Problem 3.3.40: Solve the differential equation

$$
\begin{equation*}
t^{2} y^{\prime \prime}-t y^{\prime}+5 y=0, \quad t>0 \tag{1}
\end{equation*}
$$

Solution: Since equation (1) is an Euler equation, we make the substitution $x=\ln (t)$ and $h(x)=y\left(e^{x}\right)=y(t)$. Since $t=e^{x}$, we may use the chain rule to see that

$$
\begin{equation*}
=e^{x} \frac{d y}{d t}+e^{x}\left(e^{x} \frac{d^{2} y}{d t^{2}}\right)=t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t} \tag{5}
\end{equation*}
$$

We now see that substituting $x=\ln (t)$ into equation (1) yields

$$
\begin{equation*}
0=t^{2} y^{\prime \prime}-t y^{\prime}+5 y=\left(t^{2} y^{\prime \prime}+t y^{\prime}\right)-2 t y^{\prime}+5 y=h^{\prime \prime}-2 h^{\prime}+5 h \tag{6}
\end{equation*}
$$

Since we now have t and x as independent variables, it is important to note that $h^{\prime}=\frac{d h}{d x}$ and $y^{\prime}=\frac{d y}{d t}$. This is not the most clear notation, so some people prefer to be more explicit and only write $\frac{d h}{d x}$ and $\frac{d y}{d t}$ without any use of ${ }^{\prime}$. Regardless of your preferred convention, be careful to avoid the errors that arise when you assume $y^{\prime}=\frac{d y}{d x}$ and $h^{\prime}=\frac{d h}{d t}$.

We see that the characteristic polynomial of equation (6) is

$$
\begin{equation*}
r^{2}-2 r+5 \tag{7}
\end{equation*}
$$

(8)

$$
r=\frac{2 \pm \sqrt{(-2)^{2}-4 \cdot 5}}{2}=\frac{2 \pm \sqrt{-16}}{2}=1 \pm 2 i .
$$

It follows that the general solution to equation (6) is

$$
\begin{equation*}
h(x)=c_{1} e^{x} \cos (2 x)+c_{2} e^{x} \sin (2 x) \tag{9}
\end{equation*}
$$

Finally, we see that

$$
=c_{1} t \cos (2 \ln (t))+c_{2} t \sin (2 \ln (t)) \text {. }
$$

