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Example(i): For a fixed r € IN, (T, %, A, T*) is a dynamical system,
where T = [0,1)(mod 1) and T!(x) := x + tr.

Example (ii): For a fixed vector r = (r1,7,...,7k) € INK,
(TK, =X, AK), T!) is a dynamical system where
T!(x) := x + tr.
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Notation: [N] = {1,2,...,N}.

Pointwise ergodic theorem

1
Forany f € L!, the averages — ) _ f(T"x) converge a.e.
ne(N]|

We are interested on the ergodic averages along a sequence of real

numbers (a,), that i is, Z f(T™x).
nE[N]
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Motivation
1

In 1971, it was proved by Krengel that for an arbitrary (a,), the

averages - Y f(T"x) may not converge for a.e. x.
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In 1971, it was proved by Krengel that for an arbitrary (a,), the

1
averages - Y f(T™x) may not converge for a.e. x.
n€([N]

Let1 < p < oo. A sequence (a,) of positive real numbers is said to be
pointwise good for L7 if for every system (X, X, u, T') and every

1
f e ’(X), leilgc}o N HEZU:\”f(T””x) exists for almost every x € X.

A sequence (a,) of positive real numbers is said to be pointwise bad for
L? if for every aperiodic system (X, X, u, T"), there is an element

f € LP(X) such that lim 1 Y f(T%x) does not exist a.e.
N—oo N e
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Type I:
e (2") is pointwise L®-bad. [Bellow, 1983]
° (210%110% ") are pointwise L*-bad.[ S.M.-Roy-Wierdl, 2023]

Type II:
e (logn), (loglogn) are pointwise L*-bad. [Jones-Wierdl, 1994]
e Forn € IN, let ()(n) denote the number of prime factors of n,
counted with multiplicity. For example, Q)(6) = 2, )(27) = 3.
Then Q)(n) is pointwise L*-bad.[Loyd, 2022]

7/19



Type III:

If & > 2 is a positive integer, then (n*) is pointwise LP-good for p > 1.
[Bourgain, 1988 & 1989]

8/19



Type III:

If & > 2 is a positive integer, then (n*) is pointwise LP-good for p > 1.
[Bourgain, 1988 & 1989]

Primes are pointwise LP-good for p > 1. [ Wierd], 1988]. )

8/19



Type III:

If & > 2 is a positive integer, then (n*) is pointwise LP-good for p > 1.
[Bourgain, 1988 & 1989

Primes are pointwise LP-good for p > 1. [ Wierd], 1988]. J

Question: Is it true that (n") is pointwise LP-good for p > 1 when w is a

positive non-integer real number?
4

8/19



Type III:

If & > 2 is a positive integer, then (n*) is pointwise LP-good for p > 1.
[Bourgain, 1988 & 1989]

Primes are pointwise LP-good for p > 1. [ Wierd], 1988]. J

Question: Is it true that (n") is pointwise LP-good for p > 1 when w is a

positive non-integer real number?
4

It follows from the work of Fejér and Van der Corput that (n*) is good
for mean convergence, when « is a positive real number.

8/19



Type III:

If & > 2 is a positive integer, then (n*) is pointwise LP-good for p > 1.
[Bourgain, 1988 & 1989]

Primes are pointwise LP-good for p > 1. [ Wierdl, 1988]. |

Question: Is it true that (n*) is pointwise LP-good for p > 1 when a is a

positive non-integer real number?
4

It follows from the work of Fejér and Van der Corput that (n*) is good

for mean convergence, when « is a positive real number.
V.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that
if w is a positive non-integer rational number, then (n%) is pointwise
L*-bad. This means in every aperiodic dynamical system, we can find

1 «
a L* function f such that the averages N Y f(T"x) fail to converge

ne[N] 1
9 e 8/1




Main Results

Theorem

If w is a positive non-integer rational number, then in every aperiodic system
(X, %, u, T) and for every € > 0, there exists a set E € X such that u(E) < €
and fora.e. x € X,

llmsup 2 1(T = 1and 11m1nf— Z ]IE(T”“x) =0
N—c0 N —oo N ne[N]
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If w is a positive non-integer rational number, then in every aperiodic system
(X, %, u, T) and for every € > 0, there exists a set E € X such that u(E) < €
and fora.e. x € X,

llmsupN 2 1(T" x) = 1 and hmmfﬁ E 1(T"x) =0

N—oo N—o0 ne[N]

4

Such oscillation behavior is known as the ‘strong sweeping property’. J

Theorem
Let (a,) be the sequence obtained by rearranging the elements of the set

{m2n3 : m,n € N} in an increasing order. Then (a,) is also strong sweeping
out.
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Strong sweeping out property

Strong sweeping out property
For (almost) every point x € X, there isan N = N(x), so that x is
translated into the set E by T% for many n € [N].

We have T"x € E for many n € [N], that is, 1g(T**x) = 1 for many

1
— Y 1(T"x) =~ 1.

n € [N]. Hence
N ne(N]|

Sweeping out results can be used to prove oscillatory behavior of some
averages even the usual ergodic averages.
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Theorem (Kronecker’s diophantine theorem)

If1,01,0,,...,0, are real numbers, linearly independent over Q, and if

a1,0,...,0, € T, then for € > 0, there exists r € IN such that
| 70; — a; |< €, where T = [0,1) (mod 1).
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If1,01,0,,...,0, are real numbers, linearly independent over Q, and if

a1,0,...,0, € T, then for € > 0, there exists r € IN such that
| 70; — a; |< €, where T = [0,1) (mod 1).

Clxl a{\] ﬂNZ HINS HII]A} ﬂNl\: 1 ﬂ[)/.\“
T T h T T T T
Figure: A sequence A=(a,) Li. over Q
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Idea of the proof:
ap a anz2 ans AN4 ANN-1
| b . % : i
Figure: A sequence A=(ay)
1
F 1 1 1 1 1 1 1
6- T 2 5 4 N3 N2 N
N N N N N N N

Figure: Torus T divided into N equal parts
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Lemma

The sequence S = (v/n) can be partitioned as S = e Sy in such a way that
for each k we have following:

o ds(sk) > 0.
Q ) ds(Sk) =1.
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The case when S = (/)

Lemma

The sequence S = (v/n) can be partitioned as S = e Sy in such a way that
for each k we have following:

o ds(sk) > 0.
Q ) ds(Sk) =1.

keN
@ Sy is linearly independent over Q.

We will construct a ‘bad set’ E in the 2-dimensional torus T? and find
two integer r; and r, such that A(E) is small and for every (x,y) € T?
we have

sup Il\] Y <N 1E (x +rivn,y + T’zx/ﬁ) > ds(S1) +ds(S2)-
N
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Idea of the proof

Goal: supN Y HE(X+71\/>y+TQf> >d5(51)+d5(52) J

n<N

0 2 42556 8 1
10 10 10 10 10
E( Orange region)

Choose r; and r; such that V1 <i,j < 10, 3 an “interval’ I such that
ryne [ Llif yne S nlandryne [, L] Vi e SNL 1w



Idea of the proof

Goal: sup N Y 1g

n<N

(x+r1\/_ y—i—rg\/_) > ds(S1) + ds(Sy).

10 10 10
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E( Orange region)
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Idea of the proof
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Idea of the proof

Goal: sup % Y 1g (x—{— 1’1\/ﬁ,y+72\/ﬁ) > ds(S1) +ds(Sa).
N n

<N

—

\(Y/y) € B6,3

0
E( Orange region)
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Idea of the proof

E(Orange)
sup N Y 1g

n<N

> |(51+52)|

(51) +ds(S2)

(x+r1\/_y+rz\/_)N—Z]lg(x—i—rl\/_errz\/_)
s %

a
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Open problems

We saw that (n%) is strong sweeping out when w is a positive non-integer
rational number.

It can be proved that (n*) is strong sweeping out for all but countably
many «.

Problem I: Is it true that (n*) is pointwise L*-bad for all positive
irrational a?

Problem II: Let « be an irrational number. Is it true that (n*) is linearly
independent over the field of rationals?

4

If Problem II has an affirmative answer, then so does Problem I. J
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Thank you!
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