Problem 2.4.22:

Part a: Verify that $y_{1}(t)=1-t$ and $y_{2}(t)=-\frac{t^{2}}{4}$ are both solutions of the initial value problem

Where are these solutions valid?
Part b: Explain why the existence of two solutions of the given problem does not contradict the uniqueness part of Theorem 2.4.2.

Part c: Show that $y(t)=c t+c^{2}$, where c is an arbitrary constant, satisfies the differential equation in part (a) for $t \geq-2 c$. If $c=-1$, then the initial condition is also satisfied and the solution $y=y_{1}(t)$ is obtained. Show that no other choice of c gives a second solution. Note that no choice of c gives the solution $y=y_{2}(t)$.

Solution to (a): We see that $y_{1}(2)=y_{2}(2)=-1$. We also see that

$$
\begin{equation*}
y_{1}^{\prime}=-1 \text { and } \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \frac{-t+\sqrt{t^{2}+4(1-t)}}{2}=\frac{-t+\sqrt{t^{2}-4 t+4}}{2}=\frac{-t+\sqrt{(t-2)^{2}}}{2} \tag{3}\\
& \sqrt{(t-2)^{2}}=t-2 \\
& \text { if } \quad t-2 \geq 0 \quad \sqrt{x} \frac{-t+(t-2)}{2}=-1, \quad \sqrt{x}>0 \tag{4}
\end{align*}
$$

so $y_{1}(t)$ is indeed a solution to the initial value problem in equation (1) that is valid for $t \in[2, \infty)$ (as seen from equation $\left(^{*}\right)$). Lastly, we see that

$$
\begin{gather*}
y_{2}^{\prime}=-\frac{t}{2} \text { and } \tag{5}\\
\frac{-t+\sqrt{t^{2}+4\left(\frac{2}{4}\right)}}{2}=\frac{-t}{2},
\end{gather*}
$$

so $y_{2}(t)$ is also a solution to the initial value problem in equation (1) that is valid for all $t \in(-\infty, \infty)$.

Solution to (b): We see that in this problem we have

$$
\begin{equation*}
f=f(t, y)=\frac{-t+\sqrt{t^{2}+4 y}}{2} \tag{7}
\end{equation*}
$$

SO

$$
\begin{equation*}
\left(t_{0}, y_{0}\right)=(2,-1) \rightarrow \frac{\partial f}{\partial y}=\frac{1}{\sqrt{t^{2}+4 y}} \rightarrow \frac{1}{\sqrt{0}}=\text { unblefined } \tag{8}
\end{equation*}
$$

Since $\frac{\partial f}{\partial y}(2,-1)$ is not defined, $\frac{\partial f}{\partial y}$ is not continuous in any open rectangle containing $(2,-1)$, so the conditions of Theorem 2.4.2 are not satisfied, which means that we cannot apply the uniqueness part of Theorem 2.4.2.

Solution to (c): Letting c be any real number and letting $y(t)=c t+c^{2}$ we see that

$$
\begin{equation*}
y^{\prime}=c \text { and } \tag{9}
\end{equation*}
$$

(11) $\sqrt{(t+2 c)^{2}}=t+2 c \quad+\frac{*}{=} \frac{-t+t+2 c}{2}=c$,
so $y(t)$ is a solution to the differential equation in (1). In order to satisfy the initial condition of $y(2)=-1$, we see that we must have

$$
\begin{equation*}
-1=2 c+c^{2} \rightarrow 0=1+2 c+c^{2}=(1+c)^{2} \rightarrow c=-1 \tag{12}
\end{equation*}
$$

When $c=-1$, we see that we do indeed recover the solution $y_{1}(t)$. Furthermore, we see that $y_{2}(t)$ is a solution to the initial value problem in equation (1) that does not come from $y(t)$ for any choice of c.

