Problem 3.3.56.a: For what values of a, b, c, and d is the field

$$
\mathbf{F}=\langle a x+b y, c x+d y\rangle \text { conservative? }
$$

Solution: Writing $\mathbf{F}=\left\langle F_{1}, F_{2}\right\rangle$, we want to pick a, b, c, and d so that $\left(F_{1}\right)_{y}=\left(F_{2}\right)_{x}$. Noting that

$$
\left(F_{1}\right)_{y}=b \text { and }\left(F_{2}\right)_{x}=c,
$$

we see that $\left(F_{1}\right)_{y}=\left(F_{2}\right)_{x}$ if and only if $b=c$. So the condition on a, b, c, and d that makes \mathbf{F} a conservative vector field is $b=c$.

Problem 3.3.56.b: For what values of a, b, and c is the field

$$
\mathbf{F}=\left\langle a x^{2}-b y^{2}, c x y\right\rangle \text { conservative? }
$$

Solution: Writing $\mathbf{F}=\left\langle F_{1}, F_{2}\right\rangle$, we want to pick a, b, and c so that $\left(F_{1}\right)_{y}=$ $\left(F_{2}\right)_{x}$. Noting that

$$
\left(F_{1}\right)_{y}=-2 b y \text { and }\left(F_{2}\right)_{x}=c y
$$

we see that $\left(F_{1}\right)_{y}=\left(F_{2}\right)_{x}$ if and only if $c=-2 b$. So the condition on a, b, and c that makes \mathbf{F} conservative is $c=-2 b$.
(Altered) Problem 3.3.43: Consider the vector field

$$
\mathbf{F}=\left\langle 2 x y+z^{2}, x^{2}, 2 x z+1\right\rangle
$$

and the circle C that is parameterized by

$$
\mathbf{r}(t)=\langle 3 \cos (t), 4 \cos (t), 5 \sin (t)\rangle \text { for } 0 \leq t \leq 2 \pi .
$$

Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Solution 1: Writing $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$, we see that

$$
\left(F_{1}\right)_{y}=2 x=\left(F_{2}\right)_{x},\left(F_{1}\right)_{z}=2 z=\left(F_{3}\right)_{x} \text { and }\left(F_{2}\right)_{z}=0=\left(F_{3}\right)_{y},
$$

so \mathbf{F} is a conservative vector field. Since \mathbf{F} is a conservative vector field and C is a closed loop, we see that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0 .
$$

Solution 2: Alternatively, after noting that \mathbf{F} is conservative, we can try to find a potential function φ for \mathbf{F}. This alternative procedure is only necessary if the curve C is not a closed loop, but we will do it here anyways just for the additional practice. Following standard procedure, we see that

$$
\begin{gathered}
\varphi(x, y, z)=\int F_{1}(x, y, z) d x+h(y, z)=\int\left(2 x y+z^{2}\right) d x+h(y, z) \\
=x^{2} y+x z^{2}+h(y, z) \longrightarrow x^{2}=F_{2}(x, y, z)=\frac{\partial}{\partial y} \varphi(x, y, z)=x^{2}+h_{y}(y, z) \\
\longrightarrow h_{y}(y, z)=0 \longrightarrow h(y, z)=g(z) \longrightarrow \varphi(x, y, z)=x^{2} y+x z^{2}+g(z) \\
\longrightarrow 2 x z+1=F_{3}(x, y, z)=\frac{\partial}{\partial z} \varphi(x, y, z)=2 x z+g_{z}(z)
\end{gathered}
$$

$$
\longrightarrow g_{z}(z)=1 \longrightarrow g(z)=z+c \longrightarrow \varphi(x, y, z)=x^{2} y+x z^{2}+z+c .
$$

Since we only need to pick any 1 of the many possible potential functions, let us set $c=0$ and work with

$$
\varphi(x, y, z)=x^{2} y+x z^{2}+z
$$

We are now in position to use the Fundamental Theorem for Line Integrals to see that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\varphi(\mathbf{r}(2 \pi))-\varphi(\mathbf{r}(0))=\varphi(3,4,0)-\varphi(3,4,0)=0 .
$$

"Solution" 3: We note that

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\langle-3 \sin (t),-4 \sin (t), 5 \cos (t)\rangle, \text { so } \\
\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
=\int_{0}^{2 \pi}\left(2(3 \cos (t))(4 \cos (t))+(5 \sin (t))^{2},(3 \cos (t))^{2}, 2(3 \cos (t))(5 \sin (t))+1\right\rangle \cdot\langle-3 \sin (t),-4 \sin (t), 5 \cos (t) \lambda d t
\end{gathered}
$$

Then you give up because there is a lot of algebra and the resulting integral is pretty hard to do.

Problem 3.2.34: Consider the vector field $\mathbf{F}=\langle-y, x\rangle$ and the semicircle C that is parameterized by $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t)\rangle$, for $0 \leq t \leq \pi$. Evaluate

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

Solution: Noting that

$$
\mathbf{T} d s=d \mathbf{r}=\langle-4 \sin (t), 4 \cos (t)\rangle d t
$$

We see that

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{\pi} \mathbf{F}(\mathbf{r}(t)) \cdot d \mathbf{r} \\
=\int_{0}^{\pi}\langle-4 \sin (t), 4 \cos (t)\rangle \cdot\langle-4 \sin (t), 4 \cos (t)\rangle d t \\
=\int_{0}^{\pi}\left(16 \sin ^{2}(t)+16 \cos ^{2}(t)\right) d t=\int_{0}^{\pi} 16 d t=\left.16 t\right|_{t=0} ^{\pi}=16 \pi .
\end{gathered}
$$

Remark: We note that \mathbf{F} is not a conservative vector field, so we could not use the Fundamental Theorem for Line Integrals.

Problem 3.2.28: Let C be the line segment between $(1,4,1)$ and $(3,6,3)$. Evaluate the scalar line integral

$$
\int_{C} \frac{x y}{z} d s
$$

Solution: First, we parameterize the curve C using the standard procedure for parameterizing a line segment. We see that

$$
\begin{gathered}
\mathbf{r}(t)=\langle 1,4,1\rangle+t(\langle 3,6,3\rangle-\langle 1,4,1\rangle)=\langle 1,4,1\rangle+\langle 2 t, 2 t, 2 t\rangle \\
=\langle 1+2 t, 4+2 t, 1+2 t\rangle \text { for } 0 \leq t \leq 1 .
\end{gathered}
$$

Recalling that $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$, we see that

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\langle 2,2,2\rangle \text { so, } \\
d s=|\langle 2,2,2\rangle| d t=\sqrt{2^{2}+2^{2}+2^{2}} d t=\sqrt{12} d t=2 \sqrt{3} d t .
\end{gathered}
$$

Putting everything together, we see that

$$
\begin{gathered}
\int_{C} \frac{x y}{z} d s=\int_{0}^{1} \frac{(1+2 t)(4+2 t)}{(1+2 t)} 2 \sqrt{3} d t=\int_{0}^{1}(4+2 t) 2 \sqrt{3} d t=\int_{0}^{1}(8 \sqrt{4}+4 \sqrt{3} t) d t \\
=8 \sqrt{3} t+\left.2 \sqrt{3} t^{2}\right|_{t=0} ^{1}=10 \sqrt{3} .
\end{gathered}
$$

Problem 4.6.48: Let A be the 2×2 matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

Choose some vector $\mathbf{b} \in \mathbb{R}^{2}$ for which the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent. Then verify that the associated equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is consistent for your choice of \mathbf{b}. Let \mathbf{x}^{*} be a solution to $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ and let $\mathbf{x} \in \mathbb{R}^{2}$ be random. Verify that $\left\|A \mathbf{x}^{*}-\mathbf{b}\right\| \leq\|A \mathbf{x}-\mathbf{b}\|$.

Solution: We see that if

$$
\mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right],
$$

then the equation $A \mathbf{x}=\mathbf{b}$ is represented by the augmented matrix

$$
\left[\begin{array}{ll|l}
1 & 2 & b_{1} \\
3 & 6 & b_{2}
\end{array}\right] .
$$

By row reducing, we see that

$$
\left[\begin{array}{ll|l}
1 & 2 & b_{1} \\
3 & 6 & b_{2}
\end{array}\right] \xrightarrow{R_{2}-3 R_{1}}\left[\begin{array}{ll|c}
1 & 2 & b_{1} \\
0 & 0 & b_{2}-3 b_{1}
\end{array}\right] .
$$

It follows that the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent if and only if $b_{2}-3 b_{1} \neq 0$, so we may take

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Since

$$
A^{T}=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]
$$

we see that the equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ becomes

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
10 & 20 \\
20 & 40
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right],
$$

which is represented by the augmented matrix

$$
\left[\begin{array}{ll|l}
10 & 20 & 4 \\
20 & 40 & 8
\end{array}\right] .
$$

By row reducing, we see that

$$
\left[\begin{array}{ll|l}
10 & 20 & 4 \\
20 & 40 & 8
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{cc|c}
10 & 20 & 4 \\
0 & 0 & 0
\end{array}\right],
$$

which shows us that

$$
10 x_{1}+20 x_{2}=4 \longrightarrow x_{1}=\frac{2}{5}-2 x_{2} .
$$

It follows that the general solution to $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
\frac{2}{5} \\
0
\end{array}\right]+x\left[\begin{array}{c}
-2 \\
1
\end{array}\right] .
$$

Letting $x=0$, we see that we can take

$$
\mathbf{x}^{*}=\left[\begin{array}{l}
\frac{2}{5} \\
0
\end{array}\right]
$$

as a solution to $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. We may take

$$
\mathbf{x}=\left[\begin{array}{c}
5 \\
-1
\end{array}\right]
$$

as our random $\mathbf{x} \in \mathbb{R}^{2}$. We now see that

$$
\begin{aligned}
&\left\|A \mathbf{x}^{*}-\mathbf{b}\right\|=\left\|\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
\frac{2}{5} \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
2 \\
\frac{2}{5} \\
\frac{6}{5}
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
-\frac{3}{5} \\
\frac{1}{5}
\end{array}\right]\right\| \\
&=\sqrt{\left(-\frac{3}{5}\right)^{2}+\left(\frac{1}{5}\right)^{2}}=\sqrt{\frac{10}{25}}=\frac{\sqrt{10}}{5}
\end{aligned}
$$

and

$$
\begin{aligned}
\|A \mathbf{x}-\mathbf{b}\| & =\left\|\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{c}
5 \\
-1
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{l}
3 \\
9
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{l}
2 \\
8
\end{array}\right]\right\| \\
& =\sqrt{(2)^{2}+(8)^{2}}=\sqrt{68}=2 \sqrt{17} \geq \frac{\sqrt{10}}{5}
\end{aligned}
$$

SO

$$
\left\|A \mathbf{x}^{*}-\mathbf{b}\right\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

as claimed.

Problem 3.3.41: Evaluate

$$
\int_{C} \triangle\left(e^{-x} \cos (y)\right) \cdot d \mathbf{r}
$$

where C is the line segment from $(0,0)$ to $(\ln (2), 2 \pi)$.
Solution: $\triangle\left(e^{-x} \cos (y)\right)$ is a conservative vector field with potential function $\varphi(x, y)=e^{-x} \cos (y)$, so by the Fundamental Theorem for Line Integrals, we see that

$$
\begin{gathered}
\int_{C} \triangle\left(e^{-x} \cos (y)\right) \cdot d \mathbf{r}=\varphi(\ln (2), 2 \pi)-\varphi(0,0)=e^{-\ln (2)} \cos (2 \pi)-e^{0} \cos (0) \\
=\frac{1}{2}-1=-\frac{1}{2} .
\end{gathered}
$$

Problem 4.5.45: Find the general solution to the system of linear equations represented by the augmented matrix

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

and express it in vector form.
Solution: We see that if

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

is a solution, then

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & -1 & 0 & -1 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]} \\
=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+x_{5}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \\
\rightarrow x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]-x_{3}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]-x_{5}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \\
\longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{3}+x_{5} \\
-2 x_{3}-x_{5} \\
-x_{5}
\end{array}\right]
\end{gathered}
$$

so $x_{1}=x_{3}+x_{5}, x_{2}=-2 x_{3}-x_{5}$, and $x_{4}=-x_{5}$. We now see that the general solution is given by

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1 \\
1
\end{array}\right] \text { where } x_{3} \text { and } x_{5} \text { are free. }
$$

Problem 4.7.51: Given a linearly independent set of vectors $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq$ \mathbb{R}^{m}, show that the set of vectors $\left\{v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}\right\}$ is also linearly independent.

Solution: Let $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ be such that

$$
\begin{gathered}
0=c_{1} v_{1}+c_{2}\left(v_{1}+v_{2}\right)+c_{3}\left(v_{1}+v_{2}+v_{3}\right)=c_{1} v_{1}+c_{2} v_{1}+c_{2} v_{2}+c_{3} v_{1}+c_{3} v_{2}+c_{3} v_{3} \\
=\left(c_{1}+c_{2}+c_{3}\right) v_{1}+\left(c_{2}+c_{3}\right) v_{2}+c_{3} v_{3}
\end{gathered}
$$

Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set of vectors, we see that

$$
\begin{array}{rlrl}
c_{1}+c_{2}+c_{3} & =0 & c_{1} & \\
c_{2}+c_{3} & =0 \longrightarrow \tag{0.1}\\
c_{3} & =0 & c_{2} & =0 \\
c_{3} & =0
\end{array}
$$

Since $\left(c_{1}, c_{2}, c_{3}\right)$ must be $(0,0,0)$, we see that $\left\{v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}\right\}$ is indeed a linearly independent set of vectors.

Problem 18 (from the chapter 4 Review): Given

$$
A^{-1}=\left[\begin{array}{ccc}
2 & 3 & 5 \\
7 & 2 & 1 \\
4 & -4 & 3
\end{array}\right] \text { and } B^{-1}=\left[\begin{array}{ccc}
-6 & 4 & 3 \\
7 & -1 & 5 \\
2 & 3 & 1
\end{array}\right]
$$

evaluate

$$
\left[\left(A^{-1} B^{-1}\right)^{-1} A^{-1} B\right]^{-1}
$$

Solution: We see that

$$
\begin{gathered}
{\left[\left(A^{-1} B^{-1}\right)^{-1} A^{-1} B\right]^{-1}=\left[\left(B^{-1}\right)^{-1}\left(A^{-1}\right)^{-1} A^{-1} B\right]^{-1}=\left[B A A^{-1} B\right]^{-1}} \\
{[B B]^{-1}=B^{-1} B^{-1}} \\
=\left[\begin{array}{ccc}
-6 & 4 & 3 \\
7 & -1 & 5 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
-6 & 4 & 3 \\
7 & -1 & 5 \\
2 & 3 & 1
\end{array}\right]=\left[\begin{array}{ccc}
70 & -19 & 5 \\
-39 & 44 & 21 \\
11 & 8 & 22
\end{array}\right]
\end{gathered}
$$

