Problem 3.6.32: Use the method of reduction of order to find the general solution to the differential equation

$$
\begin{equation*}
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(t-1)^{2} e^{-t}, \quad 0<t<1, \tag{1}
\end{equation*}
$$

given that $y_{1}(t)=e^{t}$ is a solution to the corresponding homogeneous equation.
Solution: We search for solutions of the form $y(t)=v(t) y_{1}(t)=e^{t} v(t)$. Noting that

$$
\begin{equation*}
y^{\prime \prime}(t)=e^{t} v(t)+2 e^{t} v^{\prime}(t)+e^{t} v^{\prime \prime}(t) \tag{3}
\end{equation*}
$$

we see that

$$
\begin{gather*}
2(t-1)^{2} e^{-t}=(1-t) y^{\prime \prime}+t y^{\prime}-y \tag{4}\\
=(1-t)\left(e^{t} v(t)+2 e^{t} v^{\prime}(t)+e^{t} v^{\prime \prime}(t)\right)+t\left(e^{t} \boldsymbol{v}(t)+e^{t} v^{\prime}(t)\right)-e^{t} v(t) \tag{5}\\
=\underbrace{\left((1-t) e^{t}+t e^{t}-e^{t}\right)}_{\text {This part will always be } 0 .} v(t)+\left(2(1-t) e^{t}+t e^{t}\right) v^{\prime}(t)+e^{t} v^{\prime \prime}(t) \tag{6}
\end{gather*}
$$

Since equation (8) is a first order linear differential equation with respect to $v^{\prime}(t)$ (instead of $\left.v(t)\right)$ and it is in standard form, we can solve it by using an integrating factor. We see that the integrating factor $I(t)$ is given by

Multiplying both sides of equation (8) by $I(t)$ yields

$$
\begin{gather*}
2 e^{-t}=\frac{e^{t}}{1-t} v^{\prime \prime}(t)+\frac{(2-t) e^{t}}{(1-t)^{2}} v^{\prime}(t)=\left(\frac{e^{t}}{1-t} v^{\prime}(t)\right)^{\prime} \tag{10}\\
\rightarrow \frac{e^{t}}{1-t} v^{\prime}(t)=-2 e^{-t}+c_{1} \rightarrow v^{\prime}(t)=-2(1-t) e^{-2 t}+c_{1}(1-t) e^{-t} \tag{11}\\
\rightarrow v(t)=(1-t) e^{-2 t}-\frac{1}{2} e^{-2 t}+c_{1} t e^{-t}+c_{2} \tag{12}\\
=\left(\frac{1}{2}-t\right) e^{-2 t}+c_{1} t e^{-t}+c_{2} \tag{13}\\
\rightarrow y(t)=e^{t} v(t)=\left(\frac{1}{2}-t\right) e^{-t}+c_{1} t+c_{2} e^{t} . \tag{14}
\end{gather*}
$$

Remark: Observe that the $c_{1} t$ corresponds to the fact that $y_{2}(t)=t$ is the second solution to the homogeneous equation corresponding to (1). So in this case the method of reduction of order has given us more than just a particular solution to equation (1)!

