

.

Solution: Let us first represent the system of equations as an augmented
matrix that we will reduce into echelon form.

(197)

 1 2 1 0
−1 a 1 0
3 4 −1 0

 R2 +R1

R3 − 3R1→

1 2 1 0
0 a + 2 2 0
0 −2 −4 0


In order to continue the row reduction, we would like to use the row operation
R3 + 2

a+2R2, but this is only valid if a + 2 6= 0, which occurs if and only if
a = −2. So let us assume that a 6= −2 for now and we will handle a = −2 as
a separate case.

(198)
R3+ 2

a+2R2→

1 2 1 0
0 a + 2 2 0
0 0 4

a+2 − 4 0


If 4

a+2− 4 6= 0, then equation (196) will only have the trivial solution. Since we
are searching for the value(s) of a that result in nontrivial solutions to equation
(196), we solve 4

a+2 − 4 = 0 and see that a = −1 . The only other possible
value of a is a = −2 which we will now consider as a separate case. Plugging
a = −2 back into (197) we obtain

(199)

1 2 1 0
0 0 2 0
0 −2 −4 0

 R2↔R3→

1 2 1 0
0 −2 −4 0
0 0 2 0

 −1
2R2

−1
2R3→

1 2 1 0
0 1 2 0
0 0 1 0

 .
Since the system represented in equation (199) only has the trivial solution, we
see that −2 is not one of the desired values of a. In conclusion, the only value
of a that results in nontrivial solutions for equation (196) is a = −1 .
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Problem 2.45: Find the volume of the solid cylinder E whose height is 4
and whose base is the disk {(r, θ) : 0 ≤ r ≤ 2 cos(θ)}.

Solution: We first look at the cross section of E in the xy−plane to help us
determine our bounds.
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(200) Volume(E) =

∫∫∫
E

1dV =

∫ 4

0

∫ π
2

−π2

∫ 2 cos(θ)

0

rdrdθdz

(201) =

∫ 4

0

∫ π
2

−π2

1

2
r2
∣∣∣2 cos(θ)

0
dθdz =

∫ 4

0

∫ π
2

−π2
2 cos2(θ)dθdz

(202) =

∫ 4

0

∫ π
2

−π2
(cos(2θ) + 1)dθdz =

∫ 4

0

(
1

2
sin(2θ) + θ)

∣∣∣π2
−π2
dz

(203) =

∫ 4

0

πdz = 4π .
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Problem 2.48: Find the volume of the solid cardiod of revolution D =
{(ρ, ϕ, θ) : 0 ≤ ρ ≤ 1

2(1− cos(ϕ)), 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π}.

Solution: In this problem, the description of the region is just a reordering
of the description that we need to write down our triple integral in spherical
coordinates to find the volume. We see that

(204) Volume(D) =

∫∫∫
D

1dV =

∫ 2π

0

∫ π

0

∫ 1
2(1−cos(ϕ))

0

ρ2 sin(ϕ)dρdϕdθ

(205) =

∫ 2π

0

∫ π

0

1

3
ρ3 sin(ϕ)

∣∣∣12(1−cos(ϕ))

0
dϕdθ

(206) =

∫ 2π

0

∫ π

0

1

3

1

2
(1− cos(ϕ))︸ ︷︷ ︸

u


3

sin(ϕ)dϕ︸ ︷︷ ︸
2du

dθ =

∫ 2π

0

1

6
u4
∣∣∣π
ϕ=0

dθ

(207) =

∫ 2π

0

1

6

(
1

2
(1− cos(ϕ))

)4 ∣∣∣π
0
dθ =

∫ 2π

0

1

6
dθ =

π

3
.
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Problem 3.26: Consider the vector field ~F = 〈x,−y〉 and the curve C which
is the square with vertices (±1,±1) with the counterclockwise orientation.

Figure 12. The curve C.

a) Evaluate
∫
C
~F · d~r by finding a parameterization ~r(t) for the curve C.

b) By using the Fundamental Theorem for Line Integrals.

Solution to a: Letting C1, C2, C3, and C4 be as in Figure 12, we see that

(208)

∫
C

~F · d~r =

∫
C1

~F · d~r +

∫
C2

~F · d~r +

∫
C3

~F · d~r +

∫
C4

~F · d~r.

Since

(209)

∫
C1

~F · d~r =

∫ 1

−1

〈1,−t〉 · 〈0, 1〉dt =

∫ 1

−1

−tdt = −1

2
t2
∣∣∣1
−1

= 0,

(210)

∫
C2

~F · d~r =

∫ −1

1

〈t,−1〉 · 〈1, 0〉dt =

∫ −1

1

tdt =
1

2
t2
∣∣∣−1

1
= 0,
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(211)

∫
C3

~F · d~r =

∫ −1

1

〈−1,−t〉 · 〈0, 1〉dt =

∫ −1

1

−tdt = −1

2
t2
∣∣∣−1

1
= 0,

(212)

∫
C4

~F · d~r =

∫ 1

−1

〈t, 1〉 · 〈1, 0〉dt =

∫ 1

−1

tdt =
1

2
t2
∣∣∣1
−1

= 0,

we see that

(213)

∫
C

~F · d~r = 0 + 0 + 0 + 0 = 0 .

Solution to b: Since

(214)
∂

∂y
(x) = 0 =

∂

∂x
(−y),

we see that ~F = 〈x,−y〉 is a conservative vector field. We now have 2 ways in
which to finish the problem.

Finish 1: Since ~F is a conservative vector field and C is a (simple, piecewise
smooth, oriented) closed curve, we see that

(215)

∫
C

~F · d~r = 0 .

Finish 2: We now want to find a potential function ϕ(x, y) for ~F . Since

(216) 〈ϕx, ϕy〉 = ∇ϕ = ~F = 〈x,−y〉,

we see that

(217) ϕx(x, y) = x→ ϕ(x, y) =

∫
xdx =

1

2
x2 + g(y)→

(218)

g′(y) = ϕy(x, y) = −y → g(y) = −1

2
y2 + C → ϕ(x, y) =

1

2
(x2 − y2) + C.
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Now let P be any point on the curve C. For example, we may take P =
(1, 1). Since the curve C can be seen as starting at P and ending at P , the
Fundamental Theorem for Line Integrals tells us that

(219)

∫
C

~F · d~r = ϕ ((1, 1))− ϕ ((1, 1)) = 0 .

Remark: We see that in Finish 2, we did not even need to determine what
the function ϕ was in order to conclude that the final answer is 0.
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Problem 4.2: Let

(220) A =

 1 −1 −1
2 −1 1
−3 1 −3

 , ~x =

x1

x2

x3

 , and ~b =

b1

b2

b3

 .
a) Determine conditions on b1, b2, and b3 that are necessary and sufficient for

the system of equations A~x = ~b to be consistent.
b) For each of the following choices of ~b, either show that the system A~x = ~b

is inconsistent or exhibit the solution.

i) ~b =

1
1
1

 ii) ~b =

5
2
1

 iii) ~b =

7
3
1

 iv) ~b =

0
1
2


Solution to a: We begin by representing the equation A~x = ~b as an aug-
mented matrix that we will proceed to row reduce into reduced echelon form.

(221)

 1 −1 −1 b1

2 −1 1 b2

−3 1 −3 b3

 R2 − 2R1

R3 + 3R1→

1 −1 −1 b1

0 1 3 −2b1 +b2

0 −2 −6 3b1 +b3



(222)
R3+2R2→

1 −1 −1 b1

0 1 3 −2b1 +b2

0 0 0 −b1 +2b2 +b3

 At this point you can already
deduce when the system is
consistent.

(223)
R1+R2→

1 0 2 −b1 +b2

0 1 3 −2b1 +b2

0 0 0 −b1 +2b2 +b3


From the third row of the augmented matrix in equation (223), we see that

(224) −b1 + 2b2 + b3 = 0 · x1 + 0 · x2 + 0 · x3 = 0,

and that the system of equations A~x = ~b is consistent if and only if equation
(224) is true. Furthermore, in the event that equation (224) is true, we see that
equations represented in equation (223) are
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(225)
x1 + 2x3 = −b1 + b2

x2 + x3 = −2b1 + b2

(226) → x1 = −2x3 − b1 + b2

x2 = −x3 − 2b1 + b2
, x3 is free.

Solution to b: In part a we obtained a formula for ~x in terms of ~b, so we
will now apply that formula to each of the vectors.

i: ~b =

1
1
1

→ −b1 + 2b2 + b3 = 2 6= 0→ The system is inconsistent .

ii: ~b =

5
2
1

→ −b1 + 2b2 + b3 = 0

(227) → x1 = −2x3 − b1 + b2

x2 = −x3 − 2b1 + b2
, x3 is free

(228) →

x1

x2

x3

 =

−2x3 − 3
−x3 − 8
x3

 , x3 is free .

iii: ~b =

7
3
1

→ −b1 + 2b2 + b3 = 0

(229) → x1 = −2x3 − b1 + b2

x2 = −x3 − 2b1 + b2
, x3 is free

(230) →

x1

x2

x3

 =

−2x3 − 4
−x3 − 11

x3

 , x3 is free .
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iv: ~b =

0
1
2

→ −b1 + 2b2 + b3 = 4 6= 0→ The system is inconsistent .
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Problem 1 (Not from the text book): Find the inverse of

A =

1 −2 3
0 2 −5
1 −1 1


Solution: We reduce the 3 by 6 matrix [A|I3] until the left half is in reduced
echelon form, which will be I3 since A is invertible.

(231)

1 −2 3 1 0 0
0 2 −5 0 1 0
1 −1 1 0 0 1

 R3−R1−→

1 −2 3 1 0 0
0 2 −5 0 1 0
0 1 −2 −1 0 1



(232)
1
2R2−→

1 −2 3 1 0 0
0 1 −5

2 0 1
2 0

0 1 −2 −1 0 1

 R1+2R2−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 1 −2 −1 0 1



(233)
R3−R2−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 0 1
2 −1 −1

2 1

 2R3−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 0 1 −2 −1 2



(234)
R2+5

2R3−→

1 0 −2 1 1 0
0 1 0 −5 −2 5
0 0 1 −2 −1 2

 R1+2R3−→

1 0 0 −3 −1 4
0 1 0 −5 −2 5
0 0 1 −2 −1 2

 .

To check our work, we note that

(235) AA−1 =

1 −2 3
0 2 −5
1 −1 1

−3 −1 4
−5 −2 5
−2 −1 2


(236) =

1 · (−3) + (−2) · (−5) + 3 · (−2) 1 · (−1) + (−2) · (−2) + 3 · (−1) 1 · 4 + (−2) · 5 + 3 · 2
0 · (−3) + 2 · (−5) + (−5) · (−2) 0 · (−1) + 2 · (−2) + (−5) · (−1) 0 · 4 + 2 · 5 + (−5) · 2
1 · (−3) + (−1) · (−5) + 1 · (−2) 1 · (−1) + (−1) · (−2) + 1 · (−1) 1 · 4 + (−1) · 5 + 1 · 2

 =

1 0 0
0 1 0
0 0 1

 .

Remark: We only have to check that A−1A = I3 OR AA−1 = I3. We do
not have to check both.
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Problem 4.9.46: Consider the matrices A,D ane E given by

(237) A−1 =

[
3 1
0 2

]
, D =

[
−1 2 3
1 0 2

]
and E =

2 −1
1 1
0 3

 .
Find matrices B and C for which AB = D and CA = E.

Solution: We see that

(238) A−1D = A−1(AB) = (A−1A)B = I2B = B, so

(239) B = A−1D =

[
3 1
0 2

] [
−1 2 3
1 0 2

]
(240) =

[
3 · (−1) + 1 · 1 3 · 2 + 1 · 0 3 · 3 + 1 · 2
0 · (−1) + 2 · 1 0 · 2 + 2 · 0 0 · 3 + 2 · 2

]

(241) =

[
−2 6 11
2 0 4

]
.

Similarly, we see that

(242) EA−1 = (CA)A−1 = C(AA−1) = CI2 = C, so

(243) C = EA−1 =

2 −1
1 1
0 3

[3 1
0 2

]
=

2 · 3 + (−1) · 0 2 · 1 + (−1) · 2
1 · 3 + 1 · 0 1 · 1 + 1 · 2
0 · 3 + 3 · 0 0 · 1 + 3 · 2



(244) =

6 0
3 3
0 6

 .

Page 68



Sohail Farhangi Recitation Notes for 12/1/2020

Problem 4.9.59: Let ~u and ~v be vectors in Rn, and let In denote the (n×n)
identity matrix. Let A = In + ~u~vT , and suppose that ~vT~u 6= −1. Show that

(245) A−1 = In − a~u~vT , where a =
1

1 + ~vT~u
.

This result is known as the Sherman-Woodberry formula.

Example: If n = 3,

(246) ~u =

1
2
3

 and ~v =

−1
1
0

 then

(247) ~vT~u =
(
−1 1 0

)1
2
3

 = (−1) · 1 + 1 · 2 + 0 · 3 = 1 6= −1 and

(248) A = I3 + ~u~vT =

1 0 0
0 1 0
0 0 1

 +

1
2
3

(−1 1 0
)

(249) =

1 0 0
0 1 0
0 0 1

 +

1 · (−1) 1 · 1 1 · 0
2 · (−1) 2 · 1 2 · 0
3 · (−1) 3 · 1 3 · 0



(250) =

1 0 0
0 1 0
0 0 1

 +

−1 1 0
−2 2 0
−3 3 0

 =

 0 1 0
−2 3 0
−3 3 1

 .

We also saw that

(251) ~vT~u = 1 and ~u~vT =

−1 1 0
−2 2 0
−3 3 0

 so

(252) a =
1

1 + ~vT~u
=

1

1 + 1
=

1

2
and

Page 69



Sohail Farhangi Recitation Notes for 12/1/2020

(253) A−1 = I3 − a~u~vT =

1 0 0
0 1 0
0 0 1

− 1

2

−1 1 0
−2 2 0
−3 3 0

 =

3
2 −

1
2 0

1 0 0
3
2 −

3
2 1

 .

Indeed, we see that

(254) AA−1 =

 0 1 0
−2 3 0
−3 3 1

3
2 −

1
2 0

1 0 0
3
2 −

3
2 1


(255) =

 0 · 3
2
+ 1 · 1 + 0 · 3

2
0 · (− 1

2
) + 1 · 0 + 0 · (− 3

2
) 0 · 0 + 1 · 0 + 0 · 1

(−2) · 3
2
+ 3 · 1 + 0 · 3

2
(−2) · (− 1

2
) + 3 · 0 + 0 · (− 3

2
) (−2) · 0 + 3 · 0 + 0 · 1

(−3) · 3
2
+ 3 · 1 + 1 · 3

2
(−3) · (− 1

2
) + 3 · 0 + 1 · (− 3

2
) (−3) · 0 + 3 · 0 + 1 · 1

 =

1 0 0
0 1 0
0 0 1



Solution: The inverse of a matrix (if it exists) is unique, so for

(256) B = In − a~u~vT ,
we only have to verify that

(257) AB = In or BA = In,

as we will then know that A is invertible, and that A−1 = B. Since ~vT~u is a
scalar, let us simplify our notation by letting

(258) b = ~vT~u so that a =
1

1 + b
.

We see that

(259)
AB = (In + ~u~vT )(In − a~u~vT ) = InIn + ~u~vTIn + In(−a~u~vT ) + ~u~vT (−a~u~vT )

(260) = In + ~u~vT − a~u~vT − a(~u~vT )(~u~vT ) = In + ~u~vT − a~u~vT − a~u(~vT~u)~vT

(261)
By (258)

= In + ~u~vT − a~u~vT − a~u(b)~vT = In + ~u~vT − a~u~vT − ab~u~vT
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(262) = In + (1− a− ab)~u~vT By (258)
= In + (1− 1

1 + b
− b

1 + b
)~u~vT

(263) = In + 0 · ~u~vT = In.
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Some Problems From the Appendix on Complex
Numbers

Modified Problem 12: Plot z = −1 − 1√
3
i in the complex plane. Then

find the modulus and argument of z, and express z in the form z = reiθ.

Solution: Based on the diagram below, we see that −1− 1√
3
i =

2√
3
ei

7π
6 .

Problem 19: For z = −1 + 4i and w = 5 + 2i evaluate
∣∣ z

2w

∣∣.
Solution 1: We see that

(264)
z

2w
=
−1 + 4i

2(5 + 2i)
=
−1 + 4i

10 + 4i
=
−1 + 4i

10 + 4i
· 10− 4i

10− 4i︸ ︷︷ ︸
1

=
(−1 + 4i)(10− 4i)

(10 + 4i)(10− 4i)

(265) =
−10 + 40i + 4i−16i2

100 + 40i− 40i−16i2
i2=−1

=
−10 + 40i + 4i+16

100 + 40i− 40i+16

(266) =
6 + 44i

116
=

3 + 22i

58
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(267) →
∣∣∣ z
2w

∣∣∣ =

∣∣∣∣3 + 22i

58

∣∣∣∣ =
1

58
|3 + 22i| = 1

58

√
32 + 222 =

√
493

58
.

Solution 2: We see that

(268)
∣∣∣ z
2w

∣∣∣ =
|z|
|2w|

=
|z|

2|w|
=
| − 1 + 4i|
2|5 + 2i|

(269) =

√
(−1)2 + 42

2
√

52 + 22
=

√
17

2
√

29
=

√
493

58
.

Problem 28: Evaluate i(ei
π
6 − e−iπ6 ).

Solution: Recalling Euler’s formula

(270) ez = ex+iy = ex(cos(y) + i sin(y)), we see that

(271) i(ei
π
6 − e−i

π
6 ) = i

((
cos(

π

6
) + i sin(

π

6
)
)
−
(

cos(−π
6

) + i sin(−π
6

)
))

(272) = i
((

cos(
π

6
) + i sin(

π

6
)
)
−
(

cos(
π

6
)− i sin(

π

6
)
))

= i
(

2i sin(
π

6
)
)

(273) = i(2i · 1

2
) = i2 = −1 .

Problem 53: Find all possible fourth roots of −16. Equivalently, find all

possible values of (−16)
1
4 .

Solution: We see that

(274) −16 = 16 · (−1) = 16eiπ = 16ei(π+2nπ) (where n is an integer)
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(275) → (−16)
1
4 =

(
16ei(π+2nπ)

)1
4

= 16
1
4

(
ei(π+2nπ)

)1
4

(276) = 2ei(
π
4+n

2π) (where n is an integer)

(277) → (−16)
1
4 ∈ {2ei

π
4 , 2ei

3π
4 , 2ei

5π
4 , 2ei

7π
4 }.

Making use of Euler’s formula, we see that

(278) 2ei
π
4 = 2

(
cos(

π

4
) + i sin(

π

4
)
)

= 2(
1√
2

+ i
1√
2

) =
√

2 +
√

2i,

(279) 2ei
3π
4 = 2

(
cos(

3π

4
) + i sin(

3π

4
)

)
= 2(− 1√

2
+ i

1√
2

) = −
√

2 +
√

2i,

(280) 2ei
5π
4 = 2

(
cos(

5π

4
) + i sin(

5π

4
)

)
= 2(− 1√

2
+i(− 1√

2
)) = −

√
2−
√

2i,

(281) 2ei
7π
4 = 2

(
cos(

7π

4
) + i sin(

7π

4
)

)
= 2(

1√
2

+ i(− 1√
2

)) =
√

2−
√

2i,

(282) → (−16)
1
4 ∈ {

√
2 +
√

2i,−
√

2 +
√

2i,−
√

2−
√

2i,
√

2−
√

2i} .
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Problem 5.2.17: Solve the following initial value problem.

(283) y′′ − 3y′ − 18y = 0; y(0) = 0, y′(0) = 4.

Solution: We see that the characteristic polynomial of equation (283) is

(284) 0 = r2 − 3r − 18 = (r − 6)(r + 3),

which has roots r = −3, 6. It follows that the general solutions to equation
(283) is

(285) y(t) = c1e
−3t + c2e

6t.

Using the initial conditions, we see that

(286)
0 = y(0) = c1e

−3·0 + c2e
6·0 = c1 + c2

4 = y′(0) = −3c1e
3·0 + 6c2e

6·0 = −3c1 + 6c2

(287) → c1 + c2 = 0
−3c1 + 6c2 = 4

R2+3R1→ c1 + c2 = 0
9c2 = 4

(288)
1
9R2→ c1 + c2 = 0

c2 = 4
9

R1−R2→ c1 = −4
9

c2 = 4
9

(289) → y(t) = −4

9
e−3t +

4

9
e6t .
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Problem 5.2.23: Solve the following initial value problem.

(290) y′′ − y′ + 1

4
y = 0; y(0) = 1, y′(0) = 2.

Solution:We see that the characteristic polynomial of equation (290) is

(291) 0 = r2 − r +
1

4
= (r − 1

2
)2,

which has r = 1
2 as a double root. It follows that the general solutions to

equation (290) is

(292) y(t) = c1e
t
2 + c2te

t
2 .

Noting that

(293) y′(t) =
1

2
c1e

t
2 + c2e

t
2 +

1

2
c2te

t
2 = (

1

2
c1 + c2)e

t
2 +

1

2
c2te

t
2 ,

we can use the initial conditions, to see that

(294)
1 = y(0) = c1e

0
2 + c2 · 0 · e

0
2 = c1

2 = y′(0) = (1
2c1 + c2)e

0
2 + 1

2c2 · 0 · e
0
2 = 1

2c1 + c2

(295) → c1 = 1
1
2c1 + c2 = 2

→ c1 = 1
c2 = 2− 1

2 · 1 = 3
2

(296) → y(t) = e
t
2 +

3

2
te

t
2 .
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Problem 5.2.31: Solve the following initial value problem.

(297) y′′ + 6y′ + 10y = 0; y(0) = 0, y′(0) = 6.

Solution: We see that the characteristic polynomial of equation (297) is

(298) 0 = r2 +6r+10→ r =
−6±

√
62 − 4 · 1 · 10

2 · 1
=
−6±

√
−4

2
= −3±i,

It follows that the general solutions to equation (297) is

(299) y(t) = c′1e
(−3+i)t + c′2e

(−3−i)t = c1 sin(t)e−3t + c2 cos(t)e−3t.

Noting that

(300) y′(t) = c1 cos(t)e−3t − 3c1 sin(t)e−3t − c2 sin(t)e−3t − 3c2 cos(t)e−3t

(301) = (−3c1 − c2) sin(t)e−3t + (c1 − 3c2) cos(t)e−3t,

we can use the initial conditions to see that

(302)
0 = y(0) = c1 sin(0)e−3·0 + c2 cos(0)e−3·0

6 = y′(0) = (−3c1 − c2) sin(0)e−3·0 + (c1 − 3c2) cos(0)e−3·0

(303) → 0 = c2

6 = c1 − 3c2
→ c2 = 0

c1 = 6 + 3c2 = 6

(304) → y(t) = 6 sin(t)e−3t .
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Problem 5.2.37: Solve the following initial value problem.

(305) t2y′′ + 6ty′ + 6y = 0; y(1) = 0, y′(1) = −4.

Solution: We perform a substitution (or a change of variables) in order to
convert equation (305) into a constant coefficient differential equation, which
will then be straight-forward to solve. Letting x = ln(t), we see that t = ex,
and we may define h(x) = y(ex) = y(t). We see that

(306) h′(x) =
d

dx
h(x) =

d

dx
y(ex) = y′(ex) · d

dx
ex = y′(ex) · ex = ty′(t), and

(307) h′′(x) =
d

dx
h′(x) =

d

dx
(exy′(ex)) =

d

dx
(ex) · y′(ex) + ex · d

dx
y′(ex)

(308) = exy′(ex) + ex · exy′′(ex) = exy′(ex) + e2xy′′(ex) = ty′(t) + t2y′′(t).

We now see that

(309) 0 = t2y′′ + 6ty′ + 6y = (t2y′′ + ty′) + 5ty′ + 6y

(310) = (t2y′′(t) + ty′(t)) + 5ty′(t) + 6y(t)

(311) = h′′(x) + 5h′(x) + 6h(x) = h′′ + 5h′ + 6h.

We see that the characteristic equation of our converted equation is

(312) 0 = r2 + 5r + 6 = (r + 2)(r + 3),

and has solutions r = −3,−2. It follows that the general solution to our
converted equation is

(313) h(x) = c1e
−2x + c2e

−3x.

Recalling that x = ln(t), we see that the general solution to equation (305) is
Page 78



Sohail Farhangi Recitation Notes for 12/1/2020

(314) y(t) = h(x) = c1e
−2x+c2e

−3x = c1e
−2 ln(t) +c2e

−3 ln(t) = c1t
−2 + c2t

−3.

Making use of the initial conditions, we see that

(315)
0 = y(1) = c1 · 1−2 + c2 · 1−3 = −2c1 + c2

−4 = y′(1) = −2c1 · 1−3 − 3c2 · 1−4 = −2c1 − 3c2

(316) → c1 + c2 = 0
−2c1 − 3c2 = −4

R2+2R1→ c1 + c2 = 0
−c2 = −4

(317)
1
5R2→ c1 + c2 = 0

c2 = 4
R1−R2→ c1 = −4

c2 = 4

(318) → y(t) = −4t−2 + 4t−3 .
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Modified Problem 5.2.43: Determine A, ω, and ϕ for which

(319) −3 sin(4t) + 3 cos(4t) = A sin(ωt + ϕ).

Solution: Firstly, we use the angle-addition formula for sin to see that

(320) A sin(ωt + ϕ) = A sin(ωt) cos(ϕ) + A sin(ϕ) cos(ωt), so

(321) −3sin(4t) + 3cos(4t) = A cos(ϕ)sin(ωt) + A sin(ϕ)cos(ωt).

We now see that ω = 4, and that

(322)
A cos(ϕ) = −3
A sin(ϕ) = 3

(323) → A2 = A2 cos2(ϕ) + A2 sin2(ϕ) = (−3)2 + 32 = 18→ A=± 3
√

2

(324) →
cos(ϕ) = ∓ 1√

2

sin(ϕ) = ± 1√
2

→ ϕ =
3π

4
,−π

4

(325) → −3 sin(4t)+3 cos(4t) = 3
√

2 sin(4t +
3π

4
)︸ ︷︷ ︸

This is amplitude-
phase form since A is
positive.

= −3
√

2 sin(4t− π

4
) .
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Problem 5.1.59: Find the general solution of the equation

(326) y′′y′ = 1.

N ote: The problem in the textbook has hints.

Solution: We note that y(t) is not present in equation (326), so we perform
the substitution v(t) = y′(t). We see that v′(t) = y′′(t), so equation (326)
becomes

(327) 1 = vv′ = v
dv

dt
→ dt = vdv

(328) → t =

∫
dt =

∫
vdv =

1

2
v2 + c1 =

1

2
(y′)2 + c1

(329) → ±
√

2t− 2c1 = y′ =
dy

dt
→ dy = ±

√
2t− 2c1dt

(330) y =

∫
dy =

∫
±
√

2t− 2c1dt = ±1

3
(2t− 2c1)

3
2 + c2

(331) → y(t) = ±1

3
(2t− 2c1)

3
2 + c2 .

Remark: If we had initial conditions, then we could use them to try and
determine values for c1 and c2. We should also note that this solution is only
defined when t > c1. We also note that the form of the general solution looks
completely different from the form of the general solution to a linear differential
equation. The constants c1 and c2 are NOT coefficients in a linear combination,
and we have 2 completely disjoint sets of solutions (the positive solutions and
the negative solutions each have 2 degrees of freedom).
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5.1.62: Solve the differential equation

(332) y′′ = e−y
′
.

N ote: The problem in the textbook has hints.

Solution: We note that y(t) is not present in equation (332), so we perform
the substitution v(t) = y′(t). We see that v′(t) = y′′(t), so equation (332)
becomes

(333) v′ = e−v → 1 = evv′ = ev
dv

dt
→ dt = evdv

(334) →
∫
dt =

∫
evdv → t + c1 = ev = ey

′

(335) → ln(t + c1) = y′ =
dy

dt
→ dy = ln(t + c1)dt

(336) → y =

∫
dy =

∫
ln(t + c1)dt = (t + c1) ln(t + c1)− t + c2.

(337) → y(t) = (t + c1) ln(t + c1)− t + c2 .

Remark: If we had initial conditions, then we could use them to try and
determine values for c1 and c2. We should also note that this solution is only
defined when t > −c1. We also note that the form of the general solution looks
completely different from the form of the general solution to a linear differential
equation. The constants c1 and c2 are NOT coefficients in a linear combination.
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For the following problems use the method of undetermined coefficients in order
to find the general form of the solution to the given differential equation. (Some
of these textbook problems are initial value problems, but we will not worry
about using the initial values to determine the values of the coefficients.)

Problem 5.3.22:

(338) y′′ + y = cos(2t) + t3.

Solution: We see that the homogeneous equation corresponding to equation
(362) is

(339) y′′ + y = 0,

and has characteristic equation

(340) 0 = r2 + 1 = (r + i)(r − i)

It follows that the general solution to equation (339) is

(341) y(t) = c1e
−it + c2e

it = c3 sin(t) + c4 cos(t).

We now see that the right hand side of equation (338) is not related to the
solutions of equation (339), so we may use the standard form of the general
solution in the method of undetermined coefficients, which tells us that

(342) y(t) = A cos(2t) + B sin(2t) + Ct3 + Dt2 + Et + F .

Problem 5.3.32:

(343) y′′ + 4y = cos(2t).

Solution: We see that the homogeneous equation corresponding to equation
(362) is
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(344) y′′ + 4y = 0,

and has characteristic equation

(345) 0 = r2 + 4 = (r + 2i)(r − 2i).

It follows that the general solution to equation (344) is

(346) y(t) = c1e
−2it + c2e

2it = c3 sin(2t) + c4 cos(2t)

We now see that the right hand side of equation (343) is related to the solutions
of equation (344), so we have to adjust the standard form of the general solution
in the method of undetermined coefficients. Originally, we would have used

(347) y(t) = A sin(2t) + B cos(2t),

but we saw that sin(2t) and cos(2t) are solutions to equation (344), so we then
adjust our answer by multiplying by t to get

(348) y(t) = At sin(2t) + Bt cos(2t) .

Modified Problem 5.3.34:

(349) 2y′′ − 8y′ + 8y = 4e2t.

Solution: We see that the homogeneous equation corresponding to equation
(349) is

(350) 2y′′ − 8y′′ + 8y = 0→ y′′ − 4y′ + 4y = 0,

and has characteristic equation

(351) 0 = r2 − 4r + 4 = (r − 2)2.
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It follows that the general solution to equation (350) is

(352) y(t) = (c1t + c2)e2t.

We now see that the right hand side of equation (349) is related to the solutions
of equation (350), so we have to adjust the standard form of the general solution
in the method of undetermined coefficients. Originally, we would have used

(353) y(t) = Ae2t,

but we saw that e2t is a solution to equation (350), so we would then adjust
our answer by multiplying by t to get

(354) y(t) = Ate2t,

but we see that te2t is also a solution to equation (350) (which should not
surprise us since 2 was a double root of the characteristic equation), so we
adjust our answer by multiplying by t once again to get

(355) y(t) = At2e2t .

Problem 5.3.45:

(356) y′′ − y = 25te−t sin(3t).

Solution: We see that the homogeneous equation corresponding to equation
(356) is

(357) y′′ − y = 0,

and has characteristic equation

(358) 0 = r2 − 1 = (r − 1)(r + 1).

It follows that the general solution to equation (357) is
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(359) y(t) = c1e
t + c2e

−t.

Recalling that

(360) e−t sin(3t) = − i
2

(e(−1+3i)t − e(−1−3i)t),

we see that the right hand side of equation (356) is not related to the solutions
of equation (357), so we may proceed to use the standard form of the general
solution in the method of undetermined coefficients, which tells us that

(361) y(t) = (At + B)e−t sin(3t) + (Ct + D)e−t cos(3t) .

Problem 5.3.49:

(362) y(4) − 3y′′ + 2y = 6te2t.

Solution: We see that the homogeneous equation corresponding to equation
(362) is

(363) y(4) − 3y′′ + 2y = 0,

and has characteristic equation

(364) 0 = r4− 3r2 + 2 = (r2− 2)(r2− 1) = (r−
√

2)(r+
√

2)(r− 1)(r+ 1).

It follows that the general solution to equation (363) is

(365) y(t) = c1e
√

2t + c2e
−
√

2t + c3e
t + c4e

−t.

We now see that the right hand side of equation (362) is not related to the
solutions of equation (363), so we may proceed to use the standard form of the
general solution in the method of undetermined coefficients, which tells us that
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(366) y(t) = (At + B)e2t .
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Problem 3.5.21 (From a different Textbook): Use the method of
undetermined coefficients to find the general solution to the differential equation

(367) y′′ + 3y′ = 2t4 + t2e−3t + sin(3t).

Solution: We will first find a particular solution y1(t) for

(368) y′′ + 3y′ = 2t4,

a particular solution y2(t) for

(369) y′′ + 3y′ = t2e−3t,

and a particular solution y3(t) for

(370) y′′ + 3y′ = sin(3t).

Once y1(t), y2(t), and y3(t) are all found, the linearity of equation (367) lets us
see that y1(t) + y2(t) + y3(t) is a particular solution of (367). To find y1(t) we
begin with

(371) y1(t) = a4t
4 + a3t

3 + a2t
2 + a1t + a0

but we then notice that y(t) = 1 is a (nonrepeated) solution to the homogeneous
equation corresponding to equation (367), so we have to modify this initial guess
to become

(372) y1(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t.

Since

(373) y′1(t) = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t + a1 and

(374) y′′1 (t) = 20a5t
3 + 12a4t

2 + 6a3t + 2a2,
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we see that

(375) 2t4 = y′′1 + 3y′1

(376) = (20a5t
3 + 12a4t

2 + 6a3t+ 2a2) + 3(5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t+ a1)

(377) = 15a5t
4 + (12a4 + 20a5)t3 + (9a3 + 12a4)t2 + (6a2 + 6a3)t+ (3a1 + 2a2)

(378) →

15a5 = 2
12a4 + 20a5 = 0
9a3 + 12a4 = 0
6a2 + 6a3 = 0
3a1 + 2a2 = 0

(379) → (a1, a2, a3, a4, a5) = (
16

81
,− 8

27
,

8

27
,−2

9
,

2

15
).

To find y2(t) we begin with

(380) y2(t) = (a0 + a1t + a2t
2)e−3t

but we then notice that y(t) = e−3t is a (nonrepeated) solution to the homo-
geneous equation corresponding to equation (367), so we have to modify this
initial guess to become

(381) y2(t) = (a1t + a2t
2 + a3t

3)e−3t.

Since

(382) y′2(t) = (a1t + a2t
2 + a3t

3)′e−3t + (a1t + a2t
2 + a3t

3)(−3e−3t)

(383) = (a1 + 2a2t + 3a3t
2)e−3t + (−3a1t− 3a2t

2 − 3a3t
3)e−3t

(384) =
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)
e−3t and
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(385) y′′2 (t) =
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)′
e−3t

+
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)

(−3e−3t)

(386) =
(
(−3a1 + 2a2) + (−6a2 + 6a3)t− 9a3t

2
)
e−3t

+
(
−3a1 + (9a1 − 6a2)t + (9a2 − 9a3)t2 + 9a3t

3
)
e−3t

(387) =
(

(−6a1 + 2a2) + (9a1 − 12a2 + 6a3)t

+ (9a2 − 18a3)t2 + 9a3t
3
)
e−3t,

we see that

(388) t2e−3t = y′′2 + 3y′2

(389) =
(

(−6a1 + 2a2) + (9a1 − 12a2 + 6a3)t

+ (9a2 − 18a3)t2 + 9a3t
3
)
e−3t

+ 3
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)
e−3t

(390) =
(
(−3a1 + 2a2) + (−6a2 + 6a3)t− 9a3t

2
)
e−3t

(391) →
−9a3 = 1

−6a2 + 6a3 = 0
−3a1 + 2a2 = 0

→ (a1, a2, a3) = (− 2

27
,−1

9
,−1

9
).

Lastly, to find y3(t) we use

(392) y3(t) = A sin(3t) + B cos(3t).

Since

(393) y′3(t) = 3A cos(3t)− 3B sin(3t) and
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(394) y′′3 (t) = −9A sin(3t)− 9B cos(3t),

we see that

(395) sin(3t) = y′′3 + 3y′3 = (−9A sin(3t)− 9B cos(3t))

+ 3(3A cos(3t)− 3B sin(3t))

(396) = (−9A− 9B) sin(3t) + (9A− 9B) cos(3t)

(397) → −9A − 9B = 1
9A − 9B = 0

→ (A,B) = (− 1

18
,− 1

18
).

Recalling that the general solution to the equation

(398) y′′ + 3y′ = 0

is given by y(t) = c1 +c2e
−3t, we see that the general solution to equation (367)

is

(399) y(t) = c1 + c2e
−3t − 2

27
te−3t − 1

9
t2e−3t − 1

9
t3e−3t

+
16

81
t− 8

27
t2 +

8

27
t3 − 2

9
t4 +

2

15
t5 − 1

18
sin(3t)− 1

18
cos(3t).

Remark: In the beginning, we could have also directly guessed that the general
form of a particular solution is

(400) y(t) = (c1 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5)

+ (c2 + b1t + b2t
2 + b3t

3)e−3t + A sin(3t) + B cos(3t),

but when attempting to calculate the coefficients by hand (instead of using a
computer algebra system) it is useful to break up the work into smaller chunks
as we did here.
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Problem 6.2.27 (Not part of the final this year): Consider the partial
differential equation

(401)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0.

Show that for a solution u(r, θ) = R(r)Θ(θ) having separated variables, we
must have

(402) r2R′′(r) + rR′(r)− λR(r) = 0, and

(403) Θ′′(θ) + λΘ(θ) = 0,

where λ is some constant.

Solution: We begin by plugging u(r, θ) = R(r)Θ(θ) into equation (401) to
see that

(404) 0 =
∂2

∂r2
(R(r)Θ(θ)) +

1

r

∂

∂r
(R(r)Θ(θ)) +

1

r2

∂2

∂θ2
(R(r)Θ(θ))

(405) = R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ)

(406) → − 1

r2
R(r)Θ′′(θ) = R′′(r)Θ(θ) +

1

r
R′(r)Θ(θ)

(407) → Θ′′(θ)

Θ(θ)
=
R′′(r) + 1

rR
′(r)

− 1
r2
R(r)

∗
= γ.

To derive equation (402) we use equation (407) to see that

(408)
R′′(r) + 1

rR
′(r)

− 1
r2
R(r)

= γ → R′′(r) +
1

r
R(r) = − γ

r2
R(r)

(409) → R′′(r) +
1

r
R′(r) +

γ

r2
R(r) = 0→ r2R′′(r) + rR′(r) + γR(r) = 0.
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To derive equation (403) we use equation (407) to see that

(410)
Θ′′(θ)

Θ(θ)
= γ → Θ′′(θ) = γΘ(θ)→ Θ′′(θ)− γΘ(θ) = 0.

We now see that we can pick our constant λ as λ = −γ.
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Problem 6.2.30 (Not part of the final this year): Consider the partial
differential equation

(411)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ
+
∂2u

∂z2
= 0.

Show that for a solution u(r, θ, z) = R(r)Θ(θ)Z(z) having separated variables,
we must have

(412) Θ′′(θ) + µΘ(θ) = 0,

(413) Z ′′(z) + λZ(z) = 0, and

(414) r2R′′(r) + rR′(r)− (r2λ + µ)R(r) = 0,

where µ and λ are constants.

Solution: We proceed as in problem 6.2.27 and plug u(r, θ, z) = R(r)Θ(θ)Z(z)
into equation (411) to see that

(415)
∂2

∂r2
(R(r)Θ(θ)Z(z)) +

1

r

∂

∂r
(R(r)Θ(θ)Z(z)) +

1

r2
∂2

∂θ2
(R(r)Θ(θ)Z(z)) +

∂2

∂z2
(R(r)Θ(θ)Z(z)) = 0

(416) → R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

We will now try to derive equation (413) from equation (416). Beginning with
equation (416) we see that

(417) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(418) −R(r)Θ(θ)Z ′′(z) = R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z)

(419) → Z ′′(z)

Z(z)
=
R′′(r)Θ(θ) + 1

r
R′(r)Θ(θ) + 1

r2
R(r)Θ′′(θ)

−R(r)Θ(θ)
∗
= −λ

(420) → Z ′′(z) = −λZ(z)→ Z ′′(z) + λZ(z) = 0.

We will now derive equation (412) from equation (416). Beginning with equa-
tion (416) we see that
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(421) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(422) − 1

r2
R(r)Θ′′(θ)Z(z) = R′′(r)Θ(θ)Z(z) +

1

r
R′(r)Θ(θ)Z(z) +R(r)Θ(θ)Z ′′(z)

(423) → Θ′′(θ)

Θ(θ)
=
R′′(r)Z(z) + 1

r
R′(r)Z(z) +R(r)Z ′′(z)

− 1
r2
R(r)Z(z)

∗
= −µ

(424) → Θ′′(θ) = −µΘ(θ)→ Θ′′(θ) + µΘ(θ) = 0.

Lastly, we will derive equation (414) from equation (416). Beginning with
equation (416) we see that

(425) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(426) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) = − 1

r2
R(r)Θ′′(θ)Z(z)−R(r)Θ(θ)Z ′′(z)

(427) →
R′′(r) + 1

r
R′(r)

R(r)
=
− 1
r2

Θ′′(θ)Z(z)−Θ(θ)Z ′′(z)

Θ(θ)Z(z)
= − 1

r2
Θ′′(θ)

Θ(θ)
+
−Z ′′(z)

Z(z)
=

µ

r2
+ λ

(428) → R′′(r) +
1

r
R′(r) = (

µ

r2
+ λ)R(r)→ R′′(r) +

1

r
R′(r)− (

µ

r2
+ λ)R(r) = 0

(429) → r2R′′(r) + rR′(r)− (µ+ r2λ)R(r) = 0.
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Problem 6.2.13: Find the values of λ (eigenvalues) for which the following
problem has a nontrivial solution. Also determine the corresponding nontrivial
solutions (eigenfunctions).

(430) y′′ + λy = 0; 0 < x < π, y(0)− y′(0) = 0, y(π) = 0.

Solution: We begin by examining the characteristic equation for equation
(430) and see that

(431) r2 + λ = 0→ r = ±
√
−λ.

We now consider 3 separate cases based on the sign of λ.

Case 1: λ = 0.

In this case we see that r = 0 is a double root of the characteristic equation, so
the general solution to equation (430) is

(432) y(t) = c1e
0·t + c2te

0·t = c1 + c2t.

Noting that

(433) y′(t) = c2,

we proceed to make use of the initial conditions to see that

(434)
0 = y(0)− y′(0) = c1 − c2

0 = y(π) = c1 + πc2
→ c1 = c2

c1 = −πc2
→ (c1, c2) = (0, 0),

so we only have trivial solutions in this case.

Case 2: λ < 0.

In this case we see that r =
√
−λ and r = −

√
−λ are distinct real roots of the

characteristic equation, so the general solution to equation (430) is
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(435) y(t) = c1e
√
−λt + c2e

−
√
−λt.

Noting that

(436) y′(t) = c1

√
−λe

√
−λt − c2

√
−λe−

√
−λt,

we proceed to make use of the initial conditions to see that

(437)
0 = y(0)− y′(0) = c1(1−

√
−λ) + c2(1 +

√
−λ)

0 = y(π) = c1e
√
−λπ + c2e

−
√
−λπ

(438) →
[

1−
√
−λ 1 +

√
−λ

e
√
−λπ e−

√
−λπ

]
︸ ︷︷ ︸

A

[
c1

c2

]
=

[
0
0

]
. Since

(439) det(A) = e−
√
−λπ(1−

√
−λ)− e

√
−λπ(1 +

√
−λ) < 0,

we see that det(A) 6= 0, so A is a nonsingular matrix. It follows that equation
(438) only has the trivial solution of (c1, c2) = (0, 0), so we only have trivial
solutions to equation (430) in this case as well.

Case 3: λ > 0.

In this case we see that r =
√
−λ and r = −

√
−λ are distinct complex roots

of the characteristic equation, so the general solution to equation (430) is

(440) y(t) = c′1e
√
−λt + c′2e

−
√
−λt = c1 cos(

√
λt) + c2 sin(

√
λt).

Noting that

(441) y′(t) = −c1

√
λ sin(

√
λt) + c2

√
λ cos(

√
λt),

we proceed to make use of the initial conditions to see that
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(442)
0 = y(0)− y′(0) = c1 − c2

√
λ

0 = y(π) = c1 cos(
√
λπ) + c2 sin(

√
λπ)

(443) → c1 = c2

√
λ

0 = c1 cos(
√
λπ) + c2 sin(

√
λπ)

(444) →
c1 = c2

√
λ

0 = c2

(√
λ cos(

√
λπ) + sin(

√
λπ)
) .

In order to have nontrivial solutions to equation (430) we need to have nontrivial
solutions to system of equations in (444). We see that c1 = 0 if and only if
c2 = 0, and that c2 will be 0 if

(445)
√
λ cos(

√
λπ) + sin(

√
λπ) 6= 0.

It follows that we want to find the values of λ for which

(446)
√
λ cos(

√
λπ) + sin(

√
λπ) = 0,

so that we can find a corresponding c2 6= 0. Sadly, equation (446) is not
something that can be explicitly solved by hand. Therefore, we let {λn}∞n=1

denote the solutions to equation (446) as shown in the picture below.

Page 98



Sohail Farhangi Recitation Notes for 12/1/2020

To be precise, we know that the solutions to equation (446) exist even though we
cannot write down exactly what they are, so we talk about them by enumerating
them as {λn}∞n=1.

We note that for any n ≥ 1, if λ = λn, then the second equation in (444) holds
for any value of c2, so we will have (c1, c2) = (c2

√
λn, c2) is a nontrivial solution

to equation (430). In conclusion, the eigenvalues of (430) are {λn}∞n=1 and the
eigen functions corresponding to any given λn are

(447) y(t) = c
(√

λn cos(
√
λnt) + sin(

√
λnt)

)
; c ∈ R.
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Problem 6.2.14: Find the values of λ for which the initial value problem
given by

(448) y′′ − 2y′ + λy = 0; 0 < x < π

(449) y(0) = y(π) = 0

has nontrivial solutions. Then, for each such λ, find the nontrivial solutions.

Solution: We see that the characteristic polynomial of this equation is r2 −
2r + λ and has roots

(450) r =
2±
√

4− 4λ

2
= 1±

√
1− λ.

We now consider 3 separate cases depending on the sign of (1− λ).

Case 1: 1− λ = 0.

In this case, λ = 1 and r = 1 is a double root of the characteristic polynomial,
so the general solution to equation 448 is

(451) y(t) = c1e
t + c2te

t.

We see that

(452) 0 = y(0) = c1e
0 + c2 · 0 · e0 = c1, and

(453) 0 = y(π) = c2 · π · eπ → c2 = 0.

Since (c1, c2) = (0, 0), we see that in this case we only have the trivial solution.

Case 2: 1− λ > 0.

In this case, we see that the general solution to equation 448 is
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(454) y(t) = c1e
(1+
√

1−λ)t + c2e
(1−
√

1−λ)t.

We see that

(455) 0 = y(0) = c1e
(1+
√

1−λ)·0 + c2e
(1−
√

1−λ)·0 = c1 + c2, and

(456) 0 = y(π) = c1e
(1+
√

1−λ)π + c2e
(1−
√

1−λ)π.

Solving the system of equations given by (455) and (456), we see that

(457)

[
1 1 0

e(1+
√

1−λ)π e(1−
√

1−λ)π 0

]

(458)
R2−e(1+

√
1−λ)πR1−→

[
1 1 0

0 e(1−
√

1−λ)π − e(1+
√

1−λ)π 0

]

(459)

1

e(1−
√
1−λ)π−e(1+

√
1−λ)πR2

−→
[

1 1 0
0 1 0

]
R1−R2−→

[
1 0 0
0 1 0

]
,

so (c1, c2) = (0, 0). We once again see that we only have the trivial solution.

Case 3: 1− λ < 0.

In this case, we see that

(460) Re(1±
√

1− λ) = 1 and Im(1±
√

1− λ) = ±
√
λ− 1,

so the general solution to equation (448) is

(461) y(t) = c1e
t cos(

√
λ− 1t) + c2e

t sin(
√
λ− 1t).

We see that
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(462) 0 = y(0) = c1e
0 cos(

√
λ− 1 · 0) + c2e

0 sin(
√
λ− 1 · 0) = c1, and

(463) 0 = y(π) = c2e
π sin(

√
λ− 1π).

If eπ sin(
√
λ− 1π) 6= 0, then we will have that (c1, c2) = (0, 0). Since we are

looking for nontrivial solutions, we want the values of λ for which eπ sin(
√
λ− 1π) =

0, which is the same as the values of λ for which

(464) sin(
√
λ− 1π) = 0.

Note: The equation for some other problems of this type (such as problem
6.2.13 from the second edition of the textbook) that corresponds to equation
(464) is not solvable by hand. In such a situation, it is perfectly acceptable to
say ‘Let (λn)∞n=1 be the solutions to equation (464).’ From then on, you may
work with (λn)∞n=1 as known values. Luckily, equation (464) is solvable by hand,
so we will just go ahead and solve it.

We recall that the 0′s of sin(x) occur exactly at the integer multiples of π.
Given n ∈ Z, we see that

(465) n =
√
λ− 1⇔ λ = n2 + 1,

so (n2 + 1)n∈Z is all of the solutions of equation (464). We now see that for
each integer n, equation (463) is satisfied by any c2 ∈ R.

Putting together the results of all 3 cases, we see that the initial value problem
given by equations (448) and (449) has nontrivial solutions if and only if λ =
n2 + 1 for some integer n. Furthermore, for any such λ = n2 + 1, the solution
to the initial value problem is

(466) y(t) = cet sin(nt),

where c can be any real number.
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Problem 6.3.11: Find the fourier series of the function

(467) f (x) =

{
1 if − 2 < x < 0

x if 0 < x < 2
,

over the interval [−2, 2].

Solution: Since our interval has a radius of L = 2, we see that the basis we will
work with is (sin(2πnx

2L ))∞n=1∪ (cos(2πmx
2L ))∞m=1 which simplifies to (sin(πnx2 ))∞n=1∪

(cos(πmx2 ))∞m=1. We may now let a0, (an)∞n=1, and (bn)∞n=1 be such that

(468) f (x) ∼ a0 +

∞∑
n=1

an cos(
πnx

2
) +

∞∑
n=1

bn sin(
πnx

2
).

First let us determine the sequence (bn)∞n=1. We note that for each n ≥ 1 we
have

(469) bn =
1

L

∫ L

−L
f (x) sin(

2πnx

2L
)dx =

1

2

∫ 2

−2

f (x) sin(
πnx

2
)dx
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(470) =
1

2

∫ 2

−2

f (x) sin(
πnx

2
)dx =

1

2

∫ 0

−2

sin(
πnx

2
)dx +

1

2

∫ 2

0

x sin(
πnx

2
)dx.

We see that

(471)
1

2

∫ 0

−2

sin(
πnx

2
)dx = − 1

πn
cos(

πnx

2
)
∣∣∣0
x=−2

= − 2

πn
+

2

πn
cos(−πn)

(472) =

{
0 if n is even

− 2
πn if n is odd

.

Using integration by parts, we also see that

(473)
1

2

∫ 2

0

x sin(
πnx

2
)dx = − 1

πn
x cos(

πnx

2
)
∣∣∣2
x=0
−
∫ 2

0

− 2

πn
cos(

πnx

2
)dx

(474) = − 2

πn
cos(πn) +

(
2

π2n2
sin(

πnx

2
)
∣∣∣2
x=0

)
= − 2

πn
cos(πn)

(475) =

{
− 2
πn if n is even

2
πn if n is odd

.

Putting all of this together, we see that for n ≥ 1 we have

(476) bn =
1

2

∫ 0

−2

sin(
πnx

2
)dx +

1

2

∫ 2

0

x sin(
πnx

2
)dx =

{
− 2
πn if n is even

0 if n is odd
.

Now let us determine the sequence (an)∞n=1. We note that for n ≥ 1 we have

(477) an =
1

L

∫ L

−L
f (x) cos(

2πnx

2L
)dx =

1

2

∫ 2

−2

f (x) cos(
πnx

2
)dx

(478) =
1

2

∫ 0

−2

cos(
πnx

2
)dx +

1

2

∫ 2

0

x cos(
πnx

2
)dx.
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We see that

(479)
1

2

∫ 0

−2

cos(
πnx

2
)dx =

1

πn
sin(

πnx

2
)
∣∣∣0
x=−2

= 0.

Using integration by parts, we also see that

(480)
1

2

∫ 2

0

x cos(
πnx

2
)dx =

1

πn
x sin(

πnx

2
)
∣∣∣2
x=0
−
∫ 2

0

2

πn
sin(

πn

2
)dx

(481) = − 1

πn

∫ 2

0

sin(
πnx

2
)dx =

2

π2n2
cos(

πnx

2
)
∣∣∣2
x=0

(482) =
2

π2n2
(cos(πn)− 1) =

{
0 if n is even
−4
π2n2

if n is odd
.

Putting all of this together, we see that for n ≥ 1 we have

(483)

an =
1

2

∫ 0

−2

cos(
πnx

2
)dx +

1

2

∫ 2

0

x cos(
πnx

2
)dx =

{
0 if n is even

− 4
π2n2

if n is odd
.

Lastly, we see that

(484) a0 =
1

2L

∫ L

−L
f (x)dx =

1

4

∫ 2

−2

f (x)dx =
1

4

∫ 0

−2

1dx +
1

4

∫ 2

0

xdx

(485)
1

2
+

(
x2

8

∣∣∣2
x=0

)
= 1.

Finally, we see that

(486) f(x) ∼ 1 +

(
∞∑
n=1

2

π2n2
((−1)n − 1) cos(

πn

2
x)

)
+

(
∞∑
n=1

1

πn
((−1)n+1 − 1) sin(

πnx

2
)

)
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Problem 6.4.10: Find the Fourier sine series for

(487) f (x) = ex, 0 < x < 1.

Solution: The fourier sine series of f (x) is just the fourier series of g(x), the
odd 2-periodic extension of f (x), which is the 2-periodic function defined by
the formula

(488) g(x) =

{
f (x) if 0 < x < 1

−f (−x) if − 1 < x < 0
.

Below is a graph of g(x) restricted to the interval (−1, 1). The red portion of
the graph is also the graph of f (x).
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Since g(x) is an odd function (by construction, this will always be the case) the
fourier series of g(x) will not have any cosine terms in it. We see that for any
n ≥ 1, we have

(489) bn =
1

1

∫ 1

−1

g(x) sin(
2nπx

2
)dx

by oddness
=

2

1

∫ 1

0

f (x) sin(nπx)dx

(490) = 2

∫ 1

0

ex sin(nπx)dx = 2

∫ 1

0

e(1+nπi)x − e(1−nπi)x

2i
dx

(491) = −i
∫ 1

0

(e(1+nπi)x − e(1−nπi)x)dx = −i
(
e(1+nπi)x

1 + nπi
− e(1−nπi)x

1− nπi

) ∣∣∣1
0

(492) =

(
e1+nπi

1 + nπi
− e1−nπi

1− nπi

)
−
(

e0

1 + nπi
− e0

1− nπi

)

(493) =

(
e(cos(nπ) + i sin(nπ))

1 + nπi
− e(cos(nπ) + i sin(−nπ))

1− nπi

)
−
(

1

1 + nπi
− 1

1− nπi

)
(494) =

e(−1)n − 1

1 + nπi
− e(−1)n − 1

1− nπi
=

2e(−1)n − 2

1 + n2π2

(495) → f (x) ∼
∞∑
n=1

2e(−1)n − 2

1 + n2π2
sin(nπx) .

Page 107



Sohail Farhangi Recitation Notes for 12/1/2020

Problem 6.4.12: Find the Fourier cosine series for

(496) f (x) = 1 + x, 0 < x < π.

Solution: The fourier cosine series of f (x) is just the fourier series of g(x), the
even 2π-periodic extension of f (x), which is the 2π-periodic function defined
by the formula

(497) g(x) =

{
f (x) if 0 < x < π

f (−x) if − π < x < 0
.

Below is a graph of g(x) restricted to the interval (−π, π). The blue portion of
the graph is also the graph of f (x).
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Since g(x) is an even function (by construction, this will always be the case)
the fourier series of g(x) will not have any sine terms in it. We see that for any
n ≥ 1, we have

(498) an =
1

π

∫ π

−π
g(x) cos(

2πnx

2π
)dx

by evenness
=

2

π

∫ π

0

f (x) cos(nx)dx

(499) =
2

π

∫ π

0

(1+x) cos(nx)dx =
2

π
·(1+x)

sin(nx)

n

∣∣∣π
x=0
− 2

π

∫ π

0

1· sin(nx)

n
dx

(500) = 0− 2

π

(
− cos(nx)

n2

∣∣∣π
x=0

)
=

2 cos(nπ)− 2

πn2
=

{
0 if n is even
−4
πn2

if n is odd
.

Similarly, we see that

(501) a0
∗
=

1

2π

∫ π

−π
g(x)dx =

1

π

∫ π

0

f (x)dx =
1

π

∫ π

0

(1 + x)dx

(502)
(1 + x)2

2π

∣∣∣π
x=0

=
(π + 1)2 − 1

2π
=
π

2
+ 1.

Putting everything together, we see that

(503) f (x) ∼ π

2
+ 1 +

∞∑
n=0

− 4

π(2n + 1)2
cos((2n + 1)x) .
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Problem 6.3.18: Determine the function to which the Fourrier series of

(504) f (x) = |x|, −π < x < π

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined.

Luckily, the precise definition of f(x) or its periodic extension at these endpoints does not change the final answer

to this question.

Solution: We begin by examining a graph of f (x) and a graph of g(x), the
2π-periodic extension of f (x).

Figure 13. Graph of f(x).

Figure 14. Graph of g(x).
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We see that if we define g(nπ) = 1 for every odd integer n (since these are
precisely the points at which g(x) is currently undefined), then g(x) is a contin-
uous function whose derivative is piecewise continuous. It follows from Theorem
6.3.3 (stated below) that the Fourrier series of f (x) converges pointwise (ac-
tually, uniformly) to g(x) (after declaring that g(n) = 1 for every odd integer
n).

Theorem 6.3.3 (Page 504): Let f (or g in this problem) be a continuous
function on (−∞,∞) and periodic of period 2L. If f ′ is piecewise continuous
on [−L,L], then the Fourrier series of f converges uniformly to f on [−L,L]
and hence on any interval. That is, for each ε > 0, there exists an integer N0

(that depends on ε) such that

(505)

∣∣∣∣∣f (x)−

[
a0

2
+

N∑
n=1

{
an cos(

nπx

L
) + bn sin(

nπx

L
)
}]∣∣∣∣∣ < ε,

for all N ≥ N0, and all x ∈ (−∞,∞).

Remark: The astute reader will notice that Theorem 6.3.3 actually gives us
more than what the problem originally asked for since uniform convergence is
better than pointwise convergence.
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Problem 6.3.20: Determine the function to which the Fourrier series of

(506) f (x) =

{
0 if − π < x < 0,

x2 if 0 < x < π

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined.

Luckily, the precise definition of f(x) or its periodic extension at these endpoints does not change the final answer

to this question.

Solution: We begin by examining a graph of f (x) and a graph of g(x), the
2π-periodic extension of f (x).

Figure 15. Graph of f(x).

Figure 16. Graph of g(x).
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We apply Theorem 6.3.2 (stated below) in order to find the answer.

Theorem 6.3.2 (Page 503): If f and f ′ are piecewise continuous on
[−L,L], then for any x ∈ (−L,L),

(507)
a0

2
+

∞∑
n=1

{
an cos(

nπx

L
) + bn sin(

nπx

L
)
}

︸ ︷︷ ︸
Fourrier series of f(x)

=
1

2
[f (x+) + f (x−)].

For x = ±L, the series converges to 1
2[f (−L+) + f (L−)].

Noting that L = π in this problem, let us first determine the function that
the Fourrier series of f (x) converges pointwise to on [−π, π]. We see that on
(−π, 0) ∪ (0, π), f (x) is continuous, so the Fourrier series of f (x) converges
pointwise to f (x) for every x ∈ (−π, 0) ∪ (0, π). Since f (0−) = f (0+) = 0,
we see that the Fourrier series of f (x) converges to 0 when x = 0. Since
f (−π+) = 0 and f (π−) = π2, we see that the Fourrier series of f (x) converges
to 1

2π
2 when x = ±π. Recalling that the Fourrier series of f (x) is 2π-periodic,

we first define g(nπ) = 1
2π

2 whenever n is an odd integer and g(nπ) = 0
whenever n is an even integer (so that we may give a definition to g(x) in the
places that it is currently undefined), and then we see that the Fourrier series
of f (x) converges to g(x).
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Problem 6.4.17: Find the solution u(x, t) to the heat flow problem

(508)
∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0,

(509) µ(0, t) = µ(L, t) = 0, t > 0

(510) u(x, 0) = f (x), 0 < x < L,

with β = 5, L = π, and the initial value function

(511) f (x) = 1− cos(2x).

Solution: We know that a general solution to the heat flow problem is

(512) u(x, t) =

∞∑
n=1

cne
−β(nπL )2t sin(

nπx

L
) =

∞∑
n=1

cne
−5n2t sin(nx).

From equation (510), we see that

(513) 1− cos(2x) = u(x, 0) =

∞∑
n=1

cne
−5n2·0 sin(nx) =

∞∑
n=1

cn sin(nx),

So we have to compute the fourier sine series of 1 − cos(x)1. Before doing so,
we recall the following helpful trigonometric identity.

(514) sin(n + m) + sin(n−m) = 2 sin(n) cos(m).

We see that for n ≥ 1, we have

(515) cn =
2

L

∫ L

0

f (x) sin(nx)dx =
2

π

∫ π

0

(1− cos(2x)) sin(nx)dx

1Sometimes the function f(x) is a sum of sine functions, such as f(x) = 2 sin(3x)− π sin(4x). In cases such as these, we are (luckily) already

given the fourrier sine series of f(x)! We see that c3 = 2, c4 = −π, and cn = 0 for all other n ≥ 1.
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(516) =
2

π

∫ π

0

sin(nx)dx− 2

π

∫ π

0

sin(nx) cos(2x)dx

(517)
by (514)

=
2

π

(
−cos(nx)

n

∣∣∣π
x=0

)
− 2

π

∫ π

0

1

2
(sin((n+ 2)x) + sin((n− 2)x))dx

(518) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n + 2)x)

n + 2
+
− cos((n− 2)x)

n− 2

∣∣∣π
x=0

)

(519) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n+ 2)π) + 1

n+ 2
+
− cos((n− 2)π) + 1

n− 2

)

(520) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos(nπ) + 1

n + 2
+
− cos(nπ) + 1

n− 2

)

(521) =

(
− cos(nπ) + 1

π

)(
2

n
− (

1

n + 2
+

1

n− 2
)

)

(522) =

(
− cos(nπ) + 1

π

)(
2(n + 2)(n− 2)− n(n− 2)− n(n + 2)

n(n + 2)(n− 2)

)

(523) =

(
− cos(nπ) + 1

π

)(
−4

n3 − 4n

)
=

4 cos(nπ)− 4

L(n3 − 4n)

(524) =

{
0 if n is even

− 8
(n3−4n)π

if n is odd
.

It follows that our solution is given by
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(525) u(x, t) =

∞∑
n=1

− 8

((2n− 1)3 − 4(2n− 1))π
e−5(2n−1)2t sin((2n− 1)x) .
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Problem 6.2.24: Formally solve the vibrating string problem

(526)
∂2u

∂t2
= α

∂2u

∂x2
, 0 < x < L, t > 0,

(527) u(0, t) = u(L, t) = 0, t > 0,

(528) u(x, 0) = f (x), 0 ≤ x ≤ L,

(529)
∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ L,

with α = 4, L = π, and the initial value functions

(530) f (x) =

∞∑
n=1

1

n2
sin(nx),

(531) g(x) =

∞∑
n=1

(−1)n+1

n
sin(nx).

Solution: We know that a general solution of the vibrating string problem is

(532) u(x, t) =
∞∑
n=1

[
an cos(

nπα

L
t) + bn sin(

nπα

L
t)
]

sin(
nπx

L
) =

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx).

From equation (528), we see that

(533)

∞∑
n=1

1

n2
sin(nx) = f (x) = u(x, 0)

(534) =

∞∑
n=1

[an cos(4n · 0) + bn sin(4n · 0)] sin(nx)
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(535) =

∞∑
n=1

[an · 1 + bn · 0] sin(nx) =

∞∑
n=1

ansin(nx),

so an = 1
n2

for every n ≥ 1. Next, from equation (529), we see that

(536)

∞∑
n=1

(−1)n+1

n
sin(nx) = g(x) =

∂u

∂t
(x, 0)

(537) =
∂

∂t

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx)
∣∣∣
t=0

(538) =

∞∑
n=1

∂

∂t
[an cos(4nt) + bn sin(4nt)] sin(nx)

∣∣∣
t=0

(539) =

∞∑
n=1

[−4nan sin(4nt) + 4nbn cos(4nt)] sin(nx)
∣∣∣
t=0

(540) =

∞∑
n=1

[−4nan sin(4n · 0) + 4nbn cos(4n · 0)] sin(nx)

(541) =

∞∑
n=1

[−4nan · 0 + 4nbn · 1] sin(nx) =

∞∑
n=1

4nbnsin(nx).

The conclusion of equations (536)− (541) is

(542)

∞∑
n=1

(−1)n+1

n
sin(nx) =

∞∑
n=1

4nbnsin(nx),

which shows us that
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(543)
(−1)n+1

n
= 4nbn → bn =

(−1)n+1

4n2
for all n ≥ 1.

It follows that our solution is given by

(544) u(x, t) =

∞∑
n=1

[
1

n2
cos(4nt) +

(−1)n+1

4n2
sin(4nt)

]
sin(nx) .
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