
Problem 6.2.27 (Not part of the final this year): Consider the partial
differential equation

(1)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0.

Show that for a solution u(r, θ) = R(r)Θ(θ) having separated variables, we
must have

(2) r2R′′(r) + rR′(r)− λR(r) = 0, and

(3) Θ′′(θ) + λΘ(θ) = 0,

where λ is some constant.

Solution: We begin by plugging u(r, θ) = R(r)Θ(θ) into equation (1) to see
that

(4) 0 =
∂2

∂r2
(R(r)Θ(θ)) +

1

r

∂

∂r
(R(r)Θ(θ)) +

1

r2

∂2

∂θ2
(R(r)Θ(θ))

(5) = R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ)

(6) → − 1

r2
R(r)Θ′′(θ) = R′′(r)Θ(θ) +

1

r
R′(r)Θ(θ)

(7) → Θ′′(θ)

Θ(θ)
=
R′′(r) + 1

rR
′(r)

− 1
r2
R(r)

∗
= γ.

To derive equation (2) we use equation (7) to see that

(8)
R′′(r) + 1

rR
′(r)

− 1
r2
R(r)

= γ → R′′(r) +
1

r
R(r) = − γ

r2
R(r)

(9) → R′′(r) +
1

r
R′(r) +

γ

r2
R(r) = 0→ r2R′′(r) + rR′(r) + γR(r) = 0.
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To derive equation (3) we use equation (7) to see that

(10)
Θ′′(θ)

Θ(θ)
= γ → Θ′′(θ) = γΘ(θ)→ Θ′′(θ)− γΘ(θ) = 0.

We now see that we can pick our constant λ as λ = −γ.
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Problem 6.2.30 (Not part of the final this year): Consider the partial
differential equation

(11)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ
+
∂2u

∂z2
= 0.

Show that for a solution u(r, θ, z) = R(r)Θ(θ)Z(z) having separated variables,
we must have

(12) Θ′′(θ) + µΘ(θ) = 0,

(13) Z ′′(z) + λZ(z) = 0, and

(14) r2R′′(r) + rR′(r)− (r2λ + µ)R(r) = 0,

where µ and λ are constants.

Solution: We proceed as in problem 6.2.27 and plug u(r, θ, z) = R(r)Θ(θ)Z(z)
into equation (11) to see that

(15)
∂2

∂r2
(R(r)Θ(θ)Z(z)) +

1

r

∂

∂r
(R(r)Θ(θ)Z(z)) +

1

r2
∂2

∂θ2
(R(r)Θ(θ)Z(z)) +

∂2

∂z2
(R(r)Θ(θ)Z(z)) = 0

(16) → R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

We will now try to derive equation (13) from equation (16). Beginning with
equation (16) we see that

(17) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(18) −R(r)Θ(θ)Z ′′(z) = R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z)

(19) → Z ′′(z)

Z(z)
=
R′′(r)Θ(θ) + 1

r
R′(r)Θ(θ) + 1

r2
R(r)Θ′′(θ)

−R(r)Θ(θ)
∗
= −λ

(20) → Z ′′(z) = −λZ(z)→ Z ′′(z) + λZ(z) = 0.
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We will now derive equation (12) from equation (16). Beginning with equation
(16) we see that

(21) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(22) − 1

r2
R(r)Θ′′(θ)Z(z) = R′′(r)Θ(θ)Z(z) +

1

r
R′(r)Θ(θ)Z(z) +R(r)Θ(θ)Z ′′(z)

(23) → Θ′′(θ)

Θ(θ)
=
R′′(r)Z(z) + 1

r
R′(r)Z(z) +R(r)Z ′′(z)

− 1
r2
R(r)Z(z)

∗
= −µ

(24) → Θ′′(θ) = −µΘ(θ)→ Θ′′(θ) + µΘ(θ) = 0.

Lastly, we will derive equation (14) from equation (16). Beginning with equation
(16) we see that

(25) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(26) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) = − 1

r2
R(r)Θ′′(θ)Z(z)−R(r)Θ(θ)Z ′′(z)

(27) →
R′′(r) + 1

r
R′(r)

R(r)
=
− 1

r2
Θ′′(θ)Z(z)−Θ(θ)Z ′′(z)

Θ(θ)Z(z)
= − 1

r2
Θ′′(θ)

Θ(θ)
+
−Z ′′(z)

Z(z)
=

µ

r2
+ λ

(28) → R′′(r) +
1

r
R′(r) = (

µ

r2
+ λ)R(r)→ R′′(r) +

1

r
R′(r)− (

µ

r2
+ λ)R(r) = 0

(29) → r2R′′(r) + rR′(r)− (µ+ r2λ)R(r) = 0.
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Problem 6.2.13: Find the values of λ (eigenvalues) for which the following
problem has a nontrivial solution. Also determine the corresponding nontrivial
solutions (eigenfunctions).

(30) y′′ + λy = 0; 0 < x < π, y(0)− y′(0) = 0, y(π) = 0.

Solution: We begin by examining the characteristic equation for equation
(30) and see that

(31) r2 + λ = 0→ r = ±
√
−λ.

We now consider 3 separate cases based on the sign of λ.

Case 1: λ = 0.

In this case we see that r = 0 is a double root of the characteristic equation, so
the general solution to equation (30) is

(32) y(t) = c1e
0·t + c2te

0·t = c1 + c2t.

Noting that

(33) y′(t) = c2,

we proceed to make use of the initial conditions to see that

(34)
0 = y(0)− y′(0) = c1 − c2

0 = y(π) = c1 + πc2
→ c1 = c2

c1 = −πc2
→ (c1, c2) = (0, 0),

so we only have trivial solutions in this case.

Case 2: λ < 0.

In this case we see that r =
√
−λ and r = −

√
−λ are distinct real roots of the

characteristic equation, so the general solution to equation (30) is
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(35) y(t) = c1e
√
−λt + c2e

−
√
−λt.

Noting that

(36) y′(t) = c1

√
−λe

√
−λt − c2

√
−λe−

√
−λt,

we proceed to make use of the initial conditions to see that

(37)
0 = y(0)− y′(0) = c1(1−

√
−λ) + c2(1 +

√
−λ)

0 = y(π) = c1e
√
−λπ + c2e

−
√
−λπ

(38) →
[

1−
√
−λ 1 +

√
−λ

e
√
−λπ e−

√
−λπ

]
︸ ︷︷ ︸

A

[
c1

c2

]
=

[
0
0

]
. Since

(39) det(A) = e−
√
−λπ(1−

√
−λ)− e

√
−λπ(1 +

√
−λ) < 0,

we see that det(A) 6= 0, so A is a nonsingular matrix. It follows that equation
(38) only has the trivial solution of (c1, c2) = (0, 0), so we only have trivial
solutions to equation (30) in this case as well.

Case 3: λ > 0.

In this case we see that r =
√
−λ and r = −

√
−λ are distinct complex roots

of the characteristic equation, so the general solution to equation (30) is

(40) y(t) = c′1e
√
−λt + c′2e

−
√
−λt = c1 cos(

√
λt) + c2 sin(

√
λt).

Noting that

(41) y′(t) = −c1

√
λ sin(

√
λt) + c2

√
λ cos(

√
λt),

we proceed to make use of the initial conditions to see that
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(42)
0 = y(0)− y′(0) = c1 − c2

√
λ

0 = y(π) = c1 cos(
√
λπ) + c2 sin(

√
λπ)

(43) → c1 = c2

√
λ

0 = c1 cos(
√
λπ) + c2 sin(

√
λπ)

(44) →
c1 = c2

√
λ

0 = c2

(√
λ cos(

√
λπ) + sin(

√
λπ)
) .

In order to have nontrivial solutions to equation (30) we need to have nontrivial
solutions to system of equations in (44). We see that c1 = 0 if and only if c2 = 0,
and that c2 will be 0 if

(45)
√
λ cos(

√
λπ) + sin(

√
λπ) 6= 0.

It follows that we want to find the values of λ for which

(46)
√
λ cos(

√
λπ) + sin(

√
λπ) = 0,

so that we can find a corresponding c2 6= 0. Sadly, equation (46) is not some-
thing that can be explicitly solved by hand. Therefore, we let {λn}∞n=1 denote
the solutions to equation (46) as shown in the picture below.
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To be precise, we know that the solutions to equation (46) exist even though we
cannot write down exactly what they are, so we talk about them by enumerating
them as {λn}∞n=1.

We note that for any n ≥ 1, if λ = λn, then the second equation in (44) holds
for any value of c2, so we will have (c1, c2) = (c2

√
λn, c2) is a nontrivial solution

to equation (30). In conclusion, the eigenvalues of (30) are {λn}∞n=1 and the
eigen functions corresponding to any given λn are

(47) y(t) = c
(√

λn cos(
√
λnt) + sin(

√
λnt)

)
; c ∈ R.
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Problem 6.3.11: Find the fourier series of the function

(48) f (x) =

{
1 if − 2 < x < 0

x if 0 < x < 2
,

over the interval [−2, 2].

Solution: Since our interval has a radius of L = 2, we see that the basis we will
work with is (sin(2πnx

2L ))∞n=1∪ (cos(2πmx
2L ))∞m=1 which simplifies to (sin(πnx2 ))∞n=1∪

(cos(πmx2 ))∞m=1. We may now let a0, (an)∞n=1, and (bn)∞n=1 be such that

(49) f (x) ∼ a0 +

∞∑
n=1

an cos(
πnx

2
) +

∞∑
n=1

bn sin(
πnx

2
).

First let us determine the sequence (bn)∞n=1. We note that for each n ≥ 1 we
have

(50) bn =
1

L

∫ L

−L
f (x) sin(

2πnx

2L
)dx =

1

2

∫ 2

−2

f (x) sin(
πnx

2
)dx
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(51) =
1

2

∫ 2

−2

f (x) sin(
πnx

2
)dx =

1

2

∫ 0

−2

sin(
πnx

2
)dx +

1

2

∫ 2

0

x sin(
πnx

2
)dx.

We see that

(52)
1

2

∫ 0

−2

sin(
πnx

2
)dx = − 1

πn
cos(

πnx

2
)
∣∣∣0
x=−2

= − 2

πn
+

2

πn
cos(−πn)

(53) =

{
0 if n is even

− 2
πn if n is odd

.

Using integration by parts, we also see that

(54)
1

2

∫ 2

0

x sin(
πnx

2
)dx = − 1

πn
x cos(

πnx

2
)
∣∣∣2
x=0
−
∫ 2

0

− 2

πn
cos(

πnx

2
)dx

(55) = − 2

πn
cos(πn) +

(
2

π2n2
sin(

πnx

2
)
∣∣∣2
x=0

)
= − 2

πn
cos(πn)

(56) =

{
− 2
πn if n is even

2
πn if n is odd

.

Putting all of this together, we see that for n ≥ 1 we have

(57) bn =
1

2

∫ 0

−2

sin(
πnx

2
)dx +

1

2

∫ 2

0

x sin(
πnx

2
)dx =

{
− 2
πn if n is even

0 if n is odd
.

Now let us determine the sequence (an)∞n=1. We note that for n ≥ 1 we have

(58) an =
1

L

∫ L

−L
f (x) cos(

2πnx

2L
)dx =

1

2

∫ 2

−2

f (x) cos(
πnx

2
)dx

(59) =
1

2

∫ 0

−2

cos(
πnx

2
)dx +

1

2

∫ 2

0

x cos(
πnx

2
)dx.

Page 10



Sohail Farhangi Recitation Notes for 11/24/2020

We see that

(60)
1

2

∫ 0

−2

cos(
πnx

2
)dx =

1

πn
sin(

πnx

2
)
∣∣∣0
x=−2

= 0.

Using integration by parts, we also see that

(61)
1

2

∫ 2

0

x cos(
πnx

2
)dx =

1

πn
x sin(

πnx

2
)
∣∣∣2
x=0
−
∫ 2

0

2

πn
sin(

πn

2
)dx

(62) = − 1

πn

∫ 2

0

sin(
πnx

2
)dx =

2

π2n2
cos(

πnx

2
)
∣∣∣2
x=0

(63) =
2

π2n2
(cos(πn)− 1) =

{
0 if n is even
−4
π2n2

if n is odd
.

Putting all of this together, we see that for n ≥ 1 we have

(64) an =
1

2

∫ 0

−2

cos(
πnx

2
)dx+

1

2

∫ 2

0

x cos(
πnx

2
)dx =

{
0 if n is even

− 4
π2n2

if n is odd
.

Lastly, we see that

(65) a0 =
1

2L

∫ L

−L
f (x)dx =

1

4

∫ 2

−2

f (x)dx =
1

4

∫ 0

−2

1dx +
1

4

∫ 2

0

xdx

(66)
1

2
+

(
x2

8

∣∣∣2
x=0

)
= 1.

Finally, we see that

(67) f(x) ∼ 1 +

(
∞∑
n=1

2

π2n2
((−1)n − 1) cos(

πn

2
x)

)
+

(
∞∑
n=1

1

πn
((−1)n+1 − 1) sin(

πnx

2
)

)
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Problem 6.4.10: Find the Fourier sine series for

(68) f (x) = ex, 0 < x < 1.

Solution: The fourier sine series of f (x) is just the fourier series of g(x), the
odd 2-periodic extension of f (x), which is the 2-periodic function defined by
the formula

(69) g(x) =

{
f (x) if 0 < x < 1

−f (−x) if − 1 < x < 0
.

Below is a graph of g(x) restricted to the interval (−1, 1). The red portion of
the graph is also the graph of f (x).
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Since g(x) is an odd function (by construction, this will always be the case) the
fourier series of g(x) will not have any cosine terms in it. We see that for any
n ≥ 1, we have

(70) bn =
1

1

∫ 1

−1

g(x) sin(
2nπx

2
)dx

by oddness
=

2

1

∫ 1

0

f (x) sin(nπx)dx

(71) = 2

∫ 1

0

ex sin(nπx)dx = 2

∫ 1

0

e(1+nπi)x − e(1−nπi)x

2i
dx

(72) = −i
∫ 1

0

(e(1+nπi)x − e(1−nπi)x)dx = −i
(
e(1+nπi)x

1 + nπi
− e(1−nπi)x

1− nπi

) ∣∣∣1
0

(73) =

(
e1+nπi

1 + nπi
− e1−nπi

1− nπi

)
−
(

e0

1 + nπi
− e0

1− nπi

)

(74) =

(
e(cos(nπ) + i sin(nπ))

1 + nπi
− e(cos(nπ) + i sin(−nπ))

1− nπi

)
−
(

1

1 + nπi
− 1

1− nπi

)
(75) =

e(−1)n − 1

1 + nπi
− e(−1)n − 1

1− nπi
=

2e(−1)n − 2

1 + n2π2

(76) → f (x) ∼
∞∑
n=1

2e(−1)n − 2

1 + n2π2
sin(nπx) .
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Problem 6.4.12: Find the Fourier cosine series for

(77) f (x) = 1 + x, 0 < x < π.

Solution: The fourier cosine series of f (x) is just the fourier series of g(x), the
even 2π-periodic extension of f (x), which is the 2π-periodic function defined
by the formula

(78) g(x) =

{
f (x) if 0 < x < π

f (−x) if − π < x < 0
.

Below is a graph of g(x) restricted to the interval (−π, π). The blue portion of
the graph is also the graph of f (x).
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Since g(x) is an even function (by construction, this will always be the case)
the fourier series of g(x) will not have any sine terms in it. We see that for any
n ≥ 1, we have

(79) an =
1

π

∫ π

−π
g(x) cos(

2πnx

2π
)dx

by evenness
=

2

π

∫ π

0

f (x) cos(nx)dx

(80) =
2

π

∫ π

0

(1+x) cos(nx)dx =
2

π
·(1+x)

sin(nx)

n

∣∣∣π
x=0
− 2

π

∫ π

0

1 · sin(nx)

n
dx

(81) = 0− 2

π

(
− cos(nx)

n2

∣∣∣π
x=0

)
=

2 cos(nπ)− 2

πn2
=

{
0 if n is even
−4
πn2

if n is odd
.

Similarly, we see that

(82) a0
∗
=

1

2π

∫ π

−π
g(x)dx =

1

π

∫ π

0

f (x)dx =
1

π

∫ π

0

(1 + x)dx

(83)
(1 + x)2

2π

∣∣∣π
x=0

=
(π + 1)2 − 1

2π
=
π

2
+ 1.

Putting everything together, we see that

(84) f (x) ∼ π

2
+ 1 +

∞∑
n=0

− 4

π(2n + 1)2
cos((2n + 1)x) .
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