Problem 6.2.27: Consider the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 . \tag{0.1}
\end{equation*}
$$

Show that for a solution $u(r, \theta)=R(r) T(\theta)$ having separated variables, we must have

$$
\begin{equation*}
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\lambda R(r)=0 \tag{0.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{\prime \prime}(\theta)+\lambda T(\theta)=0, \tag{0.3}
\end{equation*}
$$

where λ is some constant.
Solution: We begin by plugging $u(r, \theta)=R(r) T(\theta)$ into equation (0.1) to see that

$$
\begin{align*}
& =R^{\prime \prime}(r) T(\theta)+\frac{1}{r} R^{\prime}(r) T(\theta)+\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta) \rightarrow \tag{0.5}\\
& -\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta)=R^{\prime \prime}(r) T(\theta)+\frac{1}{r} R^{\prime}(r) T(\theta) \rightarrow
\end{align*}
$$

$$
\frac{T^{\prime \prime}(\theta)}{T(\theta)}=\frac{R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)}{-\frac{1}{r^{2}} R(r)} \stackrel{*}{=} \gamma
$$

To derive equation (0.2), we note that
(0.8) $\quad \frac{R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)}{-\frac{1}{r^{2}} R(r)}=\gamma \rightarrow R^{\prime \prime}(r)+\frac{1}{r} R(r)=-\frac{\gamma}{r^{2}} R(r) \rightarrow$
(0.9) $\quad R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)+\frac{\gamma}{r^{2}} R(r)=0 \rightarrow r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+\gamma R(r)=0$.

To derive equation (0.3), we note that
(0.10) $\frac{T^{\prime \prime}(\theta)}{T(\theta)}=\gamma \rightarrow T^{\prime \prime}(\theta)=\gamma T(\theta) \rightarrow T^{\prime \prime}(\theta)-\gamma T(\theta)=0$.

We now see that we can pick our constant λ as $\lambda=-\gamma$.

Problem 6.2.30: Consider the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta}+\frac{\partial^{2} u}{\partial z^{2}}=0 \tag{0.11}
\end{equation*}
$$

Show that for a solution $u(r, \theta, z)=R(r) T(\theta) Z(z)$ having separated variables, we must have

$$
\begin{align*}
& T^{\prime \prime}(\theta)+\lambda T(\theta)=0, \tag{0.12}\\
& Z^{\prime \prime}(z)+\mu Z(z)=0 \tag{0.13}
\end{align*}
$$

and

$$
\begin{equation*}
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\left(r^{2} \mu+\lambda\right) R(r)=0 \tag{0.14}
\end{equation*}
$$

where λ and μ are constants. (I accidentally switched μ and λ from the book.)
Solution: We proceed as in problem 6.2.27 and plug $u(r, \theta, z)=R(r) T(\theta) Z(z)$ into equation (0.11) to see that
(0.15) $\frac{\partial^{2}}{\partial r^{2}}(R(r) T(\theta) Z(z))+\frac{1}{r} \frac{\partial}{\partial r}(R(r) T(\theta) Z(z))+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}(R(r) T(\theta) Z(z))+\frac{\partial^{2}}{\partial z^{2}}(R(r) T(\theta) Z(z))=0 \rightarrow$

$$
\begin{equation*}
R^{\prime \prime}(r) T(\theta) Z(z)+\frac{1}{r} R^{\prime}(r) T(\theta) Z(z)+\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta) Z(z)+R(r) T(\theta) Z^{\prime \prime}(z)=0 \tag{0.16}
\end{equation*}
$$

We will now try to derive equation (0.13) from equation (0.16). From equation (0.16) we see that

$$
\begin{gather*}
-R(r) T(\theta) Z^{\prime \prime}(z)=R^{\prime \prime}(r) T(\theta) Z(z)+\frac{1}{r} R^{\prime}(r) T(\theta) Z(z)+\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta) Z(z) \rightarrow \tag{0.17}\\
\frac{Z^{\prime \prime}(z)}{Z(z)}=\frac{R^{\prime \prime}(r) T(\theta)+\frac{1}{r} R^{\prime}(r) T(\theta)+\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta)}{-R(r) T(\theta)} \stackrel{*}{=}-\mu \rightarrow \tag{0.18}\\
Z^{\prime \prime}(z)=-\mu Z(z) \rightarrow Z^{\prime \prime}(z)+\mu Z(z)=0 \tag{0.19}
\end{gather*}
$$

We will now derive equation (0.12) from equation (0.16). From equation (0.16) we see that

$$
\begin{gather*}
-\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta) Z(z)=R^{\prime \prime}(r) T(\theta) Z(z)+\frac{1}{r} R^{\prime}(r) T(\theta) Z(z)+R(r) T(\theta) Z(z) \rightarrow \tag{0.20}\\
\frac{T^{\prime \prime}(\theta)}{T(\theta)}=\frac{R^{\prime \prime}(r) Z(z)+\frac{1}{r} R^{\prime}(r) Z(z)+R(r) Z(z)}{-\frac{1}{r^{2}} R(r) Z(z)} \stackrel{*}{=}-\lambda \rightarrow \tag{0.21}\\
T^{\prime \prime}(\theta)=-\lambda T(\theta) \rightarrow T^{\prime \prime}(\theta)+\lambda T(\theta)=0 . \tag{0.22}
\end{gather*}
$$

Lastly, we will derive equation (0.14) from equation (0.16). From equation (0.16), we see that

$$
\begin{gather*}
R^{\prime \prime}(r) T(\theta) Z(z)+\frac{1}{r} R^{\prime}(r) T(\theta) Z(z)=-\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta) Z(z)-R(r) T(\theta) Z^{\prime \prime}(z) \rightarrow \tag{0.23}\\
\frac{R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)}{R(r)}=\frac{-\frac{1}{r^{2}} T^{\prime \prime}(\theta) Z(z)-T(\theta) Z^{\prime \prime}(z)}{T(\theta) Z(z)}=\frac{-\frac{1}{r^{2}} T^{\prime \prime}(\theta)}{T(\theta)}+\frac{-Z^{\prime \prime}(z)}{Z(z)}=\frac{\lambda}{r^{2}}+\mu \rightarrow \tag{0.24}\\
R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)=\left(\frac{\lambda}{r^{2}}+\mu\right) R(r) \rightarrow R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)-\left(\frac{\lambda}{r^{2}}+\mu\right) R(r)=0 \rightarrow \tag{0.25}\\
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\left(\lambda+r^{2} \mu\right) R(r)=0 . \tag{0.26}
\end{gather*}
$$

Problem 6.3.11: Find the fourier series of the function

$$
f(x)= \begin{cases}1 & \text { if }-2<x<0 \tag{0.27}\\ x & \text { if } 0<x<2\end{cases}
$$

over the interval $[-2,2]$.

Solution: Since our interval has a radius of $L=2$, we see that the basis we will work with is $\left(\sin \left(\frac{2 \pi n x}{2 L}\right)\right)_{n=1}^{\infty} \cup\left(\cos \left(\frac{2 \pi m x}{2 L}\right)\right)_{m=1}^{\infty}$ which simplifies to $\left(\sin \left(\frac{\pi n x}{2}\right)\right)_{n=1}^{\infty} \cup\left(\cos \left(\frac{\pi m x}{2}\right)\right)_{m=1}^{\infty}$. We may now let $\left(a_{n}\right)_{n=1}^{\infty},\left(b_{n}\right)_{n=1}^{\infty}$ and a_{0} be such that

$$
\begin{equation*}
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{\pi n x}{2}\right)+\sum_{n=1}^{\infty} b_{n} \cos \left(\frac{\pi n x}{2}\right) . \tag{0.28}
\end{equation*}
$$

First let us determine the sequence $\left(a_{n}\right)_{n=1}^{\infty}$. We note that for each $n \geq 1$ we have
(0.29)

$$
\int_{-2}^{2} f(x) \sin \left(\frac{\pi n x}{2}\right) d x=\int_{-2}^{0} \sin \left(\frac{\pi n x}{2}\right) d x+\int_{0}^{2} x \sin \left(\frac{\pi n x}{2}\right) d x
$$

We see that

$$
\begin{equation*}
\int_{-2}^{0} \sin \left(\frac{\pi n x}{2}\right) d x=-\left.\frac{2}{\pi n} \cos \left(\frac{\pi n x}{2}\right)\right|_{x=-2} ^{0}=-\frac{2}{\pi n}+\frac{2}{\pi n} \cos (-\pi n) \tag{0.30}
\end{equation*}
$$

$$
= \begin{cases}0 & \text { if } \mathrm{n} \text { is even } \tag{0.31}\\ -\frac{4}{\pi n} & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

Using integration by parts, we also see that

$$
\left.\begin{array}{rl}
\int_{0}^{2} x \sin \left(\frac{\pi n x}{2}\right) & =-\left.\frac{2}{\pi n} x \cos \left(\frac{\pi n x}{2}\right)\right|_{x=0} ^{2}-\int_{0}^{2}-\frac{2}{\pi n} \cos \left(\frac{\pi n x}{2}\right) d x \tag{0.32}\\
=-\frac{4}{\pi n} \cos (\pi n)+\left(\left.\frac{4}{\pi^{2} n^{2}} \sin \left(\frac{\pi n x}{2}\right)\right|_{x=0} ^{2}\right.
\end{array}\right)=-\frac{4}{\pi n} \cos (\pi n) \quad \begin{array}{ll}
-\frac{4}{\pi n} & \text { if } \mathrm{n} \text { is even } \\
\frac{4}{\pi n} & \text { if } \mathrm{n} \text { is odd }
\end{array} .
$$

Putting all of this together, we see that for $n \geq 1$ we have

$$
\begin{gather*}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{2 \pi n x}{2 L}\right) d x=\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{\pi n x}{2}\right) d x \tag{0.35}\\
= \begin{cases}-\frac{2}{\pi n} & \text { if } \mathrm{n} \text { is even } \\
0 & \text { if } \mathrm{n} \text { is odd }\end{cases} \tag{0.36}
\end{gather*}
$$

Now let us determine the sequence $\left(b_{n}\right)_{n=1}^{\infty}$. We note that for $n \geq 1$ we have

$$
\begin{equation*}
\int_{-2}^{2} f(x) \cos \left(\frac{\pi n x}{2}\right) d x=\int_{-2}^{0} \cos \left(\frac{\pi n x}{2}\right) d x+\int_{0}^{2} x \cos \left(\frac{\pi n x}{2}\right) d x \tag{0.37}
\end{equation*}
$$

We see that

$$
\begin{equation*}
\int_{-2}^{0} \cos \left(\frac{\pi n x}{2}\right) d x=\left.\frac{2}{\pi n} \sin \left(\frac{\pi n x}{2}\right)\right|_{x=-2} ^{0}=0 \tag{0.38}
\end{equation*}
$$

Using integration by parts, we also see that

$$
\begin{gather*}
\int_{0}^{2} x \cos \left(\frac{\pi n x}{2}\right) d x=\left.\frac{2}{\pi n} x \sin \left(\frac{\pi n x}{2}\right)\right|_{x=0} ^{2}-\int_{0}^{2} \frac{2}{\pi n} \sin \left(\frac{\pi n}{2}\right) d x \tag{0.39}\\
\quad=-\frac{2}{\pi n} \int_{0}^{2} \sin \left(\frac{\pi n x}{2}\right) d x=\left.\frac{4}{\pi^{2} n^{2}} \cos \left(\frac{\pi n x}{2}\right)\right|_{x=0} ^{2} \tag{0.40}\\
\quad=\frac{4}{\pi^{2} n^{2}}(\cos (\pi n)-1)= \begin{cases}0 & \text { if } \mathrm{n} \text { is even } \\
\frac{-8}{\pi^{2} n^{2}} & \text { if } \mathrm{n} \text { is odd }\end{cases} \tag{0.41}
\end{gather*}
$$

Putting all of this together, we see that for $n \geq 1$ we have

$$
\begin{gather*}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{2 \pi n x}{2 L}\right) d x=\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{\pi n x}{2}\right) d x \tag{0.42}\\
= \begin{cases}0 & \text { if } \mathrm{n} \text { is even } \\
-\frac{4}{\pi^{2} n^{2}} & \text { if } \mathrm{n} \text { is odd }\end{cases} \tag{0.43}
\end{gather*}
$$

Lastly, we see that

$$
\begin{align*}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x=\frac{1}{4} \int_{-2}^{2} f(x) d x=\frac{1}{4} \int_{-2}^{0} 1 d x+\frac{1}{4} \int_{0}^{2} x d x \tag{0.44}\\
& \frac{1}{2}+\left(\left.\frac{x^{2}}{8}\right|_{x=0} ^{2}\right)=1 \tag{0.45}
\end{align*}
$$

Finally, we see that

$$
\begin{equation*}
f(x) \sim 1+\left(\sum_{n=1}^{\infty} \frac{2}{\pi^{2} n^{2}}\left((-1)^{n}-1\right) \cos \left(\frac{\pi n}{2} x\right)\right)+\left(\sum_{n=1}^{\infty} \frac{1}{\pi n}\left((-1)^{n+1}-1\right) \sin \left(\frac{\pi n x}{2}\right)\right) \tag{0.46}
\end{equation*}
$$

