Recitation For Section 4.9
 3/31/2020
 By Sohail Farhangi

Problem 1 (Not from the text book): Find the inverse of

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
0 & 2 & -5 \\
1 & -1 & 1
\end{array}\right)
$$

Solution: We reduce the 3 by 6 matrix $\left[A \mid I_{3}\right]$ until the left half is in reduced echelon form, which in this case will be I_{3}.

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & 2 & -5 & 0 & 1 & 0 \\
1 & -1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{1}}\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & 2 & -5 & 0 & 1 & 0 \\
0 & 1 & -2 & -1 & 0 & 1
\end{array}\right) \\
& \xrightarrow{\frac{1}{2} R_{2}}\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & 1 & -\frac{5}{2} & 0 & \frac{1}{2} & 0 \\
0 & 1 & -2 & -1 & 0 & 1
\end{array}\right) \xrightarrow{R_{1}+2 R_{2}}\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 1 & 0 \\
0 & 1 & -\frac{5}{2} & 0 & \frac{1}{2} & 0 \\
0 & 1 & -2 & -1 & 0 & 1
\end{array}\right) \\
& \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 1 & 0 \\
0 & 1 & -\frac{5}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & -1 & -\frac{1}{2} & 1
\end{array}\right) \xrightarrow{2 R_{3}}\left(\begin{array}{ccc|cccc}
1 & 0 & -2 & 1 & 1 & 0 \\
0 & 1 & -\frac{5}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & -2 & -1 & 2
\end{array}\right) \\
& \xrightarrow{R_{2}+\frac{5}{2} R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 1 & 0 \\
0 & 1 & 0 & -5 & -2 & 5 \\
0 & 0 & 1 & -2 & -1 & 2
\end{array}\right) \xrightarrow{R_{1}+2 R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -3 & -1 & 4 \\
0 & 1 & 0 & -5 & -2 & 5 \\
0 & 0 & 1 & -2 & -1 & 2
\end{array}\right) .
\end{aligned}
$$

To check our work, we note that

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & -2 & 3 \\
0 & 2 & -5 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
-3 & -1 & 4 \\
-5 & -2 & 5 \\
-2 & -1 & 2
\end{array}\right) \\
=\left(\begin{array}{ll}
1 \cdot(-3)+(-2) \cdot(-5)+3 \cdot(-2) & 1 \cdot(-1)+(-2) \cdot(-2)+3 \cdot(-1) \\
0 & 1 \cdot 4+(-2) \cdot 5+3 \cdot 2 \\
0 \cdot(-3)+2 \cdot(-5)+(-5) \cdot(-2) & 0 \cdot(-1)+2 \cdot(-2)+(-5) \cdot(-1) \\
1 \cdot(-3)+(-1) \cdot(-5)+5+(-5) \cdot 2 \\
0 & (-2) \\
1 \cdot(-1)+(-1) \cdot(-2)+1 \cdot(-1) & 1 \cdot 4+(-1) \cdot 5+1 \cdot 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Problem 4.9.46: Consider the matrices A, D ane E given by

$$
A^{-1}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right], D=\left[\begin{array}{ccc}
-1 & 2 & 3 \\
1 & 0 & 2
\end{array}\right] \text { and } E=\left[\begin{array}{cc}
2 & -1 \\
1 & 1 \\
0 & 3
\end{array}\right]
$$

Find matrices B and C for which $A B=D$ and $C A=E$.
Solution: We see that

$$
\begin{gathered}
A^{-1} D=A^{-1}(A B)=\left(A^{-1} A\right) B=I_{2} B=B, \text { so } \\
B=A^{-1} D=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{ccc}
-1 & 2 & 3 \\
1 & 0 & 2
\end{array}\right] \\
=\left[\begin{array}{ccc}
3 \cdot(-1)+1 \cdot 1 & 3 \cdot 2+1 \cdot 0 & 3 \cdot 3+1 \cdot 2 \\
0 \cdot(-1)+2 \cdot 1 & 0 \cdot 2+2 \cdot 0 & 0 \cdot 3+2 \cdot 2
\end{array}\right] \\
=\left[\begin{array}{ccc}
-2 & 6 & 11 \\
2 & 0 & 4
\end{array}\right] .
\end{gathered}
$$

Similarly, we see that

$$
\begin{aligned}
E A^{-1}=(C A) A^{-1} & =C\left(A A^{-1}\right)=C I_{2}=C, \text { so } \\
C=E A^{-1}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] & =\left[\begin{array}{cc}
2 \cdot 3+(-1) \cdot 0 & 2 \cdot 1+(-1) \cdot 2 \\
1 \cdot 3+1 \cdot 0 & 1 \cdot 1+1 \cdot 2 \\
0 \cdot 3+3 \cdot 0 & 0 \cdot 1+3 \cdot 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
6 & 0 \\
3 & 3 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

Altered Problem 4.9.48: Find the values of a for which the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 2 \\
1 & a & a
\end{array}\right)
$$

is nonsingular.
Solution: A is nonsingular if and only if the equation

$$
x_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+x_{2}\left(\begin{array}{l}
1 \\
1 \\
a
\end{array}\right)+x_{3}\left(\begin{array}{c}
-1 \\
2 \\
a
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

has no solution other than the trivial solution (which is when $x_{1}=x_{2}=x_{3}=$ $0)$. To determine whether or not this is the case, we reduce the augmented matrix

$$
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0 \\
1 & a & a & 0
\end{array}\right)
$$

to (not necessarily reduced) echelon form to determine whether or not there exists an independent (free) variable. The original matrix A is nonsingular if and only if there does not exist an independent variable. We now see that

$$
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0 \\
1 & a & a & 0
\end{array}\right) \xrightarrow{R_{3}-R_{1}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & a-1 & a+1 & 0
\end{array}\right) \xrightarrow{R_{3}-(a-1) R_{2}}\left(\begin{array}{llc|l}
1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & -a+3 & 0
\end{array}\right)
$$

We have currently reduced the matrix to echelon form, but not reduced echelon form. Nonetheless, we see that x_{1} and x_{2} cannot be independent variables, and only x_{3} can be an independent variable. Furthermore, we see that x_{3} is an independent variable if and only if the last row of the augmented matrix consists entirely of 0 s, so we must have $a=3$ in order for x_{3} to be independent. Since we do not want any independent variables, we see that A is nonsingular if and only if $a \neq 3$.

Problem 4.9.59: Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{n}, and let I_{n} denote the $(n \times n)$ identity matrix. Let $A=I_{n}+\vec{u} \vec{v}^{T}$, and suppose that $\vec{v}^{T} \vec{u} \neq-1$. Show that

$$
A^{-1}=I_{n}-a \vec{u}^{T}, \text { where } a=\frac{1}{1+\vec{v}^{T} \vec{u}} .
$$

This result is known as the Sherman-Woodberry formula.
Example: If $n=3$,

$$
\begin{gathered}
\vec{u}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \text { and } \vec{v}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \text { then } \\
\vec{v}^{T} \vec{u}=\left(\begin{array}{lll}
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=(-1) \cdot 1+1 \cdot 2+0 \cdot 3=1 \neq-1 \text { and } \\
A=I_{3}+\vec{u} \vec{v}^{T}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
-1 & 1 & 0
\end{array}\right) \\
=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
1 \cdot(-1) & 1 \cdot 1 & 1 \cdot 0 \\
2 \cdot(-1) & 2 \cdot 1 & 2 \cdot 0 \\
3 \cdot(-1) & 3 \cdot 1 & 3 \cdot 0
\end{array}\right) \\
=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
-1 & 1 & 0 \\
-2 & 2 & 0 \\
-3 & 3 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-2 & 3 & 0 \\
-3 & 3 & 1
\end{array}\right) .
\end{gathered}
$$

We also saw that

$$
\begin{aligned}
& \vec{v}^{T} \vec{u}=1 \text { and } \vec{u} \vec{v}^{T}=\left(\begin{array}{lll}
-1 & 1 & 0 \\
-2 & 2 & 0 \\
-3 & 3 & 0
\end{array}\right) \text { so } \\
& \quad a=\frac{1}{1+\vec{v}^{T} \vec{u}}=\frac{1}{1+1}=\frac{1}{2} \text { and }
\end{aligned}
$$

$$
A^{-1}=I_{3}-a \vec{u} \vec{v}^{T}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{lll}
-1 & 1 & 0 \\
-2 & 2 & 0 \\
-3 & 3 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\frac{3}{2} & -\frac{1}{2} & 0 \\
1 & 0 & 0 \\
\frac{3}{2} & -\frac{3}{2} & 1
\end{array}\right) .
$$

Indeed, we see that

$$
\begin{aligned}
& A A^{-1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-2 & 3 & 0 \\
-3 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{2} & -\frac{1}{2} & 0 \\
1 & 0 & 0 \\
\frac{3}{2} & -\frac{3}{2} & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 \cdot \frac{3}{2}+1 \cdot 1+0 \cdot \frac{3}{2} & 0 \cdot\left(-\frac{1}{2}\right)+1 \cdot 0+0 \cdot\left(-\frac{3}{2}\right) & 0 \cdot 0+1 \cdot 0+0 \cdot 1 \\
(-2) \cdot \frac{3}{2}+3 \cdot 1+0 \cdot \frac{3}{2} & (-2) \cdot\left(-\frac{1}{2}\right)+3 \cdot 0+0 \cdot\left(-\frac{3}{2}\right) & (-2) \cdot 0+3 \cdot 0+0 \cdot 1 \\
(-3) \cdot \frac{3}{2}+3 \cdot 1+1 \cdot \frac{3}{2} & (-3) \cdot\left(-\frac{1}{2}\right)+3 \cdot 0+1 \cdot\left(-\frac{3}{2}\right) & (-3) \cdot 0+3 \cdot 0+1 \cdot 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Solution: The inverse of a matrix (if it exists) is unique, so for

$$
B=I_{n}-a \vec{u} \vec{v}^{T},
$$

we only have to verify that

$$
A B=I_{3} \text { or } B A=I_{3},
$$

as we will then know that A is invertible, and that $A^{-1}=B$. Since $\vec{v}^{T} \vec{u}$ is a scalar, let us simplify our notation by letting

$$
b=\vec{v}^{T} \vec{u} \text { so that } a=\frac{1}{1+b} .
$$

We see that

$$
\begin{gathered}
A B=\left(I_{3}+\vec{u} \vec{v}^{T}\right)\left(I_{3}-a \vec{u} \vec{v}^{T}\right)=I_{3} I_{3}+\vec{u} \vec{v}^{T} I_{3}+I_{3}\left(-a \vec{u} \vec{v}^{T}\right)+\vec{u} \vec{v}^{T}\left(-a \vec{u} \vec{v}^{T}\right) \\
=I_{3}+\vec{u} \vec{v}^{T}-a \vec{u} \vec{v}^{T}-a\left(\vec{u} \vec{v}^{T}\right)\left(\vec{u} \vec{v}^{T}\right)=I_{3}+\vec{u} \vec{v}^{T}-a \vec{u} \vec{v}^{T}-a \vec{u}\left(\vec{v}^{T} \vec{u}\right) \vec{v}^{T} \\
=I_{3}+\vec{u} \vec{v}^{T}-a \vec{u} \vec{v}^{T}-a \vec{u}(b) \vec{v}^{T}=I_{3}+\vec{u} \vec{v}^{T}-a \vec{u} \vec{v}^{T}-a b \vec{u} \vec{v}^{T} \\
=I_{3}+(1-a-a b) \vec{v} \vec{v}^{T}=I_{3}+\left(1-\frac{1}{1+b}-\frac{b}{u} \vec{v}^{T}=I_{3}+0 \cdot \vec{u} \vec{v}^{T}=I_{3} .\right.
\end{gathered}
$$

Problem 4.7.30: Determine the values of a that makes the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \text { and } v_{3}=\left[\begin{array}{l}
0 \\
1 \\
a
\end{array}\right]
$$

linearly dependent.
Solution: The vectors will be linearly dependent if the equation

$$
x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

has a solution other than the trivial solution (which is when $x_{1}=x_{2}=x_{3}=$ 0). So we row reduce the following augmented matrix and hope to find an independent variable.

$$
\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
2 & 3 & 1 & 0 \\
1 & 2 & a & 0
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}, R_{3}-R_{1}}\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & a & 0
\end{array}\right]
$$

The only possibility for an independent variable is x_{3}, and x_{3} is independent precisely when $a=0$, as that is what makes the last row consist entirely of 0 s , so v_{1}, v_{2} and v_{3} are linearly dependent when $a=0$.

Problem 4.6.57: If A is a (5×7) matrix, determine n and m for which $I_{n} A=A I_{m}=A$.

Solution: Given any number n, any number k and any $(n \times k)$ matrix B, we have that $I_{n} B=B I_{k}=B$. For example,

$$
\left[\begin{array}{cc}
5 & 1000 \\
\pi & \pi^{2} \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & 1000 \\
\pi & \pi^{2} \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
5 & 1000 \\
\pi & \pi^{2} \\
-1 & 2
\end{array}\right] .
$$

In order for $I_{n} A$ to be defined, we need $n=5$. In order for $A I_{m}$ to be defined, we need $m=7$.

Problem 4.7.3: Determine whether the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and } v_{5}=\left[\begin{array}{l}
3 \\
6
\end{array}\right]
$$

are linearly dependent. If they are, express one of the vectors as a linear combination of the other.

Solution: We want to find all solutions to the equation

$$
x_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We create and row reduce the following augmented matrix into reduced echelon form.

$$
\left[\begin{array}{ll|l}
1 & 3 & 0 \\
2 & 6 & 0
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow x_{1}+3 x_{2}=0 \rightarrow x_{1}=-3 x_{2} .
$$

We now see that

$$
\begin{gathered}
x_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-x_{2}\left[\begin{array}{l}
3 \\
6
\end{array}\right]=-x_{2}\left[\begin{array}{l}
3 \\
6
\end{array}\right], \text { letting } x_{1}=1 \text { we see that } \\
{\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
3 \\
6
\end{array}\right] \rightarrow v_{1}=\frac{1}{3} v_{5} .}
\end{gathered}
$$

Similarly,

$$
v_{5}=3 v_{1}
$$

Problem 4.7.11: Determine whether the vectors

$$
u_{2}=\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right], u_{4}=\left[\begin{array}{l}
4 \\
4 \\
0
\end{array}\right] \text { and } u_{5}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

are linearly dependent or independent. If they are linearly dependent, express 1 of the vectors as a linear combination of the other 2 .

Solution: Since $u_{4}=4 u_{5}$, we see that

$$
0 \cdot u_{2}+1 \cdot u_{4}+(-4) \cdot u_{5}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

so $\left\{u_{2}, u_{4}, u_{5}\right\}$ is a linearly dependent set of vectors, and we can express u_{4} as linear combination of u_{2} and u_{5} as

$$
u_{4}=0 \cdot u_{2}+4 \cdot u_{5} .
$$

Alternatively, if we weren't lucky enough to immediately notice that $u_{4}=4 u_{5}$, then we try to find all solutions to the equation

$$
x_{1} u_{2}+x_{2} u_{4}+x_{3} u_{5}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

As usual, we repesent the equation by the following augmented matrix.

$$
\left[\begin{array}{ccc|c}
2 & 4 & 1 & 0 \\
1 & 4 & 1 & 0 \\
-3 & 0 & 0 & 0
\end{array}\right] .
$$

We see that if we switch u_{2} and u_{5}, then the system is closer to being in reduced echelon form. In particular, we think about the system in the following alternative form.

$$
x_{1} u_{5}+x_{2} u_{4}+x_{3} u_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

which has the augment matrix

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 4 & 2 & 0 \\
1 & 4 & 1 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{ccc|c}
1 & 4 & 2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] \xrightarrow{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc|c}
1 & 4 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] .} \\
\quad R_{1}-2 \xrightarrow{R_{2}, R_{3}+3 R_{2}}\left[\begin{array}{lll|l}
1 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow x_{3}=0, x_{1}=-4 x_{2} .
\end{gathered}
$$

It follows that

$$
\left(-4 x_{2}\right) u_{5}+x_{2} u_{4}+0 \cdot u_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \stackrel{x_{2}=1}{\rightarrow} u_{4}=4 u_{5}+0 \cdot u_{2}
$$

