Review Problem 1.92: What point on the plane x + y + 4z = 8 is closest to the origin? Give an argument showing that you have found an absolute minimum of the distance function.

Solution: Note that for any (x, y, z) on the plane x + y + 4z = 8 we have

(1)
$$z = 2 - \frac{1}{4}x - \frac{1}{4}y,$$

from which we see that

(2)
$$d((x, y, z), (0, 0, 0)) = \sqrt{(x - 0)^2 + (y - 0)^2 + (z - 0)^2}$$

(3)
$$=\sqrt{x^2+y^2+(2-\frac{1}{4}x-\frac{1}{4}y)^2} = \sqrt{4-x-y+\frac{1}{8}xy+\frac{17}{16}x^2+\frac{17}{16}y^2}.$$

We recall that if f(x, y) is any nonnegative function, then f(x, y) and $f^2(x, y)$ have their (local and global) minimums and maximums occur at the same values of (x, y). It follows that we want to optimize the function

(4)
$$f(x,y) = 4 - x - y + \frac{1}{8}xy + \frac{17}{16}x^2 + \frac{17}{16}y^2.$$

Since any global minimum of f(x, y) is also a local minimum, we see that the global minimum of f (if it exists) is at a critical point. We now begin finding the critical points of f. We see that

(5)
$$\begin{array}{c} 0 = f_x(x,y) = \frac{17}{8}x + \frac{1}{8}y - 1\\ 0 = f_y(x,y) = \frac{17}{8}y + \frac{1}{8}x - 1 \end{array} \rightarrow 0 = \left(\frac{17}{8}x + \frac{1}{8}y - 1\right) - \left(\frac{17}{8}y + \frac{1}{8}x - 1\right)$$

(6)
$$= 2x - 2y \rightarrow x = y \rightarrow x = y = \frac{4}{9}$$

We see that $(\frac{4}{9}, \frac{4}{9})$ is the only critical point. We will now use the second derivative test to verify that $(\frac{4}{9}, \frac{4}{9})$ is a local minimum. We see that

(7)
$$f_{xx}(x,y) = \frac{17}{8} \\ f_{yy}(x,y) = \frac{17}{8} \to D(x,y) = f_{xx}(x,y)f_{yy}(x,y) - f_{xy}(x,y)^2 \\ f_{xy}(x,y) = \frac{1}{8}$$

(8)
$$= \frac{17}{8} \cdot \frac{17}{8} - (\frac{1}{8})^2 = \frac{9}{2} \to D(\frac{4}{9}, \frac{4}{9}) = \frac{9}{2} > 0.$$

Since we also see that $f_{xx}(\frac{4}{9}, \frac{4}{9}) = \frac{17}{8} > 0$, the second derivative test tells us that $(\frac{4}{9}, \frac{4}{9})$ is indeed a local minimum of f(x, y). It remains to show that f(x, y) attains its global minimum at $(\frac{4}{9}, \frac{4}{9})$. Firstly, we note that $f(\frac{4}{9}, \frac{4}{9}) = \frac{4\sqrt{2}}{3}$. Since $\frac{4\sqrt{2}}{3} < 5$ (I picked 5 randomly, I just needed some larger number), let us consider the region R of (x, y) for which $(x, y, 2 - \frac{1}{4}x - \frac{1}{4}y)$ has a distance of at most 5 from the origin. This is the same as $R = \{x, y) \mid f(x, y) \leq 5\}$.

Since R is a closed and bounded region, and f(x, y) is a continuous function function, we know that g attains an absolute minimum on R. The point $(\frac{4}{9}, \frac{4}{9})$ is inside of R, so the minimum of g is not attained on the boundary of R (as that is where the distance to the origin is exactly 5). Since the minimum of g on R is attained on the interior, we see that it must be obtained at a critical point of f(x, y), so it is attained at $(\frac{4}{9}, \frac{4}{9})$. For any point (x, y) outside of R, we have f(x, y) > 5 (by the very definition of R), so the global minimum of f(x, y) is $\frac{4\sqrt{2}}{3}$ and is attained at $(\frac{4}{9}, \frac{4}{9})$. It follows that the point on the plane x + y + 2z = 8 that is closest to the origin is $\left[(\frac{4}{9}, \frac{4}{9}, \frac{16}{9})\right]$.

Review Problem 1.98: Use Lagrange multipliers to find the dimensions of the right circular cylinder of minimum surface area (including the circular ends) with a volume of 32π in³.

Solution: We recall that a cylinder of radius r and height h has a volume of $V = \pi r^2 h$ and a surface area (including the 2 circular ends) of $S = 2\pi r^2 + 2\pi r h$. It follows that we want to optimize the function $f(r, h) = 2\pi r^2 + 2\pi r h$ subject to the constraint $0 = g(r, h) = \pi r^2 h - 32\pi$. Since

(9)
$$\nabla f(r,h) = \langle 4\pi r + 2\pi h, 2\pi r \rangle$$
 and $\nabla g(r,h) = \langle 2\pi r h, \pi r^2 \rangle$, we obtain

(10)
$$4\pi r + 2\pi h = 2\pi\lambda rh \qquad 2r + h = \lambda rh \qquad 2r + h = 2h$$
$$2\pi r = \pi\lambda r^{2} \xrightarrow{r\neq 0} 2 = \lambda r \rightarrow 2 = \lambda r$$
$$\pi r^{2}h = 32\pi \qquad r^{2}h = 32 \qquad r^{2}h = 32$$
$$(11) \rightarrow 2 = \lambda r \rightarrow 2 = \lambda r \rightarrow r = \sqrt[3]{16} = 2\sqrt[3]{2} \rightarrow h = 4\sqrt[3]{2}$$
$$r^{2}h = 32 \qquad 2r^{3} = 32$$

Since the cylinder does not have a maximum surface area when subjected to the constraint $V = 32\pi$, we see that the critical point that we found has to correspond to a local minimum. The extreme/boundary cases occur when either $r \to \infty$ or $h \to \infty$, in which case we also have $S \to \infty$. It follows that f(r, h) attains a minimum value of $24\pi\sqrt[3]{4}$ when $(r, h) = (2\sqrt[3]{2}, 4\sqrt[3]{2})$.

Review Problem 2.26: Rewrite the triple integral

(12)
$$\int_{0}^{2} \int_{0}^{9-x^{2}} \int_{0}^{x} f(x, y, z) dy dz dx$$

using the order dz dx dy.

First Solution: We envision the 3-dimensional solid that is described by the bounds of the triple integral in the currect order of dydzdx, and then we traverse the solid using the new order of dzdxdy.

	<u> </u>	<	
\bigcirc	f: $z = 9 - x^2$	0 0	
\bigcirc	g:y=x	0 0	
	h: z = 0	0 0	
\bigcirc	p: y = 0	0 0	
\bigcirc	eq1:x=2	0 0	
+	Input		

(13)
$$\int_{0}^{2} \int_{y}^{2} \int_{0}^{9-x^{2}} f(x, y, z) dz dx dy.$$

Second Solution: In order to avoid drawing and thinking about 3-dimensional regions, we will perform 2 separate changes of order. We will first change the order from dydzdx to dzdydx, and then we will change the order from dzdydx to dzdydx.

(15)
$$\int_0^2 \int_0^x \int_0^{9-x^2} f(x,y,z) dz dy dx = \left[\int_0^2 \int_y^2 \int_0^{9-x^2} f(x,y,z) dz dx dy \right]$$

Review Problem 2.34: Find the volume of the solid S that is bounded by the parabolic cylinders $z = y^2 + 1$ and $z = 2 - x^2$.

Solution: S is a 3 dimensional solid that is defined as the region inbetween 2 surfaces. First, we find the intersection I of $z = y^2 + 1$ and $z = 2 - x^2$ to satisfy $y^2 + 1 = 2 - x^2$ or $x^2 + y^2 = 1$.

It follows that the (x, y)-coordinates of I are the circle of radius 1 centered at the origin. Note that the intersection I is not itself a circle since the zcoordinate is not constant on the intersection. NThankfully, for the purposes of calculating the volume of S, we only need to know the projection R of I onto the xy-plane (along with the interior of the projection), which is the same as knowing the the (x, y)-coordinates of I.

(16)
$$Volume(S) = \iint_{R} (z_{top} - z_{bottom}) dA$$

(17)
$$= \int_0^{2\pi} \int_0^1 \left((2 - (r\cos(\theta))^2) - ((r\sin(\theta))^2 + 1) \right) r dr d\theta$$

(18)
$$= \int_0^{2\pi} \int_0^1 \left(1 - r^2 \cos^2(\theta) - r^2 \sin^2(\theta) \right) r dr d\theta$$

(19)
$$= \int_0^1 \int_0^{2\pi} (r - r^3) \, d\theta \, dr = \int_0^{\sqrt{3}} (r\theta - r^3\theta) \Big|_{\theta=0}^{2\pi} dr$$

(20)
$$= \int_0^1 2\pi \left(r - r^3\right) dr = 2\pi \left(\frac{1}{2}r^2 - \frac{1}{4}r^4\right) \Big|_0^1 = \left[\frac{\pi}{2}\right].$$

Remark: We could have also calculated the volume by using a triple integral in cylindrical coordinates as follows.

(21) Volume(S) =
$$\iiint_{S} 1 dV = \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{r^{2} \sin^{2}(\theta)+1}^{2-r^{2} \cos^{2}(\theta)} r dz dr d\theta = \overline{\pi}.$$