Review Problem 1.92: What point on the plane $x+y+4 z=8$ is closest to the origin? Give an argument showing that you have found an absolute minimum of the distance function.

Solution: Note that for any (x, y, z) on the plane $x+y+4 z=8$ we have

$$
\begin{equation*}
z=2-\frac{1}{4} x-\frac{1}{4} y \tag{1}
\end{equation*}
$$

from which we see that

$$
\begin{align*}
& \text { (2) } \mathrm{d}((x, y, z),(0,0,0))=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}} \tag{2}\\
& \text { (3) }=\sqrt{x^{2}+y^{2}+\left(2-\frac{1}{4} x-\frac{1}{4} y\right)^{2}}=\sqrt{4-x-y+\frac{1}{8} x y+\frac{17}{16} x^{2}+\frac{17}{16} y^{2}} .
\end{align*}
$$

We recall that if $f(x, y)$ is any nonnegative function, then $f(x, y)$ and $f^{2}(x, y)$ have their (local and global) minimums and maximums occur at the same values of (x, y). It follows that we want to optimize the function

$$
\begin{equation*}
f(x, y)=4-x-y+\frac{1}{8} x y+\frac{17}{16} x^{2}+\frac{17}{16} y^{2} . \tag{4}
\end{equation*}
$$

Since any global minimum of $f(x, y)$ is also a local minimum, we see that the global minimum of f (if it exists) is at a critical point. We now begin finding the critical points of f. We see that

$$
\begin{align*}
& 0=f_{x}(x, y)=\frac{17}{8} x+\frac{1}{8} y-1 \tag{5}\\
& 0=f_{y}(x, y)=\frac{17}{8} y+\frac{1}{8} x-1
\end{align*} \rightarrow 0=\left(\frac{17}{8} x+\frac{1}{8} y-1\right)-\left(\frac{17}{8} y+\frac{1}{8} x-1\right)
$$

$$
\begin{equation*}
=2 x-2 y \rightarrow x=y \rightarrow x=y=\frac{4}{9} . \tag{6}
\end{equation*}
$$

We see that $\left(\frac{4}{9}, \frac{4}{9}\right)$ is the only critical point. We will now use the second derivative test to verify that $\left(\frac{4}{9}, \frac{4}{9}\right)$ is a local minimum. We see that

$$
\begin{align*}
& f_{x x}(x, y)=\frac{17}{8} \\
& f_{y y}(x, y)=\frac{17}{8} \rightarrow D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}(x, y)^{2} \tag{7}\\
& f_{x y}(x, y)=\frac{1}{8}
\end{align*}
$$

$$
\begin{equation*}
=\frac{17}{8} \cdot \frac{17}{8}-\left(\frac{1}{8}\right)^{2}=\frac{9}{2} \rightarrow D\left(\frac{4}{9}, \frac{4}{9}\right)=\frac{9}{2}>0 . \tag{8}
\end{equation*}
$$

Since we also see that $f_{x x}\left(\frac{4}{9}, \frac{4}{9}\right)=\frac{17}{8}>0$, the second derivative test tells us that $\left(\frac{4}{9}, \frac{4}{9}\right)$ is indeed a local minimum of $f(x, y)$. It remains to show that $f(x, y)$ attains its global minimum at $\left(\frac{4}{9}, \frac{4}{9}\right)$. Firstly, we note that $f\left(\frac{4}{9}, \frac{4}{9}\right)=\frac{4 \sqrt{2}}{3}$. Since $\frac{4 \sqrt{2}}{3}<5$ (I picked 5 randomly, I just needed some larger number), let us consider the region R of (x, y) for which $(x, y, \underbrace{2-\frac{1}{4} x-\frac{1}{4} y})$ has a distance of at most 5 from the origin. This is the same as $R=\{(x, y) \mid f(x, y) \leq 5\}$.

Since R is a closed and bounded region, and $f(x, y)$ is a continuous function function, we know that g attains an absolute minimum on R. The point $\left(\frac{4}{9}, \frac{4}{9}\right)$ is inside of R, so the minimum of g is not attained on the boundary of R (as that is where the distance to the origin is exactly 5). Since the minimum of g on R is attained on the interior, we see that it must be obtained at a critical point of $f(x, y)$, so it is attained at $\left(\frac{4}{9}, \frac{4}{9}\right)$. For any point (x, y) outside of R, we have $f(x, y)>5$ (by the very definition of R), so the global minimum of $f(x, y)$ is $\frac{4 \sqrt{2}}{3}$ and is attained at $\left(\frac{4}{9}, \frac{4}{9}\right)$. It follows that the point on the plane $x+y+2 z=8$ that is closest to the origin is $\left(\frac{4}{9}, \frac{4}{9}, \frac{16}{9}\right)$.

Review Problem 1.98: Use Lagrange multipliers to find the dimensions of the right circular cylinder of minimum surface area (including the circular ends) with a volume of $32 \pi \mathrm{in}^{3}$.

Solution: We recall that a cylinder of radius r and height h has a volume of $V=\pi r^{2} h$ and a surface area (including the 2 circular ends) of $S=2 \pi r^{2}+2 \pi r h$. It follows that we want to optimize the function $f(r, h)=2 \pi r^{2}+2 \pi r h$ subject to the constraint $0=g(r, h)=\pi r^{2} h-32 \pi$. Since
(9) $\nabla f(r, h)=\langle 4 \pi r+2 \pi h, 2 \pi r\rangle$ and $\nabla g(r, h)=\left\langle 2 \pi r h, \pi r^{2}\right\rangle$, we obtain

$$
\begin{align*}
& 2 r=h \quad 2 r=h \\
& \rightarrow 2=\lambda r \rightarrow 2=\lambda r \rightarrow r=\sqrt[3]{16}=2 \sqrt[3]{2} \rightarrow h=4 \sqrt[3]{2} \text {. } \tag{11}\\
& r^{2} h=32 \quad 2 r^{3}=32
\end{align*}
$$

Since the cylinder does not have a maximum surface area when subjected to the constraint $V=32 \pi$, we see that the critical point that we found has to correspond to a local minimum. The extreme/boundary cases occur when either $r \rightarrow \infty$ or $h \rightarrow \infty$, in which case we also have $S \rightarrow \infty$. It follows that $f(r, h)$ attains a minimum value of $24 \pi \sqrt[3]{4}$ when $(r, h)=(2 \sqrt[3]{2}, 4 \sqrt[3]{2})$.

Review Problem 2.26: Rewrite the the triple integral

$$
\begin{equation*}
\int_{0}^{2} \int_{0}^{9-x^{2}} \int_{0}^{x} f(x, y, z) d y d z d x \tag{12}
\end{equation*}
$$

using the order $d z d x d y$.
First Solution: We envision the 3-dimensional solid that is described by the bounds of the triple integral in the currect order of $d y d z d x$, and then we traverse the solid using the new order of $d z d x d y$.

$$
\begin{equation*}
\int_{0}^{2} \int_{y}^{2} \int_{0}^{9-x^{2}} f(x, y, z) d z d x d y \tag{13}
\end{equation*}
$$

Second Solution: In order to avoid drawing and thinking about 3-dimensional regions, we will perform 2 separate changes of order. We will first change the order from $d y d z d x$ to $d z d y d x$, and then we will change the order from $d z d y d x$ to $d z d x d y$.

(14) $\int_{0}^{2} \int_{0}^{9-x^{2}} \int_{0}^{x} f(x, y, z) d y d z d x=\int_{0}^{2} \int_{0}^{x} \int_{0}^{9-x^{2}} f(x, y, z) d z d y d x$

(15)

$$
\int_{0}^{2} \int_{0}^{x} \int_{0}^{9-x^{2}} f(x, y, z) d z d y d x=\int_{0}^{2} \int_{y}^{2} \int_{0}^{9-x^{2}} f(x, y, z) d z d x d y
$$

Review Problem 2.34: Find the volume of the solid S that is bounded by the parabolic cylinders $z=y^{2}+1$ and $z=2-x^{2}$.

Solution: S is a 3 dimensional solid that is defined as the region inbetween 2 surfaces. First, we find the intersection I of $z=y^{2}+1$ and $z=2-x^{2}$ to satisfy $y^{2}+1=2-x^{2}$ or $x^{2}+y^{2}=1$.

It follows that the (x, y)-coordinates of I are the circle of radius 1 centered at the origin. Note that the intersection I is not itself a circle since the z coordinate is not constant on the intersection. NThankfully, for the purposes of calculating the volume of S, we only need to know the projection R of I onto the $x y$-plane (along with the interior of the projection), which is the same as knowing the the (x, y)-coordinates of I.

$$
\begin{gather*}
\operatorname{Volume}(S)=\iint_{R}\left(z_{\mathrm{top}}-z_{\mathrm{bottom}}\right) d A \tag{16}\\
=\int_{0}^{2 \pi} \int_{0}^{1}\left(\left(2-(r \cos (\theta))^{2}\right)-\left((r \sin (\theta))^{2}+1\right)\right) r d r d \theta \tag{17}
\end{gather*}
$$

$$
\begin{align*}
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2} \cos ^{2}(\theta)-r^{2} \sin ^{2}(\theta)\right) r d r d \theta \tag{18}\\
= & \int_{0}^{1} \int_{0}^{2 \pi}\left(r-r^{3}\right) d \theta d r=\left.\int_{0}^{\sqrt{3}}\left(r \theta-r^{3} \theta\right)\right|_{\theta=0} ^{2 \pi} d r \tag{19}\\
= & \int_{0}^{1} 2 \pi\left(r-r^{3}\right) d r=\left.2 \pi\left(\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right)\right|_{0} ^{1}=\frac{\pi}{2} \tag{20}
\end{align*}
$$

Remark: We could have also calculated the volume by using a triple integral in cylindrical coordinates as follows.
(21) $\quad \operatorname{Volume}(S)=\iiint_{S} 1 d V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{r^{2} \sin ^{2}(\theta)+1}^{2-r^{2} \cos ^{2}(\theta)} r d z d r d \theta=\pi$.

