
Problem 3.3.56.a: For what values of a, b, c, and d is the field

F = 〈ax + by, cx + dy〉 conservative?

Solution: Writing F = 〈F1, F2〉, we want to pick a, b, c, and d so that
(F1)y = (F2)x. Noting that

(F1)y = b and (F2)x = c,

we see that (F1)y = (F2)x if and only if b = c. So the condition on a, b, c,
and d that makes F a conservative vector field is b = c .

Problem 3.3.56.b: For what values of a, b, and c is the field

F = 〈ax2 − by2, cxy〉 conservative?

Solution: Writing F = 〈F1, F2〉, we want to pick a, b, and c so that (F1)y =
(F2)x. Noting that

(F1)y = −2by and (F2)x = cy

we see that (F1)y = (F2)x if and only if c = −2b. So the condition on a, b,
and c that makes F conservative is c = −2b .
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(Altered) Problem 3.3.43: Consider the vector field

F = 〈2xy + z2, x2, 2xz+1〉

and the circle C that is parameterized by

r(t) = 〈3 cos(t), 4 cos(t), 5 sin(t)〉 for 0 ≤ t ≤ 2π.

Evaluate the line integral ∫
C

F · dr.

Solution 1: Writing F = 〈F1, F2, F3〉, we see that

(F1)y = 2x = (F2)x, (F1)z = 2z = (F3)x and (F2)z = 0 = (F3)y,

so F is a conservative vector field. Since F is a conservative vector field and
C is a closed loop, we see that ∫

C

F · dr = 0.

Solution 2: Alternatively, after noting that F is conservative, we can try to
find a potential function ϕ for F. This alternative procedure is only necessary
if the curve C is not a closed loop, but we will do it here anyways just for the
additional practice. Following standard procedure, we see that

ϕ(x, y, z) =

∫
F1(x, y, z)dx + h(y, z) =

∫
(2xy + z2)dx + h(y, z)

= x2y + xz2 + h(y, z) −→ x2 = F2(x, y, z) =
∂

∂y
ϕ(x, y, z) = x2 + hy(y, z)

−→ hy(y, z) = 0 −→ h(y, z) = g(z) −→ ϕ(x, y, z) = x2y + xz2 + g(z)

−→ 2xz + 1 = F3(x, y, z) =
∂

∂z
ϕ(x, y, z) = 2xz + gz(z)
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−→ gz(z) = 1 −→ g(z) = z + c −→ ϕ(x, y, z) = x2y + xz2 + z + c.

Since we only need to pick any 1 of the many possible potential functions, let
us set c = 0 and work with

ϕ(x, y, z) = x2y + xz2 + z.

We are now in position to use the Fundamental Theorem for Line Integrals
to see that∫

C

F · dr = ϕ(r(2π))− ϕ(r(0)) = ϕ(3, 4, 0)− ϕ(3, 4, 0) = 0 .

“Solution” 3: We note that

r′(t) = 〈−3 sin(t),−4 sin(t), 5 cos(t)〉, so∫
C

F · dr

=

∫ 2π

0

〈2(3 cos(t))(4 cos(t)) + (5 sin(t))2, (3 cos(t))2, 2(3 cos(t))(5 sin(t)) + 1〉 · 〈−3 sin(t),−4 sin(t), 5 cos(t)〉dt

Then you give up because there is a lot of algebra and the resulting integral
is pretty hard to do.
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Problem 3.2.34: Consider the vector field F = 〈−y, x〉 and the semicircle
C that is parameterized by r(t) = 〈4 cos(t), 4 sin(t)〉, for 0 ≤ t ≤ π. Evaluate∫

C

F ·Tds.

Solution: Noting that

Tds = dr = 〈−4 sin(t), 4 cos(t)〉dt,
We see that ∫

C

F ·Tds =

∫
C

F · dr =

∫ π

0

F(r(t)) · dr

=

∫ π

0

〈−4 sin(t), 4 cos(t)〉 · 〈−4 sin(t), 4 cos(t)〉dt

=

∫ π

0

(16 sin2(t) + 16 cos2(t))dt =

∫ π

0

16dt = 16t
∣∣∣π
t=0

= 16π .

Remark: We note that F is not a conservative vector field, so we could not
use the Fundamental Theorem for Line Integrals.
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Problem 3.2.28: Let C be the line segment between (1, 4, 1) and (3, 6, 3).
Evaluate the scalar line integral ∫

C

xy

z
ds.

Solution: First, we parameterize the curve C using the standard procedure
for parameterizing a line segment. We see that

r(t) = 〈1, 4, 1〉 + t (〈3, 6, 3〉 − 〈1, 4, 1〉) = 〈1, 4, 1〉 + 〈2t, 2t, 2t〉

= 〈1 + 2t, 4 + 2t, 1 + 2t〉 for 0 ≤ t ≤ 1.

Recalling that ds = |r′(t)|dt, we see that

r′(t) = 〈2, 2, 2〉 so,

ds = |〈2, 2, 2〉|dt =
√

22 + 22 + 22dt =
√

12dt = 2
√

3dt.

Putting everything together, we see that∫
C

xy

z
ds =

∫ 1

0

(1 + 2t)(4 + 2t)

(1 + 2t)
2
√

3dt =

∫ 1

0

(4+2t)2
√

3dt =

∫ 1

0

(8
√

4+4
√

3t)dt

= 8
√

3t + 2
√

3t2
∣∣∣1
t=0

= 10
√

3 .
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Problem 4.6.48: Let A be the 2× 2 matrix

A =

[
1 2
3 6

]
.

Choose some vector b ∈ R2 for which the equation Ax = b is inconsistent.
Then verify that the associated equation ATAx = ATb is consistent for your
choice of b. Let x∗ be a solution to ATAx = ATb and let x ∈ R2 be random.
Verify that ||Ax∗ − b|| ≤ ||Ax− b||.

Solution: We see that if

b =

[
b1
b2

]
,

then the equation Ax = b is represented by the augmented matrix[
1 2 b1
3 6 b2

]
.

By row reducing, we see that[
1 2 b1
3 6 b2

]
R2−3R1−→

[
1 2 b1
0 0 b2 − 3b1

]
.

It follows that the equation Ax = b is inconsistent if and only if b2−3b1 6= 0,
so we may take

b =

[
1
1

]
.

Since

AT =

[
1 3
2 6

]
,

we see that the equation ATAx = ATb becomes[
1 3
2 6

] [
1 2
3 6

] [
x1
x2

]
=

[
1 3
2 6

] [
1
1

]
−→

[
10 20
20 40

] [
x1
x2

]
=

[
4
8

]
,
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which is represented by the augmented matrix[
10 20 4
20 40 8

]
.

By row reducing, we see that[
10 20 4
20 40 8

]
R2−2R1−→

[
10 20 4
0 0 0

]
,

which shows us that

10x1 + 20x2 = 4 −→ x1 =
2

5
− 2x2.

It follows that the general solution to ATAx = ATb is given by

x =

[
2
5
0

]
+ x

[
−2
1

]
.

Letting x = 0, we see that we can take

x∗ =

[
2
5
0

]
as a solution to ATAx = ATb. We may take

x =

[
5
−1

]
as our random x ∈ R2. We now see that

||Ax∗ − b|| = ||
[

1 2
3 6

] [
2
5
0

]
−
[

1
1

]
|| = ||

[
2
5
6
5

]
−
[

1
1

]
|| = ||

[
−3

5
1
5

]
||

=

√
(−3

5
)2 + (

1

5
)2 =

√
10

25
=

√
10

5

and
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||Ax− b|| = ||
[

1 2
3 6

] [
5
−1

]
−
[

1
1

]
|| = ||

[
3
9

]
−
[

1
1

]
|| = ||

[
2
8

]
||

=
√

(2)2 + (8)2 =
√

68 = 2
√

17 ≥
√

10

5
,

so

||Ax∗ − b|| ≤ ||Ax− b||

as claimed.
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Problem 3.3.41: Evaluate∫
C

4(e−x cos(y)) · dr,

where C is the line segment from (0, 0) to (ln(2), 2π).

Solution: 4(e−x cos(y)) is a conservative vector field with potential function
ϕ(x, y) = e−x cos(y), so by the Fundamental Theorem for Line Integrals, we
see that∫

C

4(e−x cos(y)) · dr = ϕ(ln(2), 2π)− ϕ(0, 0) = e− ln(2) cos(2π)− e0 cos(0)

=
1

2
− 1 = −1

2
.
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Problem 4.5.45: Find the general solution to the system of linear equations
represented by the augmented matrix1 0 −1 0 −1 0

0 1 2 0 1 0
0 0 0 1 1 0


and express it in vector form.

Solution: We see that if

x =


x1
x2
x3
x4
x5


is a solution, then

0
0
0

 =

1 0 −1 0 −1
0 1 2 0 1
0 0 0 1 1



x1
x2
x3
x4
x5



= x1

1
0
0

 + x2

0
1
0

 + x3

−1
2
0

 + x4

0
0
1

 + x5

−1
1
1



→ x1

1
0
0

 + x2

0
1
0

 + x4

0
0
1

 =

0
0
0

− x3
−1

2
0

− x5
−1

1
1



−→

x1x2
x4

 =

 x3 + x5
−2x3 − x5
−x5


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so x1 = x3+x5, x2 = −2x3−x5, and x4 = −x5. We now see that the general
solution is given by

x =


x1
x2
x3
x4
x5

 = x3


1
−2
1
0
0

 + x5


1
−1
0
−1
1

 where x3 and x5 are free.
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Problem 4.7.51: Given a linearly independent set of vectors {v1, v2, v3} ⊆
Rm, show that the set of vectors {v1, v1 + v2, v1 + v2 + v3} is also linearly
independent.

Solution: Let c1, c2, c3 ∈ R be such that

0 = c1v1 +c2(v1 +v2) +c3(v1 +v2 +v3) = c1v1 +c2v1 +c2v2 +c3v1 +c3v2 +c3v3

= (c1 + c2 + c3)v1 + (c2 + c3)v2 + c3v3.

Since {v1, v2, v3} is a linearly independent set of vectors, we see that

(0.1)

c1+ c2+ c3 = 0

c2+ c3 = 0

c3 = 0
−→

c1 = 0

c2 = 0

c3 = 0

Since (c1, c2, c3) must be (0, 0, 0), we see that {v1, v1 + v2, v1 + v2 + v3} is
indeed a linearly independent set of vectors.
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Problem 18 (from the chapter 4 Review): Given

A−1 =

2 3 5
7 2 1
4 −4 3

 and B−1 =

−6 4 3
7 −1 5
2 3 1


evaluate

[(A−1B−1)−1A−1B]−1

Solution: We see that

[(A−1B−1)−1A−1B]−1 = [(B−1)−1(A−1)−1A−1B]−1 = [BAA−1B]−1

[BB]−1 = B−1B−1

=

−6 4 3
7 −1 5
2 3 1

−6 4 3
7 −1 5
2 3 1

 =

 70 −19 5
−39 44 21
11 8 22




