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Preliminaries

Preliminaries

Let (X, Σ, µ) be a non-atomic probability space, and (Tt) be a
measure-preserving flow on (X, Σ, µ). We will call the quadruple
(X, Σ, µ,Tt) a dynamical system.

Definition: By a flow {Tt : t ∈ R} we mean a group of measurable
transformations Tt : X → X with T0(x) = x, Tt+s = Tt ◦ Ts, s, t ∈ R.

Example(i): For a fixed r ∈ N, (T, Σ, λ,Tt) is a dynamical system,
where T = [0, 1)(mod 1) and Tt(x) := x+ tr.

Example (ii): For a fixed vector r = (r1, r2, . . . , rK) ∈ NK ,
(TK , ΣK , λ(K),T t) is a dynamical system where
T t(x) := x+ tr.
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Preliminaries

Notation: [N] = {1, 2, . . . ,N}.

Pointwise ergodic theorem

For any f ∈ L1, the averages 1
N ∑

n∈[N]

f (Tnx) converge a.e.
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Motivation

Motivation

In 1971, it was proved by Krengel that for an arbitrary (an), the
averages 1

N ∑
n∈[N]

f (Tanx) may not converge for a.e. x.

Let 1 ≤ p ≤ ∞. A sequence (an) of positive real numbers is said to be
pointwise good for Lp if for every system (X, Σ, µ,Tt) and every
f ∈ Lp(X), lim

N→∞

1
N ∑

n∈[N]

f (Tanx) exists for almost every x ∈ X.

A sequence (an) of positive real numbers is said to be pointwise bad for
Lp if for every aperiodic system (X, Σ, µ,Tt), there is an element
f ∈ Lp(X) such that lim

N→∞

1
N ∑

n∈[N]

f (Tanx) does not exist a.e.
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Motivation

Type I:
(2n) is pointwise L∞-bad. [Bellow, 1983]
(2

n
log logn ) are pointwise L∞-bad.[ S.M.-Roy-Wierdl, 2023]

Type II:
(logn), (log logn) are pointwise L∞-bad. [Jones-Wierdl, 1994]
For n ∈ N, let Ω(n) denote the number of prime factors of n,
counted with multiplicity. For example, Ω(6) = 2, Ω(27) = 3.
Then Ω(n) is pointwise L∞-bad.[Loyd, 2022]

7 / 19



Motivation

Type I:
(2n) is pointwise L∞-bad. [Bellow, 1983]
(2

n
log logn ) are pointwise L∞-bad.[ S.M.-Roy-Wierdl, 2023]

Type II:
(logn), (log logn) are pointwise L∞-bad. [Jones-Wierdl, 1994]
For n ∈ N, let Ω(n) denote the number of prime factors of n,
counted with multiplicity. For example, Ω(6) = 2, Ω(27) = 3.
Then Ω(n) is pointwise L∞-bad.[Loyd, 2022]

7 / 19



Motivation

Type I:
(2n) is pointwise L∞-bad. [Bellow, 1983]
(2

n
log logn ) are pointwise L∞-bad.[ S.M.-Roy-Wierdl, 2023]

Type II:
(logn), (log logn) are pointwise L∞-bad. [Jones-Wierdl, 1994]
For n ∈ N, let Ω(n) denote the number of prime factors of n,
counted with multiplicity. For example, Ω(6) = 2, Ω(27) = 3.
Then Ω(n) is pointwise L∞-bad.[Loyd, 2022]

7 / 19



Motivation

Type I:
(2n) is pointwise L∞-bad. [Bellow, 1983]
(2

n
log logn ) are pointwise L∞-bad.[ S.M.-Roy-Wierdl, 2023]

Type II:
(logn), (log logn) are pointwise L∞-bad. [Jones-Wierdl, 1994]
For n ∈ N, let Ω(n) denote the number of prime factors of n,
counted with multiplicity. For example, Ω(6) = 2, Ω(27) = 3.
Then Ω(n) is pointwise L∞-bad.[Loyd, 2022]

7 / 19



Motivation

Type III:
If α ≥ 2 is a positive integer, then (nα) is pointwise Lp-good for p > 1.
[Bourgain, 1988 & 1989]

Primes are pointwise Lp-good for p > 1. [ Wierdl, 1988].

Question: Is it true that (nα) is pointwise Lp-good for p > 1 when α is a
positive non-integer real number?

It follows from the work of Fejér and Van der Corput that (nα) is good
for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that
if α is a positive non-integer rational number, then (nα) is pointwise
L∞-bad. This means in every aperiodic dynamical system, we can find
a L∞ function f such that the averages 1

N ∑
n∈[N]

f (Tnαx) fail to converge

a.e. 8 / 19
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Main Results

Main Results
Theorem
If α is a positive non-integer rational number, then in every aperiodic system
(X, Σ, µ,Tt) and for every ϵ > 0, there exists a set E ∈ Σ such that µ(E) < ϵ
and for a.e. x ∈ X,

lim sup
N→∞

1
N ∑

n∈[N]

1E(Tnαx) = 1 and lim inf
N→∞

1
N ∑

n∈[N]

1E(Tnαx) = 0

Such oscillation behavior is known as the ‘strong sweeping property’.

Theorem
Let (an) be the sequence obtained by rearranging the elements of the set
{m 1

2n 1
3 : m,n ∈ N} in an increasing order. Then (an) is also strong sweeping

out.
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Strong sweeping out property

Strong sweeping out property
For (almost) every point x ∈ X, there is an N = N(x), so that x is
translated into the set E by Tan for many n ∈ [N].

Ex Ta1 x
Ta2 x

We have Tanx ∈ E for many n ∈ [N], that is, 1E(Tanx) = 1 for many
n ∈ [N]. Hence 1

N ∑
n∈[N]

1E(Tanx) ≈ 1.

Sweeping out results can be used to prove oscillatory behavior of some
averages even the usual ergodic averages.
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Idea of the proof

Idea of the proof:

Theorem (Kronecker’s diophantine theorem)
If 1, θ1, θ2, . . . , θn are real numbers, linearly independent over Q, and if
α1, α2, . . . , αn ∈ T, then for ϵ > 0, there exists r ∈ N such that
| rθi − αi |< ϵ, where T = [0, 1) (mod 1).

a1 aN aN2 aN3 aN4 aNN−1 aNN
. . . . . .

Figure: A sequence A=(an) l.i. over Q

1
N

2
N

3
N

4
N

N−1
N

. . . . . .
10

Figure: Torus T divided into N equal parts
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Idea of the proof

The case when S = (
√
n)

Lemma
The sequence S = (

√
n) can be partitioned as S = ·∪k∈N Sk in such a way that

for each k we have following:
1 dS(Sk) > 0.
2 ∑

k∈N
dS(Sk) = 1.

3 Sk is linearly independent over Q.

We will construct a ‘bad set’ E in the 2-dimensional torus T2 and find
two integer r1 and r2 such that λ(E) is small and for every (x, y) ∈ T2

we have
sup
N

1
N ∑n≤N 1E

(
x+ r1

√
n, y+ r2

√
n
)
≥ dS(S1) + dS(S2).
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Idea of the proof

Goal: sup
N

1
N ∑

n≤N
1E

(
x+ r1

√
n, y+ r2

√
n
)
≥ dS(S1) + dS(S2).
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E( Orange region)

Choose r1 and r2 such that ∀ 1 ≤ i, j ≤ 10, ∃ an ‘interval’ I such that
r1
√
n ∈

[ i−1
10 , i

10
]
if
√
n ∈ S1 ∩ I and r2

√
n ∈

[ j−1
10 , j

10
]
if
√
n ∈ S2 ∩ I. 14 / 19
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Open problems

Open problems

We saw that (nα) is strong sweeping out when α is a positive non-integer
rational number.

It can be proved that (nα) is strong sweeping out for all but countably
many α.

Problem I: Is it true that (nα) is pointwise L∞-bad for all positive
irrational α?

Problem II: Let α be an irrational number. Is it true that (nα) is linearly
independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I.
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Open problems

Thank you!
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