Behavior of ergodic averages along a subsequence and the grid method. Ergodic Theory Seminar at OSU

Sovanlal Mondal
The Ohio State University

8th Feb, 2024

Plan

(1) Preliminaries
(2) Motivation
(3) Main Results

Plan

(1) Preliminaries
(2) Motivation
(3) Main Results
(4) Strong sweeping out property

Plan

(1) Preliminaries
(2) Motivation
(3) Main Results

44 Strong sweeping out property
(5) Idea of the proof

Plan

(1) Preliminaries
(2) Motivation
(3) Main Results
(4) Strong sweeping out property

Plan

(1) Preliminaries
(2) Motivation
(3) Main Results
(4) Strong sweeping out property
(5) Idea of the proof

Plan

(1) Preliminaries
(2) Motivation
(3) Main Results
(4) Strong sweeping out property
(5) Idea of the proof
(6) Open problems

Preliminaries

Let (X, Σ, μ) be a non-atomic probability space, and $\left(T^{t}\right)$ be a measure-preserving flow on (X, Σ, μ). We will call the quadruple $\left(X, \Sigma, \mu, T^{t}\right)$ a dynamical system.

Preliminaries

Let (X, Σ, μ) be a non-atomic probability space, and $\left(T^{t}\right)$ be a measure-preserving flow on (X, Σ, μ). We will call the quadruple $\left(X, \Sigma, \mu, T^{t}\right)$ a dynamical system.

Definition: By a flow $\left\{T^{t}: t \in \mathbb{R}\right\}$ we mean a group of measurable transformations $T^{t}: X \rightarrow X$ with $T^{0}(x)=x, T^{t+s}=T^{t} \circ T^{s}, s, t \in \mathbb{R}$.

Preliminaries

Let (X, Σ, μ) be a non-atomic probability space, and $\left(T^{t}\right)$ be a measure-preserving flow on (X, Σ, μ). We will call the quadruple $\left(X, \Sigma, \mu, T^{t}\right)$ a dynamical system.

Definition: By a flow $\left\{T^{t}: t \in \mathbb{R}\right\}$ we mean a group of measurable transformations $T^{t}: X \rightarrow X$ with $T^{0}(x)=x, T^{t+s}=T^{t} \circ T^{s}, s, t \in \mathbb{R}$.

Example(i): For a fixed $r \in \mathbb{N},\left(\mathbb{T}, \Sigma, \lambda, T^{t}\right)$ is a dynamical system, where $\mathbb{T}=[0,1)(\bmod 1)$ and $T^{t}(x):=x+t r$.

Preliminaries

Let (X, Σ, μ) be a non-atomic probability space, and $\left(T^{t}\right)$ be a measure-preserving flow on (X, Σ, μ). We will call the quadruple $\left(X, \Sigma, \mu, T^{t}\right)$ a dynamical system.

Definition: By a flow $\left\{T^{t}: t \in \mathbb{R}\right\}$ we mean a group of measurable transformations $T^{t}: X \rightarrow X$ with $T^{0}(x)=x, T^{t+s}=T^{t} \circ T^{s}, s, t \in \mathbb{R}$.

Example(i): For a fixed $r \in \mathbb{N},\left(\mathbb{T}, \Sigma, \lambda, T^{t}\right)$ is a dynamical system, where $\mathbb{T}=[0,1)(\bmod 1)$ and $T^{t}(x):=x+t r$.

Example (ii): For a fixed vector $\boldsymbol{r}=\left(r_{1}, r_{2}, \ldots, r_{K}\right) \in \mathbb{N}^{K}$, $\left(\mathbb{T}^{K}, \Sigma^{K}, \lambda^{(K)}, \boldsymbol{T}^{t}\right)$ is a dynamical system where $T^{t}(x):=x+t r$.

Notation: $[N]=\{1,2, \ldots, N\}$.
Pointwise ergodic theorem
For any $f \in L^{1}$, the averages $\frac{1}{N} \sum_{n \in[N]} f\left(T^{n} x\right)$ converge a.e.

Notation: $[N]=\{1,2, \ldots, N\}$.
Pointwise ergodic theorem
For any $f \in L^{1}$, the averages $\frac{1}{N} \sum_{n \in[N]} f\left(T^{n} x\right)$ converge a.e.

We are interested on the ergodic averages along a sequence of real numbers $\left(a_{n}\right)$, that is, $\frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$.

Notation: $[N]=\{1,2, \ldots, N\}$.
Pointwise ergodic theorem
For any $f \in L^{1}$, the averages $\frac{1}{N} \sum_{n \in[N]} f\left(T^{n} x\right)$ converge a.e.

We are interested on the ergodic averages along a sequence of real numbers $\left(a_{n}\right)$, that is, $\frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$.

Motivation

In 1971, it was proved by Krengel that for an arbitrary $\left(a_{n}\right)$, the
averages $\frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$ may not converge for a.e. x.

A sequence $\left(a_{n}\right)$ of positive real numbers is said to be pointwise bad for $I{ }^{p}$ if for every aperiodic system $\left(X, \sum, u, T^{t}\right)$, there is an element

Motivation

In 1971, it was proved by Krengel that for an arbitrary $\left(a_{n}\right)$, the averages $\frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$ may not converge for a.e. x.

Let $1 \leq p \leq \infty$. A sequence $\left(a_{n}\right)$ of positive real numbers is said to be pointwise good for L^{p} if for every system $\left(X, \Sigma, \mu, T^{t}\right)$ and every $f \in L^{p}(X), \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$ exists for almost every $x \in X$.
 L^{p} if for every aperiodic system $\left(X, \Sigma, \mu, T^{t}\right)$, there is an element

Motivation

In 1971, it was proved by Krengel that for an arbitrary $\left(a_{n}\right)$, the averages $\frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$ may not converge for a.e. x.

Let $1 \leq p \leq \infty$. A sequence $\left(a_{n}\right)$ of positive real numbers is said to be pointwise good for L^{p} if for every system $\left(X, \Sigma, \mu, T^{t}\right)$ and every $f \in L^{p}(X), \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$ exists for almost every $x \in X$.

A sequence $\left(a_{n}\right)$ of positive real numbers is said to be pointwise bad for L^{p} if for every aperiodic system $\left(X, \Sigma, \mu, T^{t}\right)$, there is an element $f \in L^{p}(X)$ such that $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[N]} f\left(T^{a_{n}} x\right)$ does not exist a.e.

Type I:

- $\left(2^{n}\right)$ is pointwise L^{∞}-bad. [Bellow, 1983]
- $\left(2^{\log \log n}\right)$ are pointwise L^{∞}-bad.[S.M.-Roy-Wierdl, 2023]
- $(\log n),(\log \log n)$ are pointwise L^{∞}-bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$ let $\Omega(n)$ denote the number of nrime factors of n counted with multiplicity. For example, $\Omega(6)=2, \Omega(27)=3$. Then $\Omega(n)$ is pointwise L^{∞}-bad. [Loyd, 2022]

Type I:

- $\left(2^{n}\right)$ is pointwise L^{∞}-bad. [Bellow, 1983]
- $\left(2^{\frac{n}{\log \log n}}\right)$ are pointwise L^{∞}-bad.[S.M.-Roy-Wierdl, 2023]
- $(\log n),(\log \log n)$ are pointwise L^{∞}-bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For example, $\Omega(6)=2, \Omega(27)=3$. Then $\Omega(n)$ is pointwise L^{∞}-bad. [Loyd, 2022]

Type I:

- $\left(2^{n}\right)$ is pointwise L^{∞}-bad. [Bellow, 1983]
- $\left(2^{\frac{n}{\log \log n}}\right)$ are pointwise L^{∞}-bad.[S.M.-Roy-Wierdl, 2023]

Type II:

- $(\log n),(\log \log n)$ are pointwise L^{∞}-bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For example, $\Omega(6)=2, \Omega(27)=3$. Then $\Omega(n)$ is pointwise L^{∞}-bad. [Loyd, 2022]

Type I:

- $\left(2^{n}\right)$ is pointwise L^{∞}-bad. [Bellow, 1983]
- $\left(2^{\frac{n}{\log \log n}}\right)$ are pointwise L^{∞}-bad. [S.M.-Roy-Wierdl, 2023]

Type II:

- $(\log n),(\log \log n)$ are pointwise L^{∞}-bad. [Jones-Wierdl, 1994]
- For $n \in \mathbb{N}$, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For example, $\Omega(6)=2, \Omega(27)=3$. Then $\Omega(n)$ is pointwise L^{∞}-bad.[Loyd, 2022]

Type III:
 If $\alpha \geq 2$ is a positive integer, then $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$. [Bourgain, 1988 \& 1989]

Type III:
 If $\alpha \geq 2$ is a positive integer, then $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$. [Bourgain, 1988 \& 1989]

Primes are pointwise L^{p}-good for $p>1$. [Wierdl, 1988].

Question: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$ when α is a positive non-integer real number?

Type III:
 If $\alpha \geq 2$ is a positive integer, then $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$. [Bourgain, 1988 \& 1989]

Primes are pointwise L^{p}-good for $p>1$. [Wierdl, 1988].

Question: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$ when α is a positive non-integer real number?

It follows from the work of Fejér and Van der Corput that $\left(n^{\alpha}\right)$ is good for mean convergence, when α is a positive real number.

Type III:
 If $\alpha \geq 2$ is a positive integer, then $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$. [Bourgain, 1988 \& 1989]

Primes are pointwise L^{p}-good for $p>1$. [Wierdl, 1988].

Question: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$ when α is a positive non-integer real number?

It follows from the work of Fejer and Van der Corput that $\left(n^{\alpha}\right)$ is good for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that if α is a positive non-integer rational number, then $\left(n^{\alpha}\right)$ is pointwise L^{∞}-bad. This means in every aperiodic dynamical system, we can find a L^{∞} function f such that the averages
$f(T$
fail to converge

Type III:

If $\alpha \geq 2$ is a positive integer, then $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$. [Bourgain, 1988 \& 1989]

Primes are pointwise L^{p}-good for $p>1$. [Wierdl, 1988].

Question: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{p}-good for $p>1$ when α is a positive non-integer real number?

It follows from the work of Fejer and Van der Corput that $\left(n^{\alpha}\right)$ is good for mean convergence, when α is a positive real number.

In 1994, it was proved by Bergelson-Boshernitzan-Bourgain (BBB) that if α is a positive non-integer rational number, then $\left(n^{\alpha}\right)$ is pointwise L^{∞}-bad. This means in every aperiodic dynamical system, we can find a L^{∞} function f such that the averages $\frac{1}{N} \sum_{n \in[N]} f\left(T^{n^{\alpha}} x\right)$ fail to converge a.e.

Main Results

Theorem

If α is a positive non-integer rational number, then in every aperiodic system $\left(X, \Sigma, \mu, T^{t}\right)$ and for every $\epsilon>0$, there exists a set $E \in \Sigma$ such that $\mu(E)<\epsilon$ and for a.e. $x \in X$,

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[N]} \mathbb{1}_{E}\left(T^{n^{\alpha}} x\right)=1 \text { and } \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[\mathbb{N}]} \mathbb{1}_{E}\left(T^{n^{\alpha}} x\right)=0
$$

Main Results

Theorem

If α is a positive non-integer rational number, then in every aperiodic system $\left(X, \Sigma, \mu, T^{t}\right)$ and for every $\epsilon>0$, there exists a set $E \in \Sigma$ such that $\mu(E)<\epsilon$ and for a.e. $x \in X$,

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[N]} \mathbb{1}_{E}\left(T^{n^{\alpha}} x\right)=1 \text { and } \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[\mathbb{N}]} \mathbb{1}_{E}\left(T^{n^{\alpha}} x\right)=0
$$

Such oscillation behavior is known as the 'strong sweeping property'.

Main Results

Theorem

If α is a positive non-integer rational number, then in every aperiodic system $\left(X, \Sigma, \mu, T^{t}\right)$ and for every $\epsilon>0$, there exists a set $E \in \Sigma$ such that $\mu(E)<\epsilon$ and for a.e. $x \in X$,

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[N]} \mathbb{1}_{E}\left(T^{n^{\alpha}} x\right)=1 \text { and } \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n \in[\mathbb{N}]} \mathbb{1}_{E}\left(T^{n^{\alpha}} x\right)=0
$$

Such oscillation behavior is known as the 'strong sweeping property'.

Theorem

Let (a_{n}) be the sequence obtained by rearranging the elements of the set $\left\{m^{\frac{1}{2}} n^{\frac{1}{3}}: m, n \in \mathbb{N}\right\}$ in an increasing order. Then $\left(a_{n}\right)$ is also strong sweeping out.

Strong sweeping out property

For (almost) every point $x \in X$, there is an $N=N(x)$, so that x is translated into the set E by $T^{a_{n}}$ for many $n \in[N]$.

We have $T^{a_{n}} x \in E$ for many $n \in[N]$, that is, $\mathbb{1}_{E}\left(T^{a_{n}} x\right)=1$ for many

Strong sweeping out property

For (almost) every point $x \in X$, there is an $N=N(x)$, so that x is translated into the set E by $T^{a_{n}}$ for many $n \in[N]$.

We have $T^{a_{n}} x \in E$ for many $n \in[N]$, that is, $\mathbb{1}_{E}\left(T^{a_{n}} x\right)=1$ for many $n \in[N]$. Hence $\frac{1}{N} \sum \mathbb{1}_{E}\left(T^{a_{n}} x\right) \approx 1$.

Strong sweeping out property

For (almost) every point $x \in X$, there is an $N=N(x)$, so that x is translated into the set E by $T^{a_{n}}$ for many $n \in[N]$.

We have $T^{a_{n}} x \in E$ for many $n \in[N]$, that is, $\mathbb{1}_{E}\left(T^{a_{n}} x\right)=1$ for many $n \in[N]$. Hence $\frac{1}{N} \sum_{n \in[N]} \mathbb{1}_{E}\left(T^{a_{n}} x\right) \approx 1$.

Strong sweeping out property

For (almost) every point $x \in X$, there is an $N=N(x)$, so that x is translated into the set E by $T^{a_{n}}$ for many $n \in[N]$.

We have $T^{a_{n}} x \in E$ for many $n \in[N]$, that is, $\mathbb{1}_{E}\left(T^{a_{n}} x\right)=1$ for many $n \in[N]$. Hence $\frac{1}{N} \sum_{n \in[N]} \mathbb{1}_{E}\left(T^{a_{n}} x\right) \approx 1$.

Sweeping out results can be used to prove oscillatory behavior of some averages even the usual ergodic averages.

Idea of the proof:

Theorem (Kronecker's diophantine theorem)

If $1, \theta_{1}, \theta_{2}, \ldots, \theta_{n}$ are real numbers, linearly independent over \mathbb{Q}, and if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{T}$, then for $\epsilon>0$, there exists $r \in \mathbb{N}$ such that $\left|r \theta_{i}-\alpha_{i}\right|<\epsilon$, where $T=[0,1)(\bmod 1)$.

Figure: A sequence $\mathrm{A}=\left(a_{n}\right)$ l.i. over \mathbb{Q}

Idea of the proof:

Theorem (Kronecker's diophantine theorem)

If $1, \theta_{1}, \theta_{2}, \ldots, \theta_{n}$ are real numbers, linearly independent over \mathbb{Q}, and if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{T}$, then for $\epsilon>0$, there exists $r \in \mathbb{N}$ such that $\left|r \theta_{i}-\alpha_{i}\right|<\epsilon$, where $\mathbb{T}=[0,1)(\bmod 1)$.

Figure: A sequence $\mathrm{A}=\left(a_{n}\right)$ l.i. over \mathbb{Q}

Figure: Torus T divided into N equal parts

Idea of the proof:

Theorem (Kronecker's diophantine theorem)

If $1, \theta_{1}, \theta_{2}, \ldots, \theta_{n}$ are real numbers, linearly independent over \mathbb{Q}, and if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{T}$, then for $\epsilon>0$, there exists $r \in \mathbb{N}$ such that $\left|r \theta_{i}-\alpha_{i}\right|<\epsilon$, where $\mathbb{T}=[0,1)(\bmod 1)$.

Figure: A sequence $\mathrm{A}=\left(a_{n}\right)$ l.i. over \mathbb{Q}

Figure: Torus \mathbb{T} divided into N equal parts

Idea of the proof:

Figure: A sequence $\mathrm{A}=\left(a_{n}\right)$

Figure: Torus \mathbb{T} divided into N equal parts

Idea of the proof:

Figure: A sequence $\mathrm{A}=\left(a_{n}\right)$

Figure: Torus \mathbb{T} divided into N equal parts

The case when $S=(\sqrt{n})$

emma

The sequence $S=(\sqrt{n})$ can be partitioned as $S=\cup_{k \in \mathbb{N}} S_{k}$ in such a way that for each k we have following:
(1) $d_{S}\left(S_{k}\right)>0$.
(2) $\sum_{k \in \mathbb{N}} d_{S}\left(S_{k}\right)=1$.
(3) S_{k} is linearly independent over \mathbb{Q}.

The case when $S=(\sqrt{n})$

Lemma

The sequence $S=(\sqrt{n})$ can be partitioned as $S=\cup_{k \in \mathbb{N}} S_{k}$ in such a way that for each k we have following:
(1) $d_{S}\left(S_{k}\right)>0$.
(2) $\sum_{k \in \mathbb{N}} d_{S}\left(S_{k}\right)=1$.
(3) S_{k} is linearly independent over \mathbb{Q}.

The case when $S=(\sqrt{n})$

Lemma

The sequence $S=(\sqrt{n})$ can be partitioned as $S=\cup_{k \in \mathbb{N}} S_{k}$ in such a way that for each k we have following:
(1) $d_{S}\left(S_{k}\right)>0$.
(2) $\sum_{k \in \mathbb{N}} d_{S}\left(S_{k}\right)=1$.
(3) S_{k} is linearly independent over \mathbb{Q}.

We will construct a 'bad set' E in the 2-dimensional torus \mathbb{T}^{2} and find two integer r_{1} and r_{2} such that $\lambda(E)$ is small and for every $(x, y) \in \mathbb{T}^{2}$ we have
$\sup _{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E}\left(x+r_{1} \sqrt{n}, y+r_{2} \sqrt{n}\right) \geq d_{S}\left(S_{1}\right)+d_{S}\left(S_{2}\right)$.

Goal: $\sup _{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E}\left(x+r_{1} \sqrt{n}, y+r_{2} \sqrt{n}\right) \geq d_{S}\left(S_{1}\right)+d_{S}\left(S_{2}\right)$.

Goal: $\sup _{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E}\left(x+r_{1} \sqrt{n}, y+r_{2} \sqrt{n}\right) \geq d_{S}\left(S_{1}\right)+d_{S}\left(S_{2}\right)$.

Choose r_{1} and r_{2} such that $\forall 1 \leq i, j \leq 10, \exists$ an 'interval' I such that $r_{1} \sqrt{n} \in\left[\frac{i-1}{10}, \frac{i}{10}\right]$ if $\sqrt{n} \in S_{1} \cap I$ and $r_{2} \sqrt{n} \in\left[\frac{j-1}{10}, \frac{j}{10}\right]$ if $\sqrt{n} \in S_{2} \cap \overline{\bar{I}}$.

Goal: $\sup _{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E}\left(x+r_{1} \sqrt{n}, y+r_{2} \sqrt{n}\right) \geq d_{S}\left(S_{1}\right)+d_{S}\left(S_{2}\right)$.

$r_{1} \sqrt{n} \in\left[\frac{3}{10}, \frac{4}{10}\right]$ if $\sqrt{n} \in S_{1} \cap I$ and $r_{2} \sqrt{n} \in\left[\frac{7}{10}, \frac{8}{10}\right]$ if $\sqrt{n} \in S_{2} \cap I$.

Goal: $\sup _{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E}\left(x+r_{1} \sqrt{n}, y+r_{2} \sqrt{n}\right) \geq d_{S}\left(S_{1}\right)+d_{S}\left(S_{2}\right)$.

E (Orange region)

Goal: $\sup _{N} \frac{1}{N} \sum_{n \leq N} \mathbb{1}_{E}\left(x+r_{1} \sqrt{n}, y+r_{2} \sqrt{n}\right) \geq d_{S}\left(S_{1}\right)+d_{S}\left(S_{2}\right)$.

E (Orange region)

$$
\begin{aligned}
& \sup _{N} \frac{1}{N} \sum_{n \leq N} \prod_{E}\left(x+r_{1} \sqrt{n}, y+r_{2} \sqrt{n}\right) \sim \frac{1}{\# I} \sum_{n \in I} \pi_{E}\left(x+\sqrt{n}+r_{1} \sqrt{n}, y+r_{2}\right) \\
& \geq \frac{\left|\left(S_{1}+S_{2}\right)\right|}{S}=d_{S}\left(S_{1}\right)+d_{S}\left(S_{2}\right)
\end{aligned}
$$

Open problems

We saw that $\left(n^{\alpha}\right)$ is strong sweeping out when α is a positive non-integer rational number.

It can be proved that $\left(n^{\alpha}\right)$ is strong sweeping out for all but countably many α.

Open problems

We saw that $\left(n^{\alpha}\right)$ is strong sweeping out when α is a positive non-integer rational number.

It can be proved that $\left(n^{\alpha}\right)$ is strong sweeping out for all but countably many α.

Problem I: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{∞}-bad for all positive irrational α ?

Open problems

We saw that $\left(n^{\alpha}\right)$ is strong sweeping out when α is a positive non-integer rational number.

It can be proved that $\left(n^{\alpha}\right)$ is strong sweeping out for all but countably many α.

Problem I: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{∞}-bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that $\left(n^{\alpha}\right)$ is linearly independent over the field of rationals?

Open problems

We saw that $\left(n^{\alpha}\right)$ is strong sweeping out when α is a positive non-integer rational number.

It can be proved that $\left(n^{\alpha}\right)$ is strong sweeping out for all but countably many α.

Problem I: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{∞}-bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that $\left(n^{\alpha}\right)$ is linearly independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I.

Open problems

We saw that $\left(n^{\alpha}\right)$ is strong sweeping out when α is a positive non-integer rational number.

It can be proved that $\left(n^{\alpha}\right)$ is strong sweeping out for all but countably many α.

Problem I: Is it true that $\left(n^{\alpha}\right)$ is pointwise L^{∞}-bad for all positive irrational α ?

Problem II: Let α be an irrational number. Is it true that $\left(n^{\alpha}\right)$ is linearly independent over the field of rationals?

If Problem II has an affirmative answer, then so does Problem I.

Thank you!

