Problem 6.4.12: Find the Fourier cosine series for

$$
f(x)=1+x, \quad 0<x<\pi
$$

Solution: The fourier cosine series of $f(x)$ is just the fourier series of $g(x)$, the even 2π-periodic extension of $f(x)$, which is the 2π-periodic function defined by the formula

$$
g(x)=\left\{\begin{array}{ll}
f(x) & \text { if } \quad 0<x<\pi \tag{0.1}\\
f(-x) & \text { if } \quad-\pi<x<0
\end{array} .\right.
$$

Below is a graph of $g(x)$ restricted to the interval $(-\pi, \pi)$. The blue portion of the graph is also the graph of $f(x)$.

Since $g(x)$ is an even function (by construction, this will always be the case) the fourier series of $g(x)$ will not have any sin terms in it. We see that for any $n \geq 1$, we have

$$
\begin{equation*}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos \left(\frac{2 \pi n x}{2 \pi}\right) d x \stackrel{*}{=} \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x \tag{0.2}
\end{equation*}
$$

$(0.3)=\frac{2}{\pi} \int_{0}^{\pi}(1+x) \cos (n x) d x=\left.\frac{2}{\pi} \cdot(1+x) \frac{\sin (n x)}{n}\right|_{x=0} ^{\pi}-\frac{2}{\pi} \int_{0}^{\pi} 1 \cdot \frac{\sin (n x)}{n} d x$
$(0.4)=0-\frac{2}{\pi}\left(\left.\frac{-\cos (n x)}{n^{2}}\right|_{x=0} ^{\pi}\right)=\frac{2 \cos (n \pi)-2}{\pi n^{2}}=\left\{\begin{array}{ll}0 & \text { if } \mathrm{n} \text { is even } \\ \frac{-4}{\pi n^{2}} & \text { if } \mathrm{n} \text { is odd }\end{array}\right.$.
Similarly, we see that

$$
\begin{align*}
a_{0} \stackrel{*}{=} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) d x & =\frac{1}{\pi} \int_{0}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi}(1+x) d x \tag{0.5}\\
\left.\frac{(1+x)^{2}}{2 \pi}\right|_{x=0} ^{\pi} & =\frac{(\pi+1)^{2}-1}{2 \pi}=\frac{\pi}{2}+1 \tag{0.6}
\end{align*}
$$

Putting everything together, we see that

$$
\begin{equation*}
f(x)=\left(\frac{\pi}{2}+1\right)+\sum_{n=0}^{\infty}-\frac{4}{\pi(2 n+1)^{2}} \cos ((2 n+1) x) \tag{0.7}
\end{equation*}
$$

Problem 6.2.14: Find the values of λ for which the initial value problem given by

$$
\begin{gather*}
y^{\prime \prime}-2 y^{\prime}+\lambda y=0 ; \quad 0<x<\pi \tag{0.8}\\
y(0)=y(\pi)=0 \tag{0.9}
\end{gather*}
$$

has nontrivial solutions. Then, for each such λ, find the nontrivial solutions.
Solution: We see that the characteristic polynomial of this equation is $r^{2}-$ $2 r+\lambda$ and has roots

$$
\begin{equation*}
r= \pm \frac{2 \pm \sqrt{4-4 \lambda}}{2}=1 \pm \sqrt{1-\lambda} \tag{0.10}
\end{equation*}
$$

We now consider 3 separate cases depending on the sign of $(1-\lambda)$.
Case 1: $1-\lambda=0$.
In this case, $\lambda=1$ and $r=1$ is a double root of the characteristic polynomial, so the general solution to equation 0.8 is

$$
\begin{equation*}
y(t)=c_{1} e^{t}+c_{2} t e^{t} . \tag{0.11}
\end{equation*}
$$

We see that

$$
\begin{gather*}
0=y(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}=c_{1}, \text { and } \tag{0.12}\\
0=y(\pi)=c_{2} \cdot \pi \cdot e^{\pi} \rightarrow c_{2}=0 . \tag{0.13}
\end{gather*}
$$

Since $\left(c_{1}, c_{2}\right)=(0,0)$, we see that in this case we only have the trivial solution.
Case 2: $1-\lambda>0$.
In this case, we see that the general solution to equation 0.8 is

$$
\begin{equation*}
y(t)=c_{1} e^{(1+\sqrt{1-\lambda}) t}+c_{2} e^{(1-\sqrt{1-\lambda}) t} . \tag{0.14}
\end{equation*}
$$

We see that

$$
\begin{gather*}
0=y(0)=c_{1} e^{(1+\sqrt{1-\lambda}) \cdot 0}+c_{2} e^{(1-\sqrt{1-\lambda}) \cdot 0}=c_{1}+c_{2}, \text { and } \tag{0.15}\\
0=y(\pi)=c_{1} e^{(1+\sqrt{1-\lambda}) \pi}+c_{2} e^{(1-\sqrt{1-\lambda}) \pi} .
\end{gather*}
$$

Solving the system of equations given by (0.15) and (0.16), we see that

$$
\xrightarrow{e^{(1-\sqrt{1-\lambda) \pi}-e} \xrightarrow{1+\sqrt{1-\lambda) \pi}}} R_{2}\left[\begin{array}{ll|l}
1 & 1 & 0 \tag{0.19}\\
0 & 1 & 0
\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],
$$

so $\left(c_{1}, c_{2}\right)=(0,0)$. We once again see that we only have the trivial solution.
Case 3: $1-\lambda<0$.
In this case, we see that

$$
\begin{equation*}
\operatorname{Re}(1 \pm \sqrt{1-\lambda})=1 \text { and } \operatorname{Im}(1 \pm \sqrt{1-\lambda})= \pm \sqrt{\lambda-1} \tag{0.20}
\end{equation*}
$$

so the general solution to equation (0.8) is

$$
\begin{equation*}
y(t)=c_{1} e^{t} \cos (\sqrt{\lambda-1} t)+c_{2} e^{t} \sin (\sqrt{\lambda-1} t) . \tag{0.21}
\end{equation*}
$$

We see that

$$
\begin{equation*}
0=y(0)=c_{1} e^{0} \cos (\sqrt{\lambda-1} \cdot 0)+c_{2} e^{0} \sin (\sqrt{\lambda-1} \cdot 0)=c_{1} \text {, and } \tag{0.22}
\end{equation*}
$$

$$
\begin{equation*}
0=y(\pi)=c_{2} e^{\pi} \sin (\sqrt{\lambda-1} \pi) \tag{0.23}
\end{equation*}
$$

If $e^{\pi} \sin (\sqrt{\lambda-1} \pi) \neq 0$, then we will have that $\left(c_{1}, c_{2}\right)=(0,0)$. Since we are looking for nontrivial solutions, we want the values of λ for which $e^{\pi} \sin (\sqrt{\lambda-1} \pi)=0$, which is the same as the values of λ for which

$$
\begin{equation*}
\sin (\sqrt{\lambda-1} \pi)=0 \tag{0.24}
\end{equation*}
$$

Note: The equation for problem 6.2.13 from your homework that corresponds to equation (0.24) is not solvable by hand. In such a situation, it is perfectly acceptable to say 'Let $\left(\lambda_{n}\right)_{n=1}^{\infty}$ be the solutions to equation (0.24).' From then on, you may work with $\left(\lambda_{n}\right)_{n=1}^{\infty}$ as known values. Luckily, equation (0.24) is solvable by hand, so we will just go ahead and solve it.

We recall that the $0^{\prime} s$ of $\sin (x)$ occur exactly at the integer multiples of π. Given $n \in \mathbb{Z}$, we see that

$$
\begin{equation*}
n=\sqrt{\lambda-1} \Leftrightarrow \lambda=n^{2}+1, \tag{0.25}
\end{equation*}
$$

so $\left(n^{2}+1\right)_{n \in \mathbb{Z}}$ is all of the solutions of equation (0.24). We now see that for each integer n, equation (0.23) is satisfied by any $c_{2} \in \mathbb{R}$.

Putting together the results of all 3 cases, we see that the initial value problem given by equations (0.8) and (0.9) has nontrivial solutions if and only if $\lambda=$ $n^{2}+1$ for some integer n. Furthermore, for any such $\lambda=n^{2}+1$, the solution to the initial value problem is

$$
\begin{equation*}
y(t)=c e^{t} \sin (n t) \tag{0.26}
\end{equation*}
$$

where c can be any real number.

Problem 6.4.17: Find the solution $u(x, t)$ to the heat flow problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \tag{0.27}\\
\mu(0, t)=\mu(L, t)=0, \quad t>0 \tag{0.28}\\
u(x, 0)=f(x), \quad 0<x<L \tag{0.29}
\end{gather*}
$$

with $\beta=5, L=\pi$, and the initial value function

$$
\begin{equation*}
f(x)=1-\cos (2 x) . \tag{0.30}
\end{equation*}
$$

Solution: We know that a general solution to the heat flow problem is
(0.31) $u(x, t) \stackrel{*}{=} c_{0}+\sum_{n=1}^{\infty} c_{n} e^{-\beta\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{-5 n^{2} t} \sin (n x)$.

From equation (0.29), we see that
(0.32) $1-\cos (2 x)=u(x, 0)=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{-5 n^{2} .0} \sin (n x)=c_{0}+\sum_{n=1}^{\infty} c_{n} \sin (n x)$,

So we have to compute the fourier sine series of $1-\cos (x)$. Before doing so, we recall the following helpful trigonometric identity.

$$
\begin{equation*}
\sin (n+m)+\sin (n-m)=2 \sin (n) \cos (m) . \tag{0.33}
\end{equation*}
$$

We see that for $n \geq 1$, we have

$$
\begin{equation*}
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}(1-\cos (2 x)) \sin (n x) d x \tag{0.34}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x-\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) \cos (2 x) d x \tag{0.35}
\end{equation*}
$$

$(0.36) \stackrel{\text { by }}{\stackrel{(0.33)}{=}} \frac{2}{\pi}\left(-\left.\frac{\cos (n x)}{n}\right|_{x=0} ^{\pi}\right)-\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}(\sin ((n+2) x)+\sin ((n-2) x)) d x$
$(0.37)=\frac{2(-\cos (n \pi)+1)}{n \pi}-\frac{1}{\pi}\left(\frac{-\cos ((n+2) x)}{n+2}+\left.\frac{-\cos ((n-2) x)}{n-2}\right|_{x=0} ^{\pi}\right)$

$$
\begin{equation*}
=\frac{2(-\cos (n \pi)+1)}{n \pi}-\frac{1}{\pi}\left(\frac{-\cos ((n+2) \pi)+1}{n+2}+\frac{-\cos ((n-2) \pi)+1}{n-2}\right) \tag{0.38}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{2(-\cos (n \pi)+1)}{n \pi}-\frac{1}{\pi}\left(\frac{-\cos (n \pi)+1}{n+2}+\frac{-\cos (n \pi)+1}{n-2}\right) \tag{0.39}
\end{equation*}
$$

$$
\begin{equation*}
=\left(\frac{-\cos (n \pi)+1}{\pi}\right)\left(\frac{2}{n}-\left(\frac{1}{n+2}+\frac{1}{n-2}\right)\right) \tag{0.40}
\end{equation*}
$$

$(0.41)=\left(\frac{-\cos (n \pi)+1}{\pi}\right)\left(\frac{2(n+2)(n-2)-n(n-2)-n(n+2)}{n(n+2)(n-2)}\right)$

$$
\begin{equation*}
=\left(\frac{-\cos (n \pi)+1}{\pi}\right)\left(\frac{-4}{n^{3}-4 n}\right)=\frac{4 \cos (n \pi)-4}{L\left(n^{3}-4 n\right)} \tag{0.42}
\end{equation*}
$$

$$
= \begin{cases}0 & \text { if } \mathrm{n} \text { is even } \tag{0.43}\\ -\frac{8}{\left(n^{3}-4 n\right) \pi} & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

We now calculate the constant term c_{0} in the fourier sine expansion of $f(x)$. We have that
(0.44) $c_{0} \stackrel{*}{=} \frac{1}{L} \int_{0}^{L} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi}(1-\cos (2 x)) d x=\frac{1}{\pi}\left(x-\left.\frac{\sin (2 x)}{2}\right|_{x=0} ^{\pi}\right)=1$.

It follows that our solution is given by
(0.45) $u(x, t)=1+\sum_{n=1}^{\infty}-\frac{8}{\left((2 n+1)^{3}-4(2 n+1)\right) \pi} e^{-5(2 n+1)^{2} t} \sin ((2 n+1) x)$.

Problem 6.2.24: Formally solve the vibrating string problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=\alpha \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0
$$

$$
\begin{equation*}
u(0, t)=u(L, t)=0, \quad t>0 \tag{0.46}
\end{equation*}
$$

$$
\begin{equation*}
u(x, 0)=f(x), \quad 0 \leq x \leq L \tag{0.47}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial t}(x, 0)=g(x), \quad 0 \leq x \leq L \tag{0.48}
\end{equation*}
$$

with $\alpha=4, L=\pi$, and the initial value functions

$$
\begin{gather*}
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin (n x), \tag{0.49}\\
g(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x) . \tag{0.50}
\end{gather*}
$$

Solution: We know that a general solution of the vibrating string problem is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi \alpha}{L} t\right)+b_{n} \sin \left(\frac{n \pi \alpha}{L} t\right)\right] \sin \left(\frac{n \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[a_{n} \cos (4 n t)+b_{n} \sin (4 n t)\right] \sin (n x) . \tag{0.51}
\end{equation*}
$$

From equation (0.47), we see that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin (n x)=f(x)=u(x, 0) \tag{0.52}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{n=1}^{\infty}\left[a_{n} \cos (4 n \cdot 0)+b_{n} \sin (4 n \cdot 0)\right] \sin (n x) \tag{0.53}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{n=1}^{\infty}\left[a_{n} \cdot 1+b_{n} \cdot 0\right] \sin (n x)=\sum_{n=1}^{\infty} a_{n} \sin (n x) \tag{0.54}
\end{equation*}
$$

so $a_{n}=\frac{1}{n^{2}}$ for every $n \geq 1$. Next, from equation (0.48), we see that

$$
\begin{equation*}
=\left.\frac{\partial}{\partial t} \sum_{n=1}^{\infty}\left[a_{n} \cos (4 n t)+b_{n} \sin (4 n t)\right] \sin (n x)\right|_{t=0} \tag{0.56}
\end{equation*}
$$

$$
\begin{equation*}
=\left.\sum_{n=1}^{\infty} \frac{\partial}{\partial t}\left[a_{n} \cos (4 n t)+b_{n} \sin (4 n t)\right] \sin (n x)\right|_{t=0} \tag{0.57}
\end{equation*}
$$

$$
\begin{equation*}
=\left.\sum_{n=1}^{\infty}\left[-4 n a_{n} \sin (4 n t)+4 n b_{n} \cos (4 n t)\right] \sin (n x)\right|_{t=0} \tag{0.58}
\end{equation*}
$$

$$
=\sum_{n=1}^{\infty}\left[-4 n a_{n} \sin (4 n \cdot 0)+4 n b_{n} \cos (4 n \cdot 0)\right] \sin (n x)
$$

$$
\begin{equation*}
=\sum_{n=1}^{\infty}\left[-4 n a_{n} \cdot 0+4 n b_{n} \cdot 1\right] \sin (n x)=\sum_{n=1}^{\infty} 4 n b_{n} \sin (n x) \tag{0.60}
\end{equation*}
$$

The conclusion of equations $(0.55)-(0.60)$ is

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)=\sum_{n=1}^{\infty} 4 n b_{n} \sin (n x) \tag{0.61}
\end{equation*}
$$

which shows us that

$$
\begin{equation*}
\frac{(-1)^{n+1}}{n}=4 n b_{n} \rightarrow b_{n}=\frac{(-1)^{n+1}}{4 n^{2}} \text { for all } n \geq 1 . \tag{0.62}
\end{equation*}
$$

It follows that our solution is given by

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left[\frac{1}{n^{2}} \cos (4 n t)+\frac{(-1)^{n+1}}{4 n^{2}} \sin (4 n t)\right] \sin (n x) . \tag{0.63}
\end{equation*}
$$

