Eigenvalues and eigenfunctions

Let us consider a certain two-point boundary value problem

$$X'' + \lambda X = 0$$

together with two boundary conditions, where λ is a constant real number.

Definition. The values of λ for which nontrivial solutions X(x) (i.e., $X(x) \neq 0$) of the above problem exist are called <u>eigenvalues</u>. The corresponding nontrivial solutions are called eigenfunctions.

To find eigenvalues, you need to find values of λ such that **NOT BOTH** constants c_1, c_2 in the general solution X(x) of the given equation are 0.

Notice that the general solution has different forms depending on $\lambda < 0$, $\lambda > 0$ or $\lambda = 0$.

The characteristic equation for the equation $X'' + \lambda X = 0$ is $r^2 + \lambda = 0$. So, $r^2 = -\lambda$.

The general solution X(x) for different cases:

1. If $\lambda < 0$, then $\lambda = -a^2$, where a > 0 real number.

The characteristic equation is $r^2 = a^2$. The roots are $r_{1,2} = \pm a$.

The general solution is

$$X(x) = c_1 e^{ax} + c_2 e^{-ax},$$

where c_1, c_2 are any constants.

2. If $\lambda > 0$, then $\lambda = a^2$, where a > 0 real number.

The characteristic equation is $r^2 = -a^2$. The roots are $r_{1,2} = \pm ai$.

The general solution is

$$X(x) = c_1 \cos(ax) + c_2 \sin(ax),$$

where c_1, c_2 are any constants.

3. If $\lambda = 0$, then the characteristic equation is $r^2 = 0$. The roots are $r_1 = r_2 = 0$.

The general solution is

$$X(x)=c_1+c_2x,$$

where c_1, c_2 are any constants.

For eigenvalue problems, the following trigonometric identities are helpful:

$$\sin(x) = 0 \Rightarrow x = \pi n$$
 for all integer n

$$cos(x) = 0 \Rightarrow x = -\frac{\pi}{2} + \pi n$$
 for all integer n

Fourier series

The Fourier Convergence Theorem

Suppose that f and f' are piecewise continuous on the interval -L < x < L. Further assume that f is defined outside the interval -L < x < L so that it is a periodic function with a period T = 2L, i.e., f(x + 2L) = f(x) for every real number x. Then, f has the Fourier series, F(x), which is given by formula

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right),$$

where

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, \qquad n = 1, 2, 3, \cdots$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \qquad n = 1, 2, 3, \cdots$$

The Fourier series converges to the function given by

$$F(x_0) = \begin{cases} f(x_0), & \text{if } f \text{ is continuous at } x_0\\ \frac{\lim_{x \to x_0 +} f(x) + \lim_{x \to x_0 -} f(x)}{2}, & \text{if } f \text{ is discontinuous at } x_0 \end{cases}$$

The Fourier series F is also a periodic function with a period T=2L.

Remark.

Just because a Fourier series could have infinitely many terms does not mean that it will always have that many terms. If a periodic function f can be expressed by finitely many terms normally found in the Fourier series, then f must be the Fourier series of itself.

The following trigonometric identities are very helpful in this topic:

$$\sin(-n\pi) = -\sin(n\pi) = 0$$
 for all integer n
 $\cos(-n\pi) = \cos(n\pi) = (-1)^n$ for all integer n

Even and odd functions

1. An even function is any function f such that

$$f(-x) = f(x)$$

for all x in its domain.

2. An odd function is any function f such that

$$f(-x) = -f(x)$$

for all x in its domain.

3. f(x) = 0 is the only function that is both even and odd.

The Fourier Cosine Series

If f is an even periodic function with period 2L, then its Fourier series F(x) is a cosine series

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L},$$

where

$$a_0 = \frac{2}{L} \int_0^L f(x) dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L},$$
 for $n = 1, 2, 3, ...$

All $b_n = 0$ for n = 1, 2, ...

The Fourier Sine Series

If f is an odd periodic function with period 2L, then its Fourier series F(x) is a sine series

$$F(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

where

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L},$$
 for $n = 1, 2, 3, ...$

All $a_n = 0$ for n = 0, 1, 2, ...

8.2.3 The Cosine and Sine Series Extensions

If f and f' are piecewise continuous functions defined on the interval $0 \le \mathbb{X} \le L$ then f can be expressed into an even(odd) periodic function, \tilde{f} , of period 2L, such that $f(x) = \tilde{f}(x)$ on [0, L] and whose Fourier series is therefore a cosine(sine) Fourier series, respectively.

Even (cosine series) extension of f(x)

Let f be defined on [0, L]. Then its even extension of period 2L is

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } 0 \le x \le L \\ f(-x) & \text{if } -L \le x < 0 \end{cases}, \quad \tilde{f}(x+2L) = \tilde{f}(x),$$

where the Fourier cosine series is

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L},$$

and

$$a_0 = \frac{2}{L} \int_0^L f(x) \, dx, \quad a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n \pi x}{L} \, dx, \quad n = 1, 2, \dots$$

Odd (sine series) extension of f(x) If f is defined on (0, L). Then its odd extension of period 2L is

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } 0 < x < L \\ 0 & \text{if } x = 0, L \\ -f(-x) & \text{if } -L < x < 0 \end{cases}, \quad \tilde{f}(x+2L) = \tilde{f}(x),$$

where the Fourier sine series is

$$\sum_{n=1}^{\infty} b_n \sin \frac{m\pi x}{L},$$

and

$$b_{\mathbf{n}} = \frac{2}{L} \int_0^L f(x) \sin \frac{\mathbf{n} \pi x}{L} dx$$
, $\mathbf{n} = 1, 2, \dots$