Problem 4.2.51: Three people play a game in which there are always 2 winners and 1 loser. They have the understanding that the loser always gives each winner an amount equal to what the winner already has. After 3 games, each has lost once and each has \$24. With how much money did each begin?

Solution: Let us assume that player 1 begins with \$x, player 2 begins with \$y, and player 3 begins with \$z. We may further assume without loss of generality that player 1 loses round 1, player 2 loses round 2, and player 3 loses round 3. We then obtain the following table.

	Player 1	Player 2	Player 3
Money at the Start	Х	У	Z
Money at the end of round 1	x-y-z	2y	2z
Money at the end of round 2	2x-2y-2z	-x+3y-z	4z
Money at the end of round 3	4x-4y-4z	-2x+6y-2z	-x-y+7z

We now obtain and solve the following system of equations.

$$(2) \qquad \stackrel{R_1 + 4R_3}{\rightarrow} \left[\begin{array}{ccccc} 0 & -8 & 24 & | & 120 \\ 0 & 8 & -16 & | & -24 \\ -1 & -1 & 7 & | & 24 \end{array} \right] \stackrel{R_1 \leftrightarrow R_3}{\rightarrow} \left[\begin{array}{cccccc} -1 & -1 & 7 & | & 24 \\ 0 & 8 & -16 & | & -24 \\ 0 & -8 & 24 & | & 120 \end{array} \right]$$

$$(3) \xrightarrow{-R_1} \begin{bmatrix} 1 & 1 & -7 & | & -24 \\ 0 & 8 & -16 & | & -24 \\ 0 & -8 & 24 & | & 120 \end{bmatrix} \xrightarrow{R_3+R_2} \begin{bmatrix} 1 & 1 & -7 & | & -24 \\ 0 & 8 & -16 & | & -24 \\ 0 & 0 & 8 & | & 96 \end{bmatrix} \xrightarrow{\frac{1}{8}R_3} \xrightarrow{R_3} \begin{bmatrix} 1 & 1 & -7 & | & -24 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 1 & | & 12 \end{bmatrix}$$

(4)
$$\begin{array}{c|c} R_{1}-R_{2} \\ \rightarrow \end{array} \begin{bmatrix} 1 & 0 & -5 & | & -21 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 1 & | & 12 \end{bmatrix} \xrightarrow{R_{1}+5R_{3}} \begin{bmatrix} 1 & 0 & 0 & | & 39 \\ 0 & 1 & 0 & | & 21 \\ 0 & 0 & 1 & | & 12 \end{bmatrix}$$
(5)
$$\rightarrow (x, y, z) = \boxed{(39, 21, 12)}.$$

For the following problems, determine all possibilities for the solution set (from among infinitely many solutions, a unique solution, or no solution) of the system of linear equations described. After determining the possibilities for the solution set create concrete examples of systems corresponding to each possibility.

Problem 4.3.8: A homogeneous system of 4 equations in 5 unknowns.

Problem 4.3.10: A system of 4 equations in 3 unknowns.

Problem 4.3.14: A system of 3 equations in 4 unknowns that has $x_1 = -1$, $x_2 = 0$, $x_3 = 2$, $x_4 = -3$ as a solution.

Problem 4.3.16: A homogeneous system of 3 equations in 3 unknowns.

Problem 4.3.18: A homogeneous system of 3 equations in 3 unknowns that has solution $x_1 = 1$, $x_2 = 3$, $x_3 = -1$.

4.3.Bonus: A system of 2 equations in 3 unknowns.

You are free to make use of the following facts.

- (1) Any homogeneous system of equations is consistent.
 - This is seen by the fact that the trivial solution (the solution in which all variables are equal to 0) is always a solution to a homogeneous system of equations.
- (2) If a consistent system of equations (a system of equations with at least 1 solution) has more than 1 solution, then it has infinitely many solutions.
- (3) If a consistent system of equations has more variables than equations, then it has infinitely many solutions.

Solution to 4.3.8: By facts (1) and (3) we see that there are infinitely many solutions.

(6) $\begin{array}{cccc} x_1 & & = & 0 \\ x_2 & & = & 0 \\ x_3 & & = & 0 \\ x_4 + & x_5 & = & 0 \end{array}$ has infinitely many solutions.

Solution to 4.3.10: Anything is possible. The system could be inconsistent, it could have a unique solution, or it could have infinitely many solutions.

(7)

$$\begin{array}{rcl}
x_1 & = 0 \\
x_2 & = 0 \\
x_3 & = 0 \\
2x_3 & = 2
\end{array}$$
has no solutions.

$$\begin{array}{rcl}
x_1 & = 0 \\
x_2 & = 0 \\
x_3 & = 0 \\
2x_3 & = 0
\end{array}$$
has a unique solution.

$$\begin{array}{rcl}
x_1 & + x_2 & = 0 \\
2x_1 & + 2x_2 & = 0 \\
x_3 & = 0
\end{array}$$
(9)

$$\begin{array}{rcl}
x_1 & + x_2 & = 0 \\
2x_1 & + 2x_2 & = 0 \\
x_3 & = 0
\end{array}$$
has infinitely many solutions.

 $2x_3 = 0$

Solution to 4.3.14: By facts (1) and (3) we see that there are infinitely many solutions.

(10)
$$\begin{array}{cccc} x_1 & & - & x_4 &= & 2 \\ x_2 & & & = & 0 \\ & & & x_3 &+ & 2x_4 &= & -4 \end{array}$$
 has infinitely many solutions.

Solution to 4.3.16: The system has to be consistent since it is homogeneous. The system could have a unique solution, or it could have infinitely many solutions.

(11)

$$\begin{array}{rcrrr}
x_1 &= 0\\
x_2 &= 0 & \text{has a unique solution.}\\
x_3 &= 0\\
\end{array}$$
(12)

$$\begin{array}{rcrrr}
x_1 &= 0\\
x_2 + x_3 &= 0 & \text{has infinitely many solutions.}\\
2x_2 + 2x_3 &= 0\\
\end{array}$$

Solution to 4.3.18: The system is consistent by fact (1). Since we are given a solution other than the trivial solution, fact (2) tells us that there are infinitely many solutions.

(13)
$$\begin{aligned} x_1 + x_2 + 4x_3 &= 0\\ x_2 + 3x_3 &= 0 \end{aligned} \text{ has infinitely many solutions.} \\ x_1 &+ x_3 &= 0 \end{aligned}$$

Solution to 4.3.Bonus: It is possible that the system is inconsistent and has no solutions. By fact 1, the only possible alternative is an infinite number of solutions.

(14)
$$\begin{array}{rcrrr} x_1 &+ & x_2 &+ & 4x_3 &= & 0 \\ x_1 &+ & x_2 &+ & 4x_3 &= & 1 \end{array} \text{ has no solutions.}$$

Modified Problem 4.3.23: For what value(s) of a does the following system have nontrivial solutions?

(16)
$$\begin{aligned} x_1 &+ 2x_2 + x_3 &= 0\\ -x_1 &+ ax_2 + x_3 &= 0\\ 3x_1 &+ 4x_2 - x_3 &= 0 \end{aligned}$$

Solution: Let us first represent the system of equations as an augmented matrix that we will reduce into echelon form.

(17)
$$\begin{bmatrix} 1 & 2 & 1 & | & 0 \\ -1 & a & 1 & | & 0 \\ 3 & 4 & -1 & | & 0 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & a + 2 & 2 & | & 0 \\ 0 & -2 & -4 & | & 0 \end{bmatrix}$$

In order to continue the row reduction, we would like to use the row operation $R_3 + \frac{2}{a+2}R_2$, but this is only valid if $a + 2 \neq 0$, which occurs if and only if a = -2. So let us assume that $a \neq -2$ for now and we will handle a = -2 as a separate case.

(18)
$$\begin{array}{c} R_3 + \frac{2}{a+2}R_2 \\ \rightarrow \end{array} \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & a+2 & 2 & | & 0 \\ 0 & 0 & \frac{4}{a+2} - 4 & | & 0 \end{bmatrix}$$

If $\frac{4}{a+2} - 4 \neq 0$, then equation (16) will only have the trivial solution. Since we are searching for the value(s) of a that result in nontrivial solutions to equation (16), we solve $\frac{4}{a+2} - 4 = 0$ and see that a = -1. The only other possible value of a is a = -2 which we will now consider as a separate case. Plugging a = -2 back into (17) we obtain

(19)
$$\begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 0 & 2 & | & 0 \\ 0 & -2 & -4 & | & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & -2 & -4 & | & 0 \\ 0 & 0 & 2 & | & 0 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_2} \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ \frac{1}{2}R_3} \rightarrow \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Since the system represented in equation (19) only has the trivial solution, we see that -2 is not one of the desired values of a. In conclusion, the only value of a that results in nontrivial solutions for equation (16) is a = -1.