
Problem 6.4.12: Find the Fourier cosine series for

f (x) = 1 + x, 0 < x < π

Solution: The fourier cosine series of f (x) is just the fourier series of g(x),
the even 2π-periodic extension of f (x), which is the 2π-periodic function defined
by the formula

(0.1) g(x) =

{
f (x) if 0 < x < π

f (−x) if − π < x < 0
.

Below is a graph of g(x) restricted to the interval (−π, π). The blue portion
of the graph is also the graph of f (x).

Since g(x) is an even function (by construction, this will always be the case)
the fourier series of g(x) will not have any sin terms in it. We see that for any
n ≥ 1, we have
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(0.2) an =
1

π

∫ π

−π
g(x) cos(

2πnx

2π
)dx

∗
=

2

π

∫ π

0

f (x) cos(nx)dx

(0.3) =
2

π

∫ π

0

(1+x) cos(nx)dx =
2

π
·(1+x)

sin(nx)

n

∣∣∣π
x=0
− 2

π

∫ π

0

1· sin(nx)

n
dx

(0.4) = 0− 2

π

(
− cos(nx)

n2

∣∣∣π
x=0

)
=

2 cos(nπ)− 2

πn2
=

{
0 if n is even
−4
πn2

if n is odd
.

Similarly, we see that

(0.5) a0
∗
=

1

2π

∫ π

−π
g(x)dx =

1

π

∫ π

0

f (x)dx =
1

π

∫ π

0

(1 + x)dx

(0.6)
(1 + x)2

2π

∣∣∣π
x=0

=
(π + 1)2 − 1

2π
=
π

2
+ 1.

Putting everything together, we see that

(0.7) f (x) = (
π

2
+ 1) +

∞∑
n=0

− 4

π(2n + 1)2
cos((2n + 1)x).



3

Problem 6.2.14: Find the values of λ for which the initial value problem
given by

(0.8) y′′ − 2y′ + λy = 0; 0 < x < π

(0.9) y(0) = y(π) = 0

has nontrivial solutions. Then, for each such λ, find the nontrivial solutions.

Solution: We see that the characteristic polynomial of this equation is r2−
2r + λ and has roots

(0.10) r = ±2±
√

4− 4λ

2
= 1±

√
1− λ.

We now consider 3 separate cases depending on the sign of (1− λ).

Case 1: 1− λ = 0.

In this case, λ = 1 and r = 1 is a double root of the characteristic polynomial,
so the general solution to equation 0.8 is

(0.11) y(t) = c1e
t + c2te

t.

We see that

(0.12) 0 = y(0) = c1e
0 + c2 · 0 · e0 = c1, and

(0.13) 0 = y(π) = c2 · π · eπ → c2 = 0.

Since (c1, c2) = (0, 0), we see that in this case we only have the trivial solution.

Case 2: 1− λ > 0.

In this case, we see that the general solution to equation 0.8 is

(0.14) y(t) = c1e
(1+
√
1−λ)t + c2e

(1−
√
1−λ)t.
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We see that

(0.15) 0 = y(0) = c1e
(1+
√
1−λ)·0 + c2e

(1−
√
1−λ)·0 = c1 + c2, and

(0.16) 0 = y(π) = c1e
(1+
√
1−λ)π + c2e

(1−
√
1−λ)π.

Solving the system of equations given by (0.15) and (0.16), we see that

(0.17)

[
1 1 0

e(1+
√
1−λ)π e(1−

√
1−λ)π 0

]

(0.18)
R2−e(1+

√
1−λ)πR1−→

[
1 1 0

0 e(1−
√
1−λ)π − e(1+

√
1−λ)π 0

]

(0.19)

1

e(1−
√
1−λ)π−e(1+

√
1−λ)πR2

−→
[

1 1 0
0 1 0

]
R1−R2−→

[
1 0 0
0 1 0

]
,

so (c1, c2) = (0, 0). We once again see that we only have the trivial solution.

Case 3: 1− λ < 0.

In this case, we see that

(0.20) Re(1±
√

1− λ) = 1 and Im(1±
√

1− λ) = ±
√
λ− 1,

so the general solution to equation (0.8) is

(0.21) y(t) = c1e
t cos(

√
λ− 1t) + c2e

t sin(
√
λ− 1t).

We see that

(0.22) 0 = y(0) = c1e
0 cos(

√
λ− 1 · 0) + c2e

0 sin(
√
λ− 1 · 0) = c1, and
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(0.23) 0 = y(π) = c2e
π sin(

√
λ− 1π).

If eπ sin(
√
λ− 1π) 6= 0, then we will have that (c1, c2) = (0, 0). Since

we are looking for nontrivial solutions, we want the values of λ for which
eπ sin(

√
λ− 1π) = 0, which is the same as the values of λ for which

(0.24) sin(
√
λ− 1π) = 0.

Note: The equation for problem 6.2.13 from your homework that corre-
sponds to equation (0.24) is not solvable by hand. In such a situation, it is
perfectly acceptable to say ‘Let (λn)∞n=1 be the solutions to equation (0.24).’
From then on, you may work with (λn)∞n=1 as known values. Luckily, equation
(0.24) is solvable by hand, so we will just go ahead and solve it.

We recall that the 0′s of sin(x) occur exactly at the integer multiples of π.
Given n ∈ Z, we see that

(0.25) n =
√
λ− 1⇔ λ = n2 + 1,

so (n2 + 1)n∈Z is all of the solutions of equation (0.24). We now see that for
each integer n, equation (0.23) is satisfied by any c2 ∈ R.

Putting together the results of all 3 cases, we see that the initial value problem
given by equations (0.8) and (0.9) has nontrivial solutions if and only if λ =
n2 + 1 for some integer n. Furthermore, for any such λ = n2 + 1, the solution
to the initial value problem is

(0.26) y(t) = cet sin(nt),

where c can be any real number.
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Problem 6.4.17: Find the solution u(x, t) to the heat flow problem

(0.27)
∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0,

(0.28) µ(0, t) = µ(L, t) = 0, t > 0

(0.29) u(x, 0) = f (x), 0 < x < L,

with β = 5, L = π, and the initial value function

(0.30) f (x) = 1− cos(2x).

Solution: We know that a general solution to the heat flow problem is

(0.31) u(x, t)
∗
= c0 +

∞∑
n=1

cne
−β(nπL )2t sin(

nπx

L
) = c0 +

∞∑
n=1

cne
−5n2t sin(nx).

From equation (0.29), we see that

(0.32) 1−cos(2x) = u(x, 0) = c0+

∞∑
n=1

cne
−5n2·0 sin(nx) = c0+

∞∑
n=1

cn sin(nx),

So we have to compute the fourier sine series of 1− cos(x). Before doing so,
we recall the following helpful trigonometric identity.

(0.33) sin(n + m) + sin(n−m) = 2 sin(n) cos(m).

We see that for n ≥ 1, we have

(0.34) cn =
2

L

∫ L

0

f (x) sin(nx)dx =
2

π

∫ π

0

(1− cos(2x)) sin(nx)dx
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(0.35) =
2

π

∫ π

0

sin(nx)dx− 2

π

∫ π

0

sin(nx) cos(2x)dx

(0.36)
by (0.33)

=
2

π

(
−cos(nx)

n

∣∣∣π
x=0

)
− 2

π

∫ π

0

1

2
(sin((n+2)x)+sin((n−2)x))dx

(0.37) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n + 2)x)

n + 2
+
− cos((n− 2)x)

n− 2

∣∣∣π
x=0

)

(0.38) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n+ 2)π) + 1

n+ 2
+
− cos((n− 2)π) + 1

n− 2

)

(0.39) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos(nπ) + 1

n + 2
+
− cos(nπ) + 1

n− 2

)

(0.40) =

(
− cos(nπ) + 1

π

)(
2

n
− (

1

n + 2
+

1

n− 2
)

)

(0.41) =

(
− cos(nπ) + 1

π

)(
2(n + 2)(n− 2)− n(n− 2)− n(n + 2)

n(n + 2)(n− 2)

)

(0.42) =

(
− cos(nπ) + 1

π

)(
−4

n3 − 4n

)
=

4 cos(nπ)− 4

L(n3 − 4n)

(0.43) =

{
0 if n is even

− 8
(n3−4n)π if n is odd

.

We now calculate the constant term c0 in the fourier sine expansion of f (x).
We have that
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(0.44) c0
∗
=

1

L

∫ L

0

f (x)dx =
1

π

∫ π

0

(1−cos(2x))dx =
1

π
(x− sin(2x)

2

∣∣∣π
x=0

) = 1.

It follows that our solution is given by

(0.45) u(x, t) = 1 +

∞∑
n=1

− 8

((2n + 1)3 − 4(2n + 1))π
e−5(2n+1)2t sin((2n+ 1)x).
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Problem 6.2.24: Formally solve the vibrating string problem

∂2u

∂t2
= α

∂2u

∂x2
, 0 < x < L, t > 0,

(0.46) u(0, t) = u(L, t) = 0, t > 0,

(0.47) u(x, 0) = f (x), 0 ≤ x ≤ L,

(0.48)
∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ L,

with α = 4, L = π, and the initial value functions

(0.49) f (x) =

∞∑
n=1

1

n2
sin(nx),

(0.50) g(x) =

∞∑
n=1

(−1)n+1

n
sin(nx).

Solution: We know that a general solution of the vibrating string problem
is

(0.51) u(x, t) =
∞∑
n=1

[
an cos(

nπα

L
t) + bn sin(

nπα

L
t)
]
sin(

nπx

L
) =

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx).

From equation (0.47), we see that

(0.52)

∞∑
n=1

1

n2
sin(nx) = f (x) = u(x, 0)

(0.53) =

∞∑
n=1

[an cos(4n · 0) + bn sin(4n · 0)] sin(nx)
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(0.54) =

∞∑
n=1

[an · 1 + bn · 0] sin(nx) =

∞∑
n=1

an sin(nx),

so an = 1
n2

for every n ≥ 1. Next, from equation (0.48), we see that

(0.55)

∞∑
n=1

(−1)n+1

n
sin(nx) = g(x) =

∂u

∂t
(x, 0) =

(0.56) =
∂

∂t

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx)
∣∣∣
t=0

(0.57) =

∞∑
n=1

∂

∂t
[an cos(4nt) + bn sin(4nt)] sin(nx)

∣∣∣
t=0

(0.58) =

∞∑
n=1

[−4nan sin(4nt) + 4nbn cos(4nt)] sin(nx)
∣∣∣
t=0

(0.59) =

∞∑
n=1

[−4nan sin(4n · 0) + 4nbn cos(4n · 0)] sin(nx)

(0.60) =

∞∑
n=1

[−4nan · 0 + 4nbn · 1] sin(nx) =

∞∑
n=1

4nbn sin(nx).

The conclusion of equations (0.55)− (0.60) is

(0.61)

∞∑
n=1

(−1)n+1

n
sin(nx) =

∞∑
n=1

4nbn sin(nx),

which shows us that
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(0.62)
(−1)n+1

n
= 4nbn → bn =

(−1)n+1

4n2
for all n ≥ 1.

It follows that our solution is given by

(0.63) u(x, t) =

∞∑
n=1

[
1

n2
cos(4nt) +

(−1)n+1

4n2
sin(4nt)

]
sin(nx).


