Problem 2.45: Find the volume of the solid cylinder E whose height is 4 and whose base is the disk $\{(r, \theta): 0 \leq r \leq 2 \cos (\theta)\}$.

Solution: We first look at the cross section of E in the xy-plane to help us determine our bounds.

$$
\begin{gather*}
\text { Volume }(E)=\iiint_{E} 1 d V=\int_{0}^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2 \cos (\theta)} r d r d \theta d z \tag{1}\\
=\left.\int_{0}^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} r^{2}\right|_{0} ^{2 \cos (\theta)} d \theta d z=\int_{0}^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos ^{2}(\theta) d \theta d z \tag{2}\\
=\int_{0}^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos (2 \theta)+1) d \theta d z=\left.\int_{0}^{4}\left(\frac{1}{2} \sin (2 \theta)+\theta\right)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} d z \tag{3}\\
=\int_{0}^{4} \pi d z=4 \pi . \tag{4}
\end{gather*}
$$

Problem 2.48: Find the volume of the solid cardiod of revolution $D=$ $\left\{(\rho, \varphi, \theta): 0 \leq \rho \leq \frac{1}{2}(1-\cos (\varphi)), 0 \leq \varphi \leq \pi, 0 \leq \theta \leq 2 \pi\right\}$.

Solution: In this problem, the description of the region is just a reordering of the description that we need to write down our triple integral in spherical coordinates to find the volume. We see that
(5) $\quad \operatorname{Volume}(D)=\iiint_{D} 1 d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\frac{1}{2}(1-\cos (\varphi))} \rho^{2} \sin (\varphi) d \rho d \varphi d \theta$

$$
\begin{equation*}
=\left.\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{1}{3} \rho^{3} \sin (\varphi)\right|_{0} ^{\frac{1}{2}(1-\cos (\varphi))} d \varphi d \theta \tag{6}
\end{equation*}
$$

(7) $\quad=\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{1}{3}(\underbrace{\frac{1}{2}(1-\cos (\varphi))}_{u})^{3} \underbrace{\sin (\varphi) d \varphi}_{2 d u} d \theta=\left.\int_{0}^{2 \pi} \frac{1}{6} u^{4}\right|_{\varphi=0} ^{\pi} d \theta$

$$
\begin{equation*}
=\left.\int_{0}^{2 \pi} \frac{1}{6}\left(\frac{1}{2}(1-\cos (\varphi))\right)^{4}\right|_{0} ^{\pi} d \theta=\int_{0}^{2 \pi} \frac{1}{6} d \theta=\frac{\pi}{3} . \tag{8}
\end{equation*}
$$

Problem 3.26: Consider the vector field $\vec{F}=\langle x,-y\rangle$ and the curve C which is the square with vertices $(\pm 1, \pm 1)$ with the counterclockwise orientation.

Figure 1. The curve C.
a) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ by finding a parameterization $\vec{r}(t)$ for the curve C.
b) By using the Fundamental Theorem for Line Integrals.

Solution to a: Letting C_{1}, C_{2}, C_{3}, and C_{4} be as in Figure 1, we see that

$$
\begin{equation*}
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r}+\int_{C_{3}} \vec{F} \cdot d \vec{r}+\int_{C_{4}} \vec{F} \cdot d \vec{r} \tag{9}
\end{equation*}
$$

Since

$$
\begin{equation*}
\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{-1}^{1}\langle 1,-t\rangle \cdot\langle 0,1\rangle d t=\int_{-1}^{1}-t d t=-\left.\frac{1}{2} t^{2}\right|_{-1} ^{1}=0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\int_{C_{2}} \vec{F} \cdot d \vec{r}=\int_{1}^{-1}\langle t,-1\rangle \cdot\langle 1,0\rangle d t=\int_{1}^{-1} t d t=\left.\frac{1}{2} t^{2}\right|_{1} ^{-1}=0 \tag{11}
\end{equation*}
$$

$$
\begin{gather*}
\int_{C_{3}} \vec{F} \cdot d \vec{r}=\int_{1}^{-1}\langle-1,-t\rangle \cdot\langle 0,1\rangle d t=\int_{1}^{-1}-t d t=-\left.\frac{1}{2} t^{2}\right|_{1} ^{-1}=0 \tag{12}\\
\int_{C_{4}} \vec{F} \cdot d \vec{r}=\int_{-1}^{1}\langle t, 1\rangle \cdot\langle 1,0\rangle d t=\int_{-1}^{1} t d t=\left.\frac{1}{2} t^{2}\right|_{-1} ^{1}=0 \tag{13}
\end{gather*}
$$

we see that

$$
\begin{equation*}
\int_{C} \vec{F} \cdot d \vec{r}=0+0+0+0=0 \tag{14}
\end{equation*}
$$

Solution to b: Since

$$
\begin{equation*}
\frac{\partial}{\partial y}(x)=0=\frac{\partial}{\partial x}(-y) \tag{15}
\end{equation*}
$$

we see that $\vec{F}=\langle x,-y\rangle$ is a conservative vector field. We now have 2 ways in which to finish the problem.

Finish 1: Since \vec{F} is a conservative vector field and C is a (simple, piecewise smooth, oriented) closed curve, we see that

$$
\begin{equation*}
\int_{C} \vec{F} \cdot d \vec{r}=0 \tag{16}
\end{equation*}
$$

Finish 2: We now want to find a potential function $\varphi(x, y)$ for \vec{F}. Since

$$
\begin{equation*}
\left\langle\varphi_{x}, \varphi_{y}\right\rangle=\nabla \varphi=\vec{F}=\langle x,-y\rangle \tag{17}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\varphi_{x}(x, y)=x \rightarrow \varphi(x, y)=\int x d x=\frac{1}{2} x^{2}+g(y) \rightarrow \tag{18}
\end{equation*}
$$

(19) $g^{\prime}(y)=\varphi_{y}(x, y)=-y \rightarrow g(y)=-\frac{1}{2} y^{2}+C \rightarrow \varphi(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)+C$.

Now let P be any point on the curve C. For example, we may take $P=$ $(1,1)$. Since the curve C can be seen as starting at P and ending at P, the Fundamental Theorem for Line Integrals tells us that

$$
\begin{equation*}
\int_{C} \vec{F} \cdot d \vec{r}=\varphi((1,1))-\varphi((1,1))=0 . \tag{20}
\end{equation*}
$$

Remark: We see that in Finish 2, we did not even need to determine what the function φ was in order to conclude that the final answer is 0 .

Problem 4.2: Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \tag{21}\\
2 & -1 & 1 \\
-3 & 1 & -3
\end{array}\right], \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \text { and } \vec{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

a) Determine conditions on b_{1}, b_{2}, and b_{3} that are necessary and sufficient for the system of equations $A \vec{x}=\vec{b}$ to be consistent.
b) For each of the following choices of \vec{b}, either show that the system $A \vec{x}=\vec{b}$ is inconsistent or exhibit the solution.

$$
\text { i) } \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { ii) } \vec{b}=\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right] \text { iii) } \vec{b}=\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right] \text { iv) } \vec{b}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Solution to a: We begin by representing the equation $A \vec{x}=\vec{b}$ as an augmented matrix that we will proceed to row reduce into reduced echelon form.
(22) $\left[\begin{array}{ccc|c}1 & -1 & -1 & b_{1} \\ 2 & -1 & 1 & b_{2} \\ -3 & 1 & -3 & b_{3}\end{array}\right] \stackrel{\substack{R_{2}-2 R_{1} \\ R_{3}+3 R_{1}}}{\longrightarrow}\left[\begin{array}{ccc|ccl}1 & -1 & -1 & b_{1} & & \\ 0 & 1 & 3 & -2 b_{1} & +b_{2} & \\ 0 & -2 & -6 & 3 b_{1} & & +b_{3}\end{array}\right]$
$(23) \xrightarrow{R_{3}+2 R_{2}}\left[\begin{array}{ccc|ccl}1 & -1 & -1 & b_{1} & & \\ 0 & 1 & 3 & -2 b_{1} & +b_{2} & \\ 0 & 0 & 0 & -b_{1} & +2 b_{2} & +b_{3}\end{array}\right]$
At this point you can already deduce when the system is consistent.

$$
\xrightarrow{R_{1}+R_{2}}\left[\begin{array}{lll|lll}
1 & 0 & 2 & -b_{1} & +b_{2} & \tag{24}\\
0 & 1 & 3 & -2 b_{1} & +b_{2} & \\
0 & 0 & 0 & -b_{1} & +2 b_{2} & +b_{3}
\end{array}\right]
$$

From the third row of the augmented matrix in equation (24), we see that

$$
\begin{equation*}
-b_{1}+2 b_{2}+b_{3}=0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=0 \tag{25}
\end{equation*}
$$

and that the system of equations $A \vec{x}=\vec{b}$ is consistent if and only if equation (25) is true. Furthermore, in the event that equation (25) is true, we see that equations represented in equation (24) are

$$
\begin{align*}
& x_{1}+2 x_{3}=-b_{1}+b_{2} \tag{26}\\
& x_{2}+x_{3}=-2 b_{1}+b_{2} \\
& \rightarrow x_{1}=-2 x_{3}-b_{1}+b_{2} \tag{27}\\
& x_{2}=-x_{3}-2 b_{1}+b_{2}
\end{align*}, x_{3} \text { is free. }
$$

Solution to b: In part a we obtained a formula for \vec{x} in terms of \vec{b}, so we will now apply that formula to each of the vectors.
$\mathbf{i}: \vec{b}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \rightarrow-b_{1}+2 b_{2}+b_{3}=2 \neq 0 \rightarrow$ The system is inconsistent.
ii: $\vec{b}=\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right] \rightarrow-b_{1}+2 b_{2}+b_{3}=0$

$$
\rightarrow \begin{align*}
& x_{1}=-2 x_{3}-b_{1}+b_{2} \tag{28}\\
& x_{2}=-x_{3}-2 b_{1}+b_{2}
\end{align*}, x_{3} \text { is free }
$$

$$
\rightarrow\left[\begin{array}{l}
x_{1} \tag{29}\\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3}-3 \\
-x_{3}-8 \\
x_{3}
\end{array}\right], x_{3} \text { is free }
$$

iii: $\vec{b}=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right] \rightarrow-b_{1}+2 b_{2}+b_{3}=0$

$$
\rightarrow \begin{align*}
& x_{1}=-2 x_{3}-b_{1}+b_{2} \tag{30}\\
& x_{2}=-x_{3}-2 b_{1}+b_{2}
\end{align*}, x_{3} \text { is free }
$$

$$
\rightarrow\left[\begin{array}{l}
x_{1} \tag{31}\\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3}-4 \\
-x_{3}-11 \\
x_{3}
\end{array}\right], x_{3} \text { is free }
$$

$\mathbf{i v}: \vec{b}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right] \rightarrow-b_{1}+2 b_{2}+b_{3}=4 \neq 0 \rightarrow$ The system is inconsistent.

