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By Sohail Farhangi

Problem 1 (Not from the text book): Find the inverse of

A =

1 −2 3
0 2 −5
1 −1 1


Solution: We reduce the 3 by 6 matrix [A|I3] until the left half is in reduced

echelon form, which in this case will be I3.1 −2 3 1 0 0
0 2 −5 0 1 0
1 −1 1 0 0 1

 R3−R1−→

1 −2 3 1 0 0
0 2 −5 0 1 0
0 1 −2 −1 0 1


1
2R2−→

1 −2 3 1 0 0
0 1 −5

2 0 1
2 0

0 1 −2 −1 0 1

 R1+2R2−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 1 −2 −1 0 1


R3−R2−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 0 1
2 −1 −1

2 1

 2R3−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 0 1 −2 −1 2


R2+

5
2R3−→

1 0 −2 1 1 0
0 1 0 −5 −2 5
0 0 1 −2 −1 2

 R1+2R3−→

1 0 0 −3 −1 4
0 1 0 −5 −2 5
0 0 1 −2 −1 2

 .

To check our work, we note that

1 −2 3
0 2 −5
1 −1 1

−3 −1 4
−5 −2 5
−2 −1 2


=

1 · (−3) + (−2) · (−5) + 3 · (−2) 1 · (−1) + (−2) · (−2) + 3 · (−1) 1 · 4 + (−2) · 5 + 3 · 2
0 · (−3) + 2 · (−5) + (−5) · (−2) 0 · (−1) + 2 · (−2) + (−5) · (−1) 0 · 4 + 2 · 5 + (−5) · 2
1 · (−3) + (−1) · (−5) + 1 · (−2) 1 · (−1) + (−1) · (−2) + 1 · (−1) 1 · 4 + (−1) · 5 + 1 · 2

 =

1 0 0
0 1 0
0 0 1

 .
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Problem 4.9.46: Consider the matrices A,D ane E given by

A−1 =

[
3 1
0 2

]
, D =

[
−1 2 3
1 0 2

]
and E =

2 −1
1 1
0 3

 .
Find matrices B and C for which AB = D and CA = E.

Solution: We see that

A−1D = A−1(AB) = (A−1A)B = I2B = B, so

B = A−1D =

[
3 1
0 2

] [
−1 2 3
1 0 2

]
=

[
3 · (−1) + 1 · 1 3 · 2 + 1 · 0 3 · 3 + 1 · 2
0 · (−1) + 2 · 1 0 · 2 + 2 · 0 0 · 3 + 2 · 2

]
=

[
−2 6 11
2 0 4

]
.

Similarly, we see that

EA−1 = (CA)A−1 = C(AA−1) = CI2 = C, so

C = EA−1 =

2 −1
1 1
0 3

[3 1
0 2

]
=

2 · 3 + (−1) · 0 2 · 1 + (−1) · 2
1 · 3 + 1 · 0 1 · 1 + 1 · 2
0 · 3 + 3 · 0 0 · 1 + 3 · 2


=

6 0
3 3
0 6


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Altered Problem 4.9.48: Find the values of a for which the matrix

A =

1 1 −1
0 1 2
1 a a


is nonsingular.

Solution: A is nonsingular if and only if the equation

x1

1
0
1

 + x2

1
1
a

 + x3

−1
2
a

 =

0
0
0


has no solution other than the trivial solution (which is when x1 = x2 = x3 =

0). To determine whether or not this is the case, we reduce the augmented
matrix 1 1 −1 0

0 1 2 0
1 a a 0


to (not necessarily reduced) echelon form to determine whether or not there

exists an independent (free) variable. The original matrix A is nonsingular if
and only if there does not exist an independent variable. We now see that1 1 −1 0

0 1 2 0
1 a a 0

 R3−R1−→

1 1 −1 0
0 1 2 0
0 a− 1 a + 1 0

 R3−(a−1)R2−→

1 1 −1 0
0 1 2 0
0 0 −a + 3 0


We have currently reduced the matrix to echelon form, but not reduced eche-

lon form. Nonetheless, we see that x1 and x2 cannot be independent variables,
and only x3 can be an independent variable. Furthermore, we see that x3 is
an independent variable if and only if the last row of the augmented matrix
consists entirely of 0s, so we must have a = 3 in order for x3 to be independent.
Since we do not want any independent variables, we see that A is nonsingular
if and only if a 6= 3 .
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Problem 4.9.59: Let ~u and ~v be vectors in Rn, and let In denote the
(n×n) identity matrix. Let A = In+~u~vT , and suppose that ~vT~u 6= −1. Show
that

A−1 = In − a~u~vT , where a =
1

1 + ~vT~u
.

This result is known as the Sherman-Woodberry formula.

Example: If n = 3,

~u =

1
2
3

 and ~v =

−1
1
0

 then

~vT~u =
(
−1 1 0

)1
2
3

 = (−1) · 1 + 1 · 2 + 0 · 3 = 1 6= −1 and

A = I3 + ~u~vT =

1 0 0
0 1 0
0 0 1

 +

1
2
3

(−1 1 0
)

=

1 0 0
0 1 0
0 0 1

 +

1 · (−1) 1 · 1 1 · 0
2 · (−1) 2 · 1 2 · 0
3 · (−1) 3 · 1 3 · 0


=

1 0 0
0 1 0
0 0 1

 +

−1 1 0
−2 2 0
−3 3 0

 =

 0 1 0
−2 3 0
−3 3 1

 .

We also saw that

~vT~u = 1 and ~u~vT =

−1 1 0
−2 2 0
−3 3 0

 so

a =
1

1 + ~vT~u
=

1

1 + 1
=

1

2
and
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A−1 = I3 − a~u~vT =

1 0 0
0 1 0
0 0 1

− 1

2

−1 1 0
−2 2 0
−3 3 0

 =

3
2 −

1
2 0

1 0 0
3
2 −

3
2 1

 .

Indeed, we see that

AA−1 =

 0 1 0
−2 3 0
−3 3 1

3
2 −

1
2 0

1 0 0
3
2 −

3
2 1


=

 0 · 3
2
+ 1 · 1 + 0 · 3

2
0 · (− 1

2
) + 1 · 0 + 0 · (− 3

2
) 0 · 0 + 1 · 0 + 0 · 1

(−2) · 3
2
+ 3 · 1 + 0 · 3

2
(−2) · (− 1

2
) + 3 · 0 + 0 · (− 3

2
) (−2) · 0 + 3 · 0 + 0 · 1

(−3) · 3
2
+ 3 · 1 + 1 · 3

2
(−3) · (− 1

2
) + 3 · 0 + 1 · (− 3

2
) (−3) · 0 + 3 · 0 + 1 · 1

 =

1 0 0
0 1 0
0 0 1



Solution: The inverse of a matrix (if it exists) is unique, so for

B = In − a~u~vT ,
we only have to verify that

AB = I3 or BA = I3,

as we will then know that A is invertible, and that A−1 = B. Since ~vT~u is a
scalar, let us simplify our notation by letting

b = ~vT~u so that a =
1

1 + b
.

We see that

AB = (I3 + ~u~vT )(I3 − a~u~vT ) = I3I3 + ~u~vTI3 + I3(−a~u~vT ) + ~u~vT (−a~u~vT )

= I3 + ~u~vT − a~u~vT − a(~u~vT )(~u~vT ) = I3 + ~u~vT − a~u~vT − a~u(~vT~u)~vT

= I3 + ~u~vT − a~u~vT − a~u(b)~vT = I3 + ~u~vT − a~u~vT − ab~u~vT

= I3 + (1− a− ab)~u~vT = I3 + (1− 1

1 + b
− b

1 + b
)~u~vT = I3 + 0 · ~u~vT = I3.
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Problem 4.7.30: Determine the values of a that makes the vectors

v1 =

1
2
1

 , v2 =

1
3
2

 and v3 =

0
1
a


linearly dependent.

Solution: The vectors will be linearly dependent if the equation

x1v1 + x2v2 + x3v3 =

0
0
0


has a solution other than the trivial solution (which is when x1 = x2 = x3 =

0). So we row reduce the following augmented matrix and hope to find an
independent variable.1 1 0 0

2 3 1 0
1 2 a 0

 R2−2R1,R3−R1−→

1 1 0 0
0 1 1 0
0 0 a 0


The only possibility for an independent variable is x3, and x3 is independent

precisely when a = 0, as that is what makes the last row consist entirely of 0s,
so v1, v2 and v3 are linearly dependent when a = 0 .
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Problem 4.6.57: If A is a (5 × 7) matrix, determine n and m for which
InA = AIm = A.

Solution: Given any number n, any number k and any (n× k) matrix B,
we have that InB = BIk = B. For example, 5 1000

π π2

−1 2

[1 0
0 1

]
=

1 0 0
0 1 0
0 0 1

 5 1000
π π2

−1 2

 =

 5 1000
π π2

−1 2

 .
In order for InA to be defined, we need n = 5 . In order for AIm to be defined,

we need m = 7 .
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Problem 4.7.3: Determine whether the vectors

v1 =

[
1
2

]
and v5 =

[
3
6

]
are linearly dependent. If they are, express one of the vectors as a linear

combination of the other.

Solution: We want to find all solutions to the equation

x1

[
1
2

]
+ x2

[
3
6

]
=

[
0
0

]
.

We create and row reduce the following augmented matrix into reduced ech-
elon form.

[
1 3 0
2 6 0

]
R2−2R1−→

[
1 3 0
0 0 0

]
→ x1 + 3x2 = 0→ x1 = −3x2.

We now see that

x1

[
1
2

]
=

[
0
0

]
− x2

[
3
6

]
= −x2

[
3
6

]
, letting x1 = 1 we see that[

1
2

]
=

1

3

[
3
6

]
→ v1 =

1

3
v5.

Similarly,

v5 = 3v1.
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Problem 4.7.11: Determine whether the vectors

u2 =

 2
1
−3

 , u4 =

4
4
0

 and u5 =

1
1
0


are linearly dependent or independent. If they are linearly dependent, express

1 of the vectors as a linear combination of the other 2.

Solution: Since u4 = 4u5, we see that

0 · u2 + 1 · u4 + (−4) · u5 =

0
0
0


,

so {u2, u4, u5} is a linearly dependent set of vectors, and we can express u4
as linear combination of u2 and u5 as

u4 = 0 · u2 + 4 · u5.

Alternatively, if we weren’t lucky enough to immediately notice that u4 = 4u5,
then we try to find all solutions to the equation

x1u2 + x2u4 + x3u5 =

0
0
0

 .
As usual, we repesent the equation by the following augmented matrix. 2 4 1 0

1 4 1 0
−3 0 0 0

 .
We see that if we switch u2 and u5, then the system is closer to being in

reduced echelon form. In particular, we think about the system in the following
alternative form.

x1u5 + x2u4 + x3u2 =

0
0
0

 ,
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which has the augment matrix1 4 2 0
1 4 1 0
0 0 −3 0

 R2−R1−→

1 4 2 0
0 0 −2 0
0 0 −3 0

 −1
2R2−→

1 4 2 0
0 0 1 0
0 0 −3 0

 .
R1−2R2,R3+3R2−→

1 4 0 0
0 0 1 0
0 0 0 0

→ x3 = 0, x1 = −4x2.

It follows that

(−4x2)u5 + x2u4 + 0 · u2 =

0
0
0

 x2=1→ u4 = 4u5 + 0 · u2.


