Problem 3.6.16: Use the method of variation of parameters to find the general solution to the differential equation

$$
\begin{equation*}
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(t-1)^{2} e^{-t}, \quad 0<t<1 \tag{1}
\end{equation*}
$$

given that $y_{1}(t)=e^{t}$ and $y_{2}(t)=t$ are solutions to the corresponding homogeneous equation.

Solution: We begin by considering solutions to equation (1) of the form

$$
\begin{equation*}
y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)=e^{t} u_{1}(t)+t u_{2}(t), \tag{2}
\end{equation*}
$$

where $u_{1}(t)$ and $u_{2}(t)$ are functions that are yet to be determined. We see that

$$
\begin{equation*}
y^{\prime}(t)=e^{t} u_{1}^{\prime}(t)+e^{t} u(t)+t u_{2}^{\prime}(t)+u_{2}(t) . \tag{3}
\end{equation*}
$$

Viewing $u_{1}(t)$ and $u_{2}(t)$ as free variables, we see that we have 2 degrees of freedom, but we currently only have 1 constraint, which is that $y(t)$ satisfy equation (1). It follows that we can impose a second constraint, so we impose
(4) $e^{t} u_{1}^{\prime}(t)+t u_{2}^{\prime}(t)=0 \quad\left(\Leftrightarrow u_{1}^{\prime}(t)=-\frac{t}{e^{t}} u_{2}^{\prime}(t) \Leftrightarrow u_{1}(t)=\int-\frac{t}{e^{t}} u_{2}^{\prime}(t) d t\right)$,
from which we see that

$$
\begin{equation*}
y^{\prime}(t)=e^{t} u_{1}(t)+u_{2}(t) . \tag{5}
\end{equation*}
$$

We now see that

$$
\begin{align*}
& y^{\prime \prime}(t)=e^{t} u_{1}^{\prime}(t)+e^{t} u_{1}(t)+u_{2}^{\prime}(t), \text { so } \tag{6}\\
& 2(t-1)^{2} e^{-t}=(1-t) y^{\prime \prime}+t y^{\prime}-y \tag{7}
\end{align*}
$$

(8) $=(1-t)\left(e^{t} u_{1}^{\prime}(t)+e^{t} u_{1}(t)+u_{2}^{\prime}(t)\right)+t\left(e^{t} u_{1}(t)+u_{2}(t)\right)-\left(e^{t} u_{1}(t)+t u_{2}(t)\right)$
$(9)=\left((1-t) e^{t}+t e^{t}-e^{t}\right) u_{1}(t)+(t-t) u_{2}(t)+e^{t} u_{1}^{\prime}(t)-t e^{t} u_{1}^{\prime}(t)+u_{2}^{\prime}(t)-t u_{2}^{\prime}(t)$
$(10)=\left((1-t)\left(e^{t}\right)^{\prime \prime}+t\left(e^{t}\right)^{\prime}-\left(e^{t}\right)\right) u_{1}(t)+\left((1-t)(t)^{\prime \prime}+t(t)^{\prime}-(t)\right) u_{2}(t)$

$$
+e^{t} u_{1}^{\prime}(t)-t e^{t} u_{1}^{\prime}(t)+u_{2}^{\prime}(t)-t u_{2}^{\prime}(t)
$$

$$
\begin{gather*}
\stackrel{\text { by }(4)}{=}-t u_{2}^{\prime}(t)+t^{2} u_{2}^{\prime}(t)+u_{2}^{\prime}(t)-t u_{2}^{\prime}(t)=(t-1)^{2} u_{2}^{\prime}(t) \tag{12}\\
\rightarrow u_{2}^{\prime}(t)=2 e^{-t \stackrel{\text { by }}{\rightarrow}(4)} u_{1}^{\prime}(t)=-2 t e^{-2 t} \tag{13}\\
\rightarrow \tag{14}\\
\rightarrow y(t) \stackrel{*}{=} t e^{-2 t}+\frac{1}{2} e^{-2 t} \text { and } u_{2}(t) \stackrel{*}{=}-2 e^{-t} \\
\rightarrow y(t)=e^{t} u_{1}(t)+t u_{2}(t)=t e^{-t}+\frac{1}{2} e^{-t}-2 t e^{-t}=\left(\frac{1}{2}-t\right) e^{-t}
\end{gather*}
$$

Since $\left(\frac{1}{2}-t\right) e^{-t}$ is a particular solution to equation (1), we see that the general solution is

$$
\begin{equation*}
\left(\frac{1}{2}-t\right) e^{-t}+c_{1} e^{t}+c_{2} t \tag{16}
\end{equation*}
$$

