Behavior of ergodic averages along a subsequence and the grid method.

Ergodic Theory Seminar at OSU

Sovanlal Mondal

The Ohio State University

8th Feb, 2024

- Preliminaries
- 2 Motivation
- Main Results
- Strong sweeping out property
- Idea of the proof
- Open problems

- Preliminaries
- 2 Motivation
- Main Results
- Strong sweeping out property
- Idea of the proof
- Open problems

- Preliminaries
- 2 Motivation
- Main Results
- 4 Strong sweeping out property
- Idea of the proof
- 6 Open problems

- Preliminaries
- 2 Motivation
- Main Results
- 4 Strong sweeping out property
- Idea of the proof
- 6 Open problems

- Preliminaries
- 2 Motivation
- Main Results
- 4 Strong sweeping out property
- **5** Idea of the proof
- 6 Open problems

- Preliminaries
- 2 Motivation
- Main Results
- 4 Strong sweeping out property
- **5** Idea of the proof
- 6 Open problems

Let (X, Σ, μ) be a non-atomic probability space, and (T^t) be a measure-preserving flow on (X, Σ, μ) . We will call the quadruple (X, Σ, μ, T^t) a dynamical system.

Definition: By a flow $\{T^t: t \in \mathbb{R}\}$ we mean a group of measurable transformations $T^t: X \to X$ with $T^0(x) = x$, $T^{t+s} = T^t \circ T^s$, $s, t \in \mathbb{R}$.

Example(i): For a fixed $r \in \mathbb{N}$, $(\mathbb{T}, \Sigma, \lambda, T^t)$ is a dynamical system, where $\mathbb{T} = [0,1) \pmod{1}$ and $T^t(x) := x + tr$.

Example (ii): For a fixed vector $\mathbf{r} = (r_1, r_2, \dots, r_K) \in \mathbb{N}^K$, $(\mathbb{T}^K, \Sigma^K, \lambda^{(K)}, T^t)$ is a dynamical system where $T^t(x) := x + t\mathbf{r}$.

Let (X, Σ, μ) be a non-atomic probability space, and (T^t) be a measure-preserving flow on (X, Σ, μ) . We will call the quadruple (X, Σ, μ, T^t) a dynamical system.

Definition: By a flow $\{T^t : t \in \mathbb{R}\}$ we mean a group of measurable transformations $T^t : X \to X$ with $T^0(x) = x$, $T^{t+s} = T^t \circ T^s$, $s, t \in \mathbb{R}$.

Example(i): For a fixed $r \in \mathbb{N}$, $(\mathbb{T}, \Sigma, \lambda, T^t)$ is a dynamical system, where $\mathbb{T} = [0,1) \pmod{1}$ and $T^t(x) := x + tr$.

Example (ii): For a fixed vector $\mathbf{r} = (r_1, r_2, \dots, r_K) \in \mathbb{N}^K$, $(\mathbb{T}^K, \Sigma^K, \lambda^{(K)}, T^t)$ is a dynamical system where $T^t(x) := x + t\mathbf{r}$.

Let (X, Σ, μ) be a non-atomic probability space, and (T^t) be a measure-preserving flow on (X, Σ, μ) . We will call the quadruple (X, Σ, μ, T^t) a dynamical system.

Definition: By a flow $\{T^t: t \in \mathbb{R}\}$ we mean a group of measurable transformations $T^t: X \to X$ with $T^0(x) = x$, $T^{t+s} = T^t \circ T^s$, $s, t \in \mathbb{R}$.

Example(i): For a fixed $r \in \mathbb{N}$, $(\mathbb{T}, \Sigma, \lambda, T^t)$ is a dynamical system, where $\mathbb{T} = [0, 1) \pmod{1}$ and $T^t(x) := x + tr$.

Example (ii): For a fixed vector $\mathbf{r} = (r_1, r_2, \dots, r_K) \in \mathbb{N}^K$, $(\mathbb{T}^K, \Sigma^K, \lambda^{(K)}, T^t)$ is a dynamical system where $T^t(\mathbf{x}) := \mathbf{x} + t\mathbf{r}$.

Let (X, Σ, μ) be a non-atomic probability space, and (T^t) be a measure-preserving flow on (X, Σ, μ) . We will call the quadruple (X, Σ, μ, T^t) a dynamical system.

Definition: By a flow $\{T^t : t \in \mathbb{R}\}$ we mean a group of measurable transformations $T^t : X \to X$ with $T^0(x) = x$, $T^{t+s} = T^t \circ T^s$, $s, t \in \mathbb{R}$.

Example(i): For a fixed $r \in \mathbb{N}$, $(\mathbb{T}, \Sigma, \lambda, T^t)$ is a dynamical system, where $\mathbb{T} = [0, 1) \pmod{1}$ and $T^t(x) := x + tr$.

Example (ii): For a fixed vector $\mathbf{r} = (r_1, r_2, \dots, r_K) \in \mathbb{N}^K$, $(\mathbb{T}^K, \Sigma^K, \lambda^{(K)}, \mathbf{T}^t)$ is a dynamical system where $\mathbf{T}^t(\mathbf{x}) := \mathbf{x} + t\mathbf{r}$.

Notation: $[N] = \{1, 2, ..., N\}.$

Pointwise ergodic theorem

For any $f \in L^1$, the averages $\frac{1}{N} \sum_{n \in [N]} f(T^n x)$ converge a.e.

Notation:
$$[N] = \{1, 2, ..., N\}.$$

Pointwise ergodic theorem

For any $f \in L^1$, the averages $\frac{1}{N} \sum_{n \in [N]} f(T^n x)$ converge a.e.

We are interested on the ergodic averages along a sequence of real numbers (a_n) , that is, $\frac{1}{N} \sum f(T^{a_n}x)$.

Notation: $[N] = \{1, 2, ..., N\}.$

Pointwise ergodic theorem

For any $f \in L^1$, the averages $\frac{1}{N} \sum_{n \in [N]} f(T^n x)$ converge a.e.

We are interested on the ergodic averages along a sequence of real numbers (a_n) , that is, $\frac{1}{N} \sum_{n \in [N]} f(T^{a_n}x)$.

Motivation

In 1971, it was proved by Krengel that for an arbitrary (a_n) , the averages $\frac{1}{N} \sum_{n \in [N]} f(T^{a_n}x)$ may not converge for a.e. x.

Let $1 \le p \le \infty$. A sequence (a_n) of positive real numbers is said to be *pointwise good* for L^p if for every system (X, Σ, μ, T^t) and every $f \in L^p(X)$, $\lim_{N \to \infty} \frac{1}{N} \sum_{T \in \mathcal{T}} f(T^{a_n}x)$ exists for almost every $x \in X$.

A sequence (a_n) of positive real numbers is said to be *pointwise bad* for L^p if for every aperiodic system (X, Σ, μ, T^t) , there is an element $f \in L^p(X)$ such that $\lim_{X \to \infty} \frac{1}{X^t} \sum_{i} f(T^{a_n}x)$ does not exist a.e.

Motivation

In 1971, it was proved by Krengel that for an arbitrary (a_n) , the averages $\frac{1}{N} \sum_{n \in [N]} f(T^{a_n}x)$ may not converge for a.e. x.

Let $1 \le p \le \infty$. A sequence (a_n) of positive real numbers is said to be *pointwise good* for L^p if for every system (X, Σ, μ, T^t) and every $f \in L^p(X)$, $\lim_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} f(T^{a_n}x)$ exists for almost every $x \in X$.

A sequence (a_n) of positive real numbers is said to be *pointwise bad* for L^p if for every aperiodic system (X, Σ, μ, T^t) , there is an element $f \in L^p(X)$ such that $\lim_{N \to \infty} \frac{1}{N} \sum_{i \in I} f(T^{a_n}x)$ does not exist a.e.

Motivation

In 1971, it was proved by Krengel that for an arbitrary (a_n) , the averages $\frac{1}{N} \sum_{n \in [N]} f(T^{a_n}x)$ may not converge for a.e. x.

Let $1 \le p \le \infty$. A sequence (a_n) of positive real numbers is said to be *pointwise good* for L^p if for every system (X, Σ, μ, T^t) and every $f \in L^p(X)$, $\lim_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} f(T^{a_n}x)$ exists for almost every $x \in X$.

A sequence (a_n) of positive real numbers is said to be *pointwise bad* for L^p if for every aperiodic system (X, Σ, μ, T^t) , there is an element $f \in L^p(X)$ such that $\lim_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} f(T^{a_n}x)$ does not exist a.e.

- (2^n) is pointwise L^{∞} -bad. [Bellow, 1983]
- $(2^{\frac{n}{\log \log n}})$ are pointwise L^{∞} -bad.[S.M.-Roy-Wierdl, 2023]

- $(\log n)$, $(\log \log n)$ are pointwise L^{∞} -bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For example, $\Omega(6) = 2$, $\Omega(27) = 3$. Then $\Omega(n)$ is pointwise L^{∞} -bad. [Loyd, 2022]

- (2^n) is pointwise L^{∞} -bad. [Bellow, 1983]
- $(2^{\frac{n}{\log \log n}})$ are pointwise L^{∞} -bad.[S.M.-Roy-Wierdl, 2023]

- $(\log n)$, $(\log \log n)$ are pointwise L^{∞} -bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For example, $\Omega(6) = 2$, $\Omega(27) = 3$. Then $\Omega(n)$ is pointwise L^{∞} -bad.[Loyd, 2022]

- (2^n) is pointwise L^{∞} -bad. [Bellow, 1983]
- $(2^{\frac{n}{\log \log n}})$ are pointwise L^{∞} -bad.[S.M.-Roy-Wierdl, 2023]

- $(\log n)$, $(\log \log n)$ are pointwise L^{∞} -bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For example, $\Omega(6) = 2$, $\Omega(27) = 3$. Then $\Omega(n)$ is pointwise L^{∞} -bad. [Loyd, 2022]

- (2^n) is pointwise L^{∞} -bad. [Bellow, 1983]
- $(2^{\frac{n}{\log \log n}})$ are pointwise L^{∞} -bad.[S.M.-Roy-Wierdl, 2023]

- $(\log n)$, $(\log \log n)$ are pointwise L^{∞} -bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For example, $\Omega(6) = 2$, $\Omega(27) = 3$. Then $\Omega(n)$ is pointwise L^{∞} -bad.[Loyd, 2022]

If $\alpha \ge 2$ is a *positive integer*, then (n^{α}) is pointwise L^p -good for p > 1. [Bourgain, 1988 & 1989]

Primes are pointwise L^p -good for p > 1. [Wierdl, 1988].

Question: Is it true that (n^{α}) is pointwise L^p -good for p > 1 when α is a positive non-integer real number?

It follows from the work of Fejér and Van der Corput that (n^{α}) is good for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that if α is a positive non-integer rational number, then (n^{α}) is pointwise L^{∞} -bad. This means in every aperiodic dynamical system, we can find a L^{∞} function f such that the averages $\frac{1}{N}\sum_{n\in[N]}f(T^{n^{\alpha}}x)$ fail to converge

If $\alpha \ge 2$ is a *positive integer*, then (n^{α}) is pointwise L^p -good for p > 1. [Bourgain, 1988 & 1989]

Primes are pointwise L^p -good for p > 1. [Wierdl, 1988].

Question: Is it true that (n^{α}) is pointwise L^p -good for p > 1 when α is a positive non-integer real number?

It follows from the work of Fejér and Van der Corput that (n^{α}) is good for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that if α is a positive non-integer rational number, then (n^{α}) is pointwise L^{∞} -bad. This means in every aperiodic dynamical system, we can find a L^{∞} function f such that the averages $\frac{1}{N}\sum_{n\in[N]}f(T^{n^{\alpha}}x)$ fail to converge

If $\alpha \ge 2$ is a *positive integer*, then (n^{α}) is pointwise L^p -good for p > 1. [Bourgain, 1988 & 1989]

Primes are pointwise L^p -good for p > 1. [Wierdl, 1988].

Question: Is it true that (n^{α}) is pointwise L^p -good for p > 1 when α is a positive non-integer real number?

It follows from the work of Fejér and Van der Corput that (n^{α}) is good for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that if α is a *positive non-integer rational number*, then (n^{α}) is pointwise L^{∞} -bad. This means in every aperiodic dynamical system, we can find a L^{∞} function f such that the averages $\frac{1}{N} \sum_{n \in \mathbb{N}^n} f(T^{n^{\alpha}}x)$ fail to converge

If $\alpha \ge 2$ is a *positive integer*, then (n^{α}) is pointwise L^p -good for p > 1. [Bourgain, 1988 & 1989]

Primes are pointwise L^p -good for p > 1. [Wierdl, 1988].

Question: Is it true that (n^{α}) is pointwise L^p -good for p > 1 when α is a positive non-integer real number?

It follows from the work of Fejér and Van der Corput that (n^{α}) is good for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that if α is a *positive non-integer rational number*, then (n^{α}) is pointwise L^{∞} -bad. This means in every aperiodic dynamical system, we can find a L^{∞} function f such that the averages $\frac{1}{N} \sum_{n \in [N]} f(T^{n^{\alpha}}x)$ fail to converge

If $\alpha \ge 2$ is a *positive integer*, then (n^{α}) is pointwise L^p -good for p > 1. [Bourgain, 1988 & 1989]

Primes are pointwise L^p -good for p > 1. [Wierdl, 1988].

Question: Is it true that (n^{α}) is pointwise L^p -good for p > 1 when α is a positive non-integer real number?

It follows from the work of Fejér and Van der Corput that (n^{α}) is good for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that if α is a *positive non-integer rational number*, then (n^{α}) is pointwise L^{∞} -bad. This means in every aperiodic dynamical system, we can find a L^{∞} function f such that the averages $\frac{1}{N} \sum_{n \in [N]} f(T^{n^{\alpha}}x)$ fail to converge

Main Results

Theorem

If α is a positive non-integer rational number, then in every aperiodic system (X, Σ, μ, T^t) and for every $\epsilon > 0$, there exists a set $E \in \Sigma$ such that $\mu(E) < \epsilon$ and for a.e. $x \in X$,

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} \mathbb{1}_{E}(T^{n^{\alpha}}x) = 1 \text{ and } \liminf_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} \mathbb{1}_{E}(T^{n^{\alpha}}x) = 0$$

Such oscillation behavior is known as the 'strong sweeping property'

Theorem

Let (a_n) be the sequence obtained by rearranging the elements of the set $\{m^{\frac{1}{2}}n^{\frac{1}{3}}: m, n \in \mathbb{N}\}$ in an increasing order. Then (a_n) is also strong sweeping out.

Main Results

Theorem

If α is a positive non-integer rational number, then in every aperiodic system (X, Σ, μ, T^t) and for every $\epsilon > 0$, there exists a set $E \in \Sigma$ such that $\mu(E) < \epsilon$ and for a.e. $x \in X$,

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} \mathbb{1}_{E}(T^{n^{\alpha}}x) = 1 \text{ and } \liminf_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} \mathbb{1}_{E}(T^{n^{\alpha}}x) = 0$$

Such oscillation behavior is known as the 'strong sweeping property'.

Theorem

Let (a_n) be the sequence obtained by rearranging the elements of the set $\{m^{\frac{1}{2}}n^{\frac{1}{3}}: m, n \in \mathbb{N}\}$ in an increasing order. Then (a_n) is also strong sweeping out.

Main Results

Theorem

If α is a positive non-integer rational number, then in every aperiodic system (X, Σ, μ, T^t) and for every $\epsilon > 0$, there exists a set $E \in \Sigma$ such that $\mu(E) < \epsilon$ and for a.e. $x \in X$,

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} \mathbb{1}_{E}(T^{n^{\alpha}}x) = 1 \text{ and } \liminf_{N \to \infty} \frac{1}{N} \sum_{n \in [N]} \mathbb{1}_{E}(T^{n^{\alpha}}x) = 0$$

Such oscillation behavior is known as the 'strong sweeping property'.

Theorem

Let (a_n) be the sequence obtained by rearranging the elements of the set $\{m^{\frac{1}{2}}n^{\frac{1}{3}}: m, n \in \mathbb{N}\}$ in an increasing order. Then (a_n) is also strong sweeping out.

For (almost) every point $x \in X$, there is an N = N(x), so that x is translated into the set E by T^{a_n} for many $n \in [N]$.

We have $T^{a_n}x \in E$ for many $n \in [N]$, that is, $\mathbb{1}_E(T^{a_n}x) = 1$ for many $n \in [N]$. Hence $\frac{1}{N} \sum_{n \in [N]} \mathbb{1}_E(T^{a_n}x) \approx 1$.

For (almost) every point $x \in X$, there is an N = N(x), so that x is translated into the set E by T^{a_n} for many $n \in [N]$.

We have $T^{a_n}x \in E$ for many $n \in [N]$, that is, $\mathbb{1}_E(T^{a_n}x) = 1$ for many $n \in [N]$. Hence $\frac{1}{N} \sum_{n \in [N]} \mathbb{1}_E(T^{a_n}x) \approx 1$.

For (almost) every point $x \in X$, there is an N = N(x), so that x is translated into the set E by T^{a_n} for many $n \in [N]$.

We have $T^{a_n}x \in E$ for many $n \in [N]$, that is, $\mathbb{1}_E(T^{a_n}x) = 1$ for many $n \in [N]$. Hence $\frac{1}{N} \sum_{n \in [N]} \mathbb{1}_E(T^{a_n}x) \approx 1$.

For (almost) every point $x \in X$, there is an N = N(x), so that x is translated into the set E by T^{a_n} for many $n \in [N]$.

We have $T^{a_n}x \in E$ for many $n \in [N]$, that is, $\mathbb{1}_E(T^{a_n}x) = 1$ for many $n \in [N]$. Hence $\frac{1}{N} \sum_{n \in [N]} \mathbb{1}_E(T^{a_n}x) \approx 1$.

Idea of the proof:

Theorem (Kronecker's diophantine theorem)

If $1, \theta_1, \theta_2, \ldots, \theta_n$ are real numbers, linearly independent over \mathbb{Q} , and if $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{T}$, then for $\epsilon > 0$, there exists $r \in \mathbb{N}$ such that $|r\theta_i - \alpha_i| < \epsilon$, where $\mathbb{T} = [0, 1) \pmod{1}$.

Figure: A sequence $A=(a_n)$ l.i. over \mathbb{Q}

Figure: Torus $\mathbb T$ divided into N equal parts

Idea of the proof:

Theorem (Kronecker's diophantine theorem)

If $1, \theta_1, \theta_2, \ldots, \theta_n$ are real numbers, linearly independent over \mathbb{Q} , and if $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{T}$, then for $\epsilon > 0$, there exists $r \in \mathbb{N}$ such that $|r\theta_i - \alpha_i| < \epsilon$, where $\mathbb{T} = [0, 1) \pmod{1}$.

Figure: A sequence $A=(a_n)$ l.i. over \mathbb{Q}

Figure: Torus $\mathbb T$ divided into N equal parts

Idea of the proof:

Theorem (Kronecker's diophantine theorem)

If $1, \theta_1, \theta_2, \ldots, \theta_n$ are real numbers, linearly independent over \mathbb{Q} , and if $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{T}$, then for $\epsilon > 0$, there exists $r \in \mathbb{N}$ such that $|r\theta_i - \alpha_i| < \epsilon$, where $\mathbb{T} = [0, 1) \pmod{1}$.

Figure: A sequence $A=(a_n)$ l.i. over \mathbb{Q}

Figure: Torus \mathbb{T} divided into N equal parts

Idea of the proof:

Figure: Torus \mathbb{T} divided into N equal parts

Idea of the proof:

Figure: Torus \mathbb{T} divided into N equal parts

The case when $S = (\sqrt{n})$

Lemma

The sequence $S = (\sqrt{n})$ can be partitioned as $S = \bigcup_{k \in \mathbb{N}} S_k$ in such a way that for each k we have following:

- \odot S_k is linearly independent over \mathbb{Q} .

We will construct a 'bad set' E in the 2-dimensional torus \mathbb{T}^2 and find two integer r_1 and r_2 such that $\lambda(E)$ is small and for every $(x,y) \in \mathbb{T}^2$ we have

$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \geq d_{S}(S_{1}) + d_{S}(S_{2}).$$

The case when $S = (\sqrt{n})$

Lemma

The sequence $S = (\sqrt{n})$ can be partitioned as $S = \bigcup_{k \in \mathbb{N}} S_k$ in such a way that for each k we have following:

- **1** $d_S(S_k) > 0$.
- **3** S_k is linearly independent over \mathbb{Q} .

We will construct a 'bad set' E in the 2-dimensional torus \mathbb{T}^2 and find two integer r_1 and r_2 such that $\lambda(E)$ is small and for every $(x,y) \in \mathbb{T}^2$ we have

$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \geq d_{S}(S_{1}) + d_{S}(S_{2}).$$

The case when $S = (\sqrt{n})$

Lemma

The sequence $S = (\sqrt{n})$ can be partitioned as $S = \bigcup_{k \in \mathbb{N}} S_k$ in such a way that for each k we have following:

- **1** $d_S(S_k) > 0$.
- **3** S_k is linearly independent over \mathbb{Q} .

We will construct a 'bad set' E in the 2-dimensional torus \mathbb{T}^2 and find two integer r_1 and r_2 such that $\lambda(E)$ is small and for every $(x,y) \in \mathbb{T}^2$ we have

$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \geq d_{S}(S_{1}) + d_{S}(S_{2}).$$

Goal:
$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \geq d_{S}(S_{1}) + d_{S}(S_{2}).$$

Choose r_1 and r_2 such that $\forall \ 1 \leq i, j \leq 10$, \exists an 'interval' I such that $r_1\sqrt{n} \in \left[\frac{i-1}{10}, \frac{i}{10}\right]$ if $\sqrt{n} \in S_1 \cap I$ and $r_2\sqrt{n} \in \left[\frac{j-1}{10}, \frac{j}{10}\right]$ if $\sqrt[n]{n} \in S_2 \cap I$.

Goal:
$$\sup_{N} \frac{1}{N} \sum_{n \le N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \ge d_{S}(S_{1}) + d_{S}(S_{2}).$$

Choose r_1 and r_2 such that $\forall 1 \le i, j \le 10$, \exists an 'interval' I such that $r_1\sqrt{n} \in \left[\frac{i-1}{10}, \frac{i}{10}\right] \text{ if } \sqrt{n} \in S_1 \cap I \text{ and } r_2\sqrt{n} \in \left[\frac{j-1}{10}, \frac{j}{10}\right] \text{ if } \sqrt{n} \in S_2 \cap I.$

Goal:
$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \geq d_{S}(S_{1}) + d_{S}(S_{2}).$$

 $r_1\sqrt{n} \in \left[\frac{3}{10}, \frac{4}{10}\right] \text{ if } \sqrt{n} \in S_1 \cap I \text{ and } r_2\sqrt{n} \in \left[\frac{7}{10}, \frac{8}{10}\right] \text{ if } \sqrt{n} \in S_2 \cap I.$

Goal:
$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \geq d_{S}(S_{1}) + d_{S}(S_{2}).$$

E(Orange region)

Goal:
$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \geq d_{S}(S_{1}) + d_{S}(S_{2}).$$

E(Orange region)

$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \sim \frac{1}{\#I} \sum_{n \in I} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right)$$

$$\geq \frac{|(S_{1} + S_{2})|}{S} = d_{S}(S_{1}) + d_{S}(S_{2})$$

$$\sup_{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right) \sim \frac{1}{\#I} \sum_{n \in I} \mathbb{1}_{E} \left(x + r_{1} \sqrt{n}, y + r_{2} \sqrt{n} \right)$$

$$\geq \frac{|(S_{1} + S_{2})|}{S} = d_{S}(S_{1}) + d_{S}(S_{2})$$

We saw that (n^{α}) is strong sweeping out when α is a positive non-integer rational number.

It can be proved that (n^{α}) is *strong sweeping out* for all but countably many α .

Problem I: Is it true that (n^{α}) is pointwise L^{∞} -bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that (n^{α}) is linearly independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I

We saw that (n^{α}) is strong sweeping out when α is a positive non-integer rational number.

It can be proved that (n^{α}) is *strong sweeping out* for all but countably many α .

Problem I: Is it true that (n^{α}) is pointwise L^{∞} -bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that (n^{α}) is linearly independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I

We saw that (n^{α}) is *strong sweeping out* when α is a *positive non-integer rational number*.

It can be proved that (n^{α}) is *strong sweeping out* for all but countably many α .

Problem I: Is it true that (n^{α}) is pointwise L^{∞} -bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that (n^{α}) is linearly independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I.

We saw that (n^{α}) is strong sweeping out when α is a positive non-integer rational number.

It can be proved that (n^{α}) is *strong sweeping out* for all but countably many α .

Problem I: Is it true that (n^{α}) is pointwise L^{∞} -bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that (n^{α}) is linearly independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I.

We saw that (n^{α}) is *strong sweeping out* when α is a *positive non-integer rational number*.

It can be proved that (n^{α}) is *strong sweeping out* for all but countably many α .

Problem I: Is it true that (n^{α}) is pointwise L^{∞} -bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that (n^{α}) is linearly independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I.

Thank you!