
Review Problem 1.92: What point on the plane x + y + 4z = 8 is closest
to the origin? Give an argument showing that you have found an absolute
minimum of the distance function.

Solution: Note that for any (x, y, z) on the plane x + y + 4z = 8 we have

(1) z = 2− 1

4
x− 1

4
y,

from which we see that

(2) d((x, y, z), (0, 0, 0)) =
√

(x− 0)2 + (y − 0)2 + (z − 0)2

(3) =

√
x2 + y2 + (2− 1

4
x− 1

4
y)2 =

√
4− x− y +

1

8
xy +

17

16
x2 +

17

16
y2.

We recall that if f (x, y) is any nonnegative function, then f (x, y) and f 2(x, y)
have their (local and global) minimums and maximums occur at the same values
of (x, y). It follows that we want to optimize the function

(4) f (x, y) = 4− x− y +
1

8
xy +

17

16
x2 +

17

16
y2.

Since any global minimum of f (x, y) is also a local minimum, we see that the
global minimum of f (if it exists) is at a critical point. We now begin finding
the critical points of f . We see that

(5)
0 = fx(x, y) = 17

8 x + 1
8y − 1

0 = fy(x, y) = 17
8 y + 1

8x− 1
→ 0 = (

17

8
x +

1

8
y − 1)− (

17

8
y +

1

8
x− 1)

(6) = 2x− 2y → x = y → x = y =
4

9
.

We see that (49,
4
9) is the only critical point. We will now use the second deriv-

ative test to verify that (49,
4
9) is a local minimum. We see that
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(7)

fxx(x, y) = 17
8

fyy(x, y) = 17
8

fxy(x, y) = 1
8

→ D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2

(8) =
17

8
· 17

8
− (

1

8
)2 =

9

2
→ D(

4

9
,

4

9
) =

9

2
> 0.

Since we also see that fxx(
4
9,

4
9) = 17

8 > 0, the second derivative test tells us that
(49,

4
9) is indeed a local minimum of f (x, y). It remains to show that f (x, y)

attains its global minimum at (49,
4
9). Firstly, we note that f (49,

4
9) = 4

√
2

3 . Since
4
√
2

3 < 5 (I picked 5 randomly, I just needed some larger number), let us consider

the region R of (x, y) for which (x, y, 2− 1

4
x− 1

4
y︸ ︷︷ ︸

z

) has a distance of at most

5 from the origin. This is the same as R = {(x, y) | f (x, y) ≤ 5}.
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Since R is a closed and bounded region, and f (x, y) is a continuous function
function, we know that g attains an absolute minimum on R. The point (49,

4
9)

is inside of R, so the minimum of g is not attained on the boundary of R (as
that is where the distance to the origin is exactly 5). Since the minimum of g
on R is attained on the interior, we see that it must be obtained at a critical
point of f (x, y), so it is attained at (49,

4
9). For any point (x, y) outside of R,

we have f (x, y) > 5 (by the very definition of R), so the global minimum of

f (x, y) is 4
√
2

3 and is attained at (49,
4
9). It follows that the point on the plane

x + y + 2z = 8 that is closest to the origin is (
4

9
,

4

9
,

16

9
) .
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Review Problem 1.98: Use Lagrange multipliers to find the dimensions of
the right circular cylinder of minimum surface area (including the circular ends)
with a volume of 32π in3.

Solution: We recall that a cylinder of radius r and height h has a volume of
V = πr2h and a surface area (including the 2 circular ends) of S = 2πr2+2πrh.
It follows that we want to optimize the function f (r, h) = 2πr2 + 2πrh subject
to the constraint 0 = g(r, h) = πr2h− 32π. Since

(9) ∇f (r, h) = 〈4πr + 2πh, 2πr〉 and ∇g(r, h) = 〈2πrh, πr2〉, we obtain

(10)
4πr + 2πh = 2πλrh

2πr = πλr2

πr2h = 32π

r 6=0→
2r + h = λrh

2 = λr
r2h = 32

→
2r + h = 2h

2 = λr
r2h = 32

(11) →
2r = h
2 = λr
r2h = 32

→
2r = h
2 = λr

2r3 = 32
→ r =

3
√

16 = 2
3
√

2→ h = 4
3
√

2.

Since the cylinder does not have a maximum surface area when subjected to
the constraint V = 32π, we see that the critical point that we found has to
correspond to a local minimum. The extreme/boundary cases occur when either
r →∞ or h→∞, in which case we also have S →∞. It follows that f (r, h)

attains a minimum value of 24π 3
√

4 when (r, h) = (2
3
√

2, 4
3
√

2) .
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Review Problem 2.26: Rewrite the the triple integral

(12)

∫ 2

0

∫ 9−x2

0

∫ x

0

f (x, y, z)dydzdx

using the order dzdxdy.

First Solution: We envision the 3-dimensional solid that is described by
the bounds of the triple integral in the currect order of dydzdx, and then we
traverse the solid using the new order of dzdxdy.
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(13)

∫ 2

0

∫ 2

y

∫ 9−x2

0

f (x, y, z)dzdxdy .

Second Solution: In order to avoid drawing and thinking about 3-dimensional
regions, we will perform 2 separate changes of order. We will first change the
order from dydzdx to dzdydx, and then we will change the order from dzdydx
to dzdxdy.
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(14)

∫ 2

0

∫ 9−x2

0

∫ x

0

f (x, y, z)dydzdx =

∫ 2

0

∫ x

0

∫ 9−x2

0

f (x, y, z)dzdydx

(15)

∫ 2

0

∫ x

0

∫ 9−x2

0

f (x, y, z)dzdydx =

∫ 2

0

∫ 2

y

∫ 9−x2

0

f (x, y, z)dzdxdy .
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Review Problem 2.34: Find the volume of the solid S that is bounded by
the parabolic cylinders z = y2 + 1 and z = 2− x2.

Solution: S is a 3 dimensional solid that is defined as the region inbetween
2 surfaces. First, we find the intersection I of z = y2 + 1 and z = 2 − x2 to
satisfy y2 + 1 = 2− x2 or x2 + y2 = 1.
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It follows that the (x, y)-coordinates of I are the circle of radius 1 centered
at the origin. Note that the intersection I is not itself a circle since the z-
coordinate is not constant on the intersection. NThankfully, for the purposes of
calculating the volume of S, we only need to know the projection R of I onto
the xy-plane (along with the interior of the projection), which is the same as
knowing the the (x, y)-coordinates of I .

(16) Volume(S) =

∫∫
R

(ztop − zbottom)dA

(17) =

∫ 2π

0

∫ 1

0

(
(2− (r cos(θ))2)− ((r sin(θ))2 + 1)

)
rdrdθ

Page 9



Sohail Farhangi Recitation Notes for 9/29/2020

(18) =

∫ 2π

0

∫ 1

0

(
1− r2 cos2(θ)− r2 sin2(θ)

)
rdrdθ

(19) =

∫ 1

0

∫ 2π

0

(
r − r3

)
dθdr =

∫ √3
0

(
rθ − r3θ

) ∣∣∣2π
θ=0
dr

(20) =

∫ 1

0

2π
(
r − r3

)
dr = 2π

(
1

2
r2 − 1

4
r4
) ∣∣∣1

0
=
π

2
.

Remark: We could have also calculated the volume by using a triple integral
in cylindrical coordinates as follows.

(21) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ √3
0

∫ 2−r2 cos2(θ)

r2 sin2(θ)+1

rdzdrdθ = π .
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