Problem 3.3.40: Solve the differential equation

(1) t2y —ty +5y =0, t>0.

Solution: Since equation (1) is an Euler equation, we make the substitution
x =In(t) and h(x)Ey(e”) = y(t). Since t = €”, we may use the chain rule to
see that
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We now see that substituting = In(¢) into equation (1) yields

(6) 0=t3"—ty + 5y =" @) — 2ty @5y =B — 21’ E5h

Since we now have t and x as independent variables, it is important to note

that h' = % and ¢y = ff; This is not the most elear notation, so some

people prefer to be more explicit and only Wrrte and Without any use of

. Regardless of your preferred convention, be Careful to avoid the errors that

I
arise when you assume 3’ = 5% and 1/ = Z’Z

We see that the characteristic polynomial of equation (6) is

(7) r? —2r 45,

and has roots
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Sohail Farhangi Problem 3.3.40

C2+4/(—22—-4-5 2++/-16
B B 2

(8) r — 1+
2
It follows that the general solution to equation (6) is
(9) h(z) = cre” cos(2x) + coe” sin(2x).

Finally, we see that

(10) y(t) = h(z) = h(In(t)) = cfe®™ D cos(2In(t)) + coe™ D sin(21n(t))

(11) =|cftcos(2In(t)) + catsin(21n(t))|.
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