
1

A Quantitative Analysis of Optimizations on the
Tegra X1 for Probabilistic Sampling Inference

Menna El-Shaer, Keith Redmill, and Fusun Ozguner

Abstract—Processing large amounts of data is computationally expensive for real-time systems in terms of process execution time
and resources, specifically memory space. As a result, optimizing with respect to computation time is important for real-time systems.
This research presents the costs and benefits of using different types of GPU memories, data formats and memory access patterns to
perform inference on a set of images taken from multiple cameras (viewpoints) while driving through traffic intersections. Analysis of
the data shows that faster runtimes can be better achieved by ensuring data or instruction coalescence and vectorization than
choosing a particular memory model implementation. Contribution of this research is to understand GPU optimization techniques and
provide a comparison between different runtime profiles of the same inference algorithm.

Index Terms—Probabilistic Inference; Graphical Processing Units; Deep Learning

F

1 INTRODUCTION

G RAPHICAL Processing Units (GPUs) have been instru-
mental in deep learning applications over the past few

years. The massive parallelism inherited in GPUs allows
for practical training and inference on the large amount of
data required. Nevertheless, system memory is finite and
response times of real-time control applications, such as
those used for automated driving and ADAS are fast, which
require fast sensory data processing. Large volume of data
and rapid processing calls for a tradeoff between the percep-
tion algorithm’s optimal execution performance and the bias
of its outcome. In this work, we study optimization tech-
niques on an embedded processor NVIDIA Tegra X1. This
processor is used in most autonomous vehicles and robotics
applications, which make it suitable for real-time testing. In
Section 2, we introduce the optimization techniques studied
and the metrics we used to analyze the algorithms perfor-
mance. We study an example of a generative probabilistic
sampling method used for deep learning inference – Gibbs
Sampling, which is a Markov Chain Monte Carlo method
that constructs a Markov chain with a stationary probability
distribution as the unknown distribution of interest, i.e.
running the chain for a few steps will generate samples that
approximate the unknown probability distribution. These
methods are very general and can theoretically approximate
any distribution of interest [1], which makes them suitable
for general inference problems. In Section 3 we detail the
experiments done and the results are presented in Section 4.

2 BACKGROUND

2.1 Inference Algorithm

Inspired by statistical mechanics, the Restricted Boltzmann
Machine [2], [3], [4], a probabilistic graphical model’s energy
with bipartite connections between its stochastic variables
v ∈ [0, 1]V and h ∈ {0, 1}H shown in Figure 1 is defined
with model parameters θ as:

E(v, h) = −bv − ch− hTWv ; θ ε {b, c,W} (1)

Interactions between nodes are represented by the
weight matrix W , while b and c are bias terms for visible
nodes v and hidden nodes h respectively.

The joint probability distribution between the variables
is modeled as:

p(v, h) =
e−E(v,h)

Z
(2)

where Z is the partition function or probability normalizing
constant.

Fig. 1. A graphical representation of a Restricted Boltzmann Machine

Given input variables v ∈ [0, 1]V , model parameters θ
can be learned by maximizing the log-likelihood F (v) as
shown in equations 3 and 4.

F (v) = − log(p(v, h)) = − log(
∑
h

e−E(v,h)) (3)

− ∂log(p(v))

∂θ
=
∂F (v)

∂θ
−

∑
v

p(v)
∂F (v)

∂θ
(4)

The second negative term in equation 4 which is the
expectation over all possible input data configurations is
intractable in practice, to make computations feasible we
will approximate the likelihood by fixing the number of



2

model samples to a finite N as shown in equation 5 and use
repeated sampling i.e. Markov Chain Monte Carlo (MCMC)
which results in N samples drawn from a distribution
similar to the marginal distribution p(v).

− ∂log(p(v))

∂θ
≈ ∂F (v)

∂θ
− 1

N

∑
vεN

∂F (v)

∂θ
(5)

The bipartite structure of the RBM allows for repeated
alternating Block Gibbs Sampling [2], [3], [4] between the
two layers as shown in equation 6.

p(hj = 1 | v) = g(cj +
∑
i

viwij)

p(vi = 1 |h) = g(bi +
∑
j

hjwij)
(6)

Such approximation defined by Hinton in [5], known as
constrastive divergence (equation 7) has been shown to
work well with N = 1.

4wij = λ . (E(vi, hj)data − E(vi, hj)reconstruction) (7)

where λ is the learning rate of the stochastic gradient
descent of equation 5.

2.2 The Heterogeneous Computing Model
GPUs are an example of heterogeneous processors, where
two separate different architecture processors are connected
via a PCIe bus. Each system has its own DRAM and
resources. The GPU is comprised of a scalable array of
Streaming Multiprocessors or SMs. Parallelism is achieved
using NVIDIA’s Single Instruction Multiple Thread (SIMT)
model, where multiple threads execute the same instruction
in a group called warp [6], [7], [8]. The SMs are responsible
for processing thread blocks of the kernel grid launched
by the CPU co-processor which the programmer gets to
control. Faster runtimes is achieved by concurrent memory
access, processing several elements per thread as well as
increasing the GPU’s occupancy as a measure of hardware
utilization or how much of the device’s resources are being
used to execute a specific kernel. In the SIMT model, this is
equivalent to increasing concurrent warps or the number of
warps runnning simultaneously on the SMs.

2.3 Optimization Techniques
2.3.1 Memory Types
A GPU has several types of memory, each characterized by
their size, latency and throughput. Due to the principle of
data locality [9], computing performance is greatly affected
by type of memory storage used for a task. Table 1 illustrates
the different types of memory found in a GPU, along with
their caching behavior and data lifetime.
(a) Global Memory

• Pagable Memory: The traditional heterogeneous mem-
ory model.

• Pinned and Unified Memory: Unified Memory offers
a single-pointer-to-data model that is conceptually
similar to zero-copy memory, where the physical
location of memory is pinned in CPU system memory
such that a program may have fast or slow access to

TABLE 1
Summary of different memory types on the GPU

Global Memory Local Memory Constant Memory
Off-chip DRAM Off-chip DRAM

(Allocated in global
memory)

Off-chip ROM

Uncached Uncached Cached per SM
High latency, low
throughput

High latency On a cache miss, the
cost is one memory
read

Host and device ac-
cess

Individual thread
access

Located in device
memory and
accessed through
a special read-only
cache

Kernel Persistent Lifetime of thread

it depending on where it is being accessed from. Uni-
fied Memory, on the other hand, decouples memory
and execution spaces so that all data accesses are fast
[8].

(b) Constant Memory is cached read-only memory in re-
spect of the GPUs memory view, it can be declared at
compile time or defined at runtime as read only by the
host. There is separate block for constant memory; it
is a form of addressing global memory. Advantages of
using global memory is distributing or broadcasting
data in a single cycle to all the threads in a warp.
For compute capability 2.0 and higher GPU devices,
constant memory fetch speed is almost as fast as L1
cache speeds [10].

2.3.2 Global Memory Access Patterns
How a warp accesses the memory, whether it is reading
or writing, can greatly affect a kernel’s performance. When
all threads in a warp read from or write to the same
contiguous segment, the access is said to be coalesced; which
is almost always desirable to reduce the number of memory
transactions required to service the warp. Load Efficiency or
Bus Utilization is calculated as number of bytes requested
by a warp divided by the total number of loaded bytes. If
each thread accesses a word size greater than 4-bytes (FP32
value), warp memory requests are split into independent
128-byte transactions [8].

2.3.3 Data Layout
Memory Access Order: 1. Data is read and written row
major 2. Data is read and written column major

2.3.4 Data Format
Single-Precision Floating Point (FP32) instructions have
higher throughput than Double-Precision Floating Point
(FP64) instructions, and in vision applications one can get
away with using Half-Precision Floating Point (FP16) or
even INT8 instructions without losing much accuracy [11].
In addition, storing half-precision data requires less mem-
ory usage for transfer and computations than full-precision
floating-point data.

2.4 Performance Metrics
2.4.1 Total Execution Time
Measured using timers and CUDA events [8].



3

2.4.2 Global Memory Bandwidth (Data Throughput)
Two approaches are usually taken together to maximize
memory bandwidth: hiding memory latency by increasing
the number of warps executing concurrently along with co-
alescing and aligning memory accesses [12]. The measured
bandwidth a kernel actually achieves when reading and
writing global memory is known as Effective Bandwidth and
is calculated using:

Bandwidth (GB/s) =
(bytes read + bytes written) ∗ 10−9

time
(8)

3 EXPERIMENTS

We implemented our algorithm using different optimization
techniques used for compute-bound and memory-bound
applications, and measured performance accordingly. We
defined our baseline measurements as those resulting from
an unoptimized version of the algorithm implementation:
all variables are FP32, defined in pageable global memory
and are read and written in a column major order. Table 2
shows all experimental test cases done on 40 random images
selected from our traffic intersection scene dataset. One step
Gibbs sampling was done on all 40 images simultaneously
and execution times were measured using CUDA Events.

TABLE 2
Test Cases

Case number Weights Image Data Access Pattern Format
Zero (Baseline) Pageable Pageable Column FP32

One Pageable Pageable Row FP32
Two Constant Pageable Column FP32

Three Constant Unified Column FP32
Four Constant Pinned Row FP32
Five Constant Unified Row FP32
Six Constant Unified Row FP16

3.1 Implementation Details
Image data and trained parameters are to be read from ROM
(SSD) into the standard OpenCV/C++ convention of row-
based order. To test row-major ordering vs column-major
ordering, a transposition operation was done on the image
data and stored independently in global memory. We per-
formed the transposition using the cuBLAS library GEMM
function cublasSgeam(). Using this function with managed
(unified) memory allocation and initialization was not suc-
cessful unless host-device synchronization was called before
data re-access on host.

4 RESULTS AND DISCUSSION

Total execution times for each of the cases in Table 2 were
measured using cudaEvents and resulting times are shown
in Table 3. Total execution time was defined as the sum
of memory transfers and one iteration of Gibbs sampling
kernel run. One sampling iteration is defined as the total
time taken by both kernels (visible-to-hidden and hidden-
to-visible), kernel launching times by the host and host-
device synchronizations before and after each kernel launch.

TABLE 3
Total Execution Times (ms)

Case number Time (milliseconds)
Zero (Baseline) 50929.7

One 38633.2
Two 44499.8

Three 42582.1
Four 46352.5
Five 39072.4
Six 28336.5

TABLE 4
Visible to Hidden Execution Times (ms)

Case number Time (milliseconds)
Zero (Baseline) 45146.6

One 32684.6
Two 38737.2

Three 36672.5
Four 40408.2
Five 33359.6
Six 23007.3

Times in Tables 3, 4 and 5 were measured as the average of
5 runtimes for each test case.

The Tegra X1 chip has a 64-bit DRAM interface with
memory clock DDR rate of 13MHz, which translates to a
theoretical bandwidth of 0.208 GB/s.

From Table 3, we can see that the baseline case took the
longest, which agrees with our hypothesis that this is the
least optimal case, followed by the zero-copy (case 4). Case
1 (pageable) took the least amount of time: less than cases 4
(unified) and 5 (zero-copy) which is surprising on the TX1
given memory duplication. We posit the question whether
there is significant overhead to use those memory models
on the TX1 such that unified memory choice is not as a
significant optimization technique as hypothesized.

Data layout and memory access patterns proved an
important optimization technique. Even though cases 3 and
5 share memory and data types, row-major data ordering
is faster. This agrees with NVIDIA’s SIMT model of warp
access.

Using constant memory to store network coefficients and
parameters proved faster than traditional pageable global
memory. Case 2 performed much faster than the baseline
case.

From Table 6, highest throughput was obtained in case
4 (pinned memory) for both kernels, while the lowest was
case 2 for the visible-to-hidden kernel and case 5 for the
hidden-to-visible kernel. Referring to Section 1, the network
has more visible than hidden neurons and with mapping
the same number of CUDA threads to our resulting neu-
rons, the hidden-to-visible kernel (5746ms) executed faster
(on-average) than the visible-to-hidden kernel (37834.7ms),
which was expected as shown in tables 4 and 5.

The most optimization benefit was gained from case 6,
by using half-precision floats instead of full-precision num-
bers. Using half-precision operations allowed us to double
the throughput by vectorizing floating point instruction
operations.



4

TABLE 5
Hidden to Visible Execution Times (ms)

Case number Time (milliseconds)
Zero (Baseline) 5637.67

One 5819.69
Two 5644.01

Three 5841.66
Four 5881.62
Five 5651.93
Six 5185.46

TABLE 6
Global Memory Metrics

Throughput (MB/s)
Case number vis to hid hid to vis

Zero (Baseline) 82.6 121.21
One 89 124
Two 74.1 117.72

Three 82.6 114.12
Four 95.23 125.65
Five 92.21 107.99
Sixa 95.236 125.653
Sixb 99.43 486.66

a. half number of threads
b. same number of threads

5 CONCLUSION

The goal of this work is to quantitively analyze the perfor-
mance of different GPU optimization techniques regularly
discussed in the literature on a classical probabilistic infer-
ence problem applied to sampling images from a network
trained to uncover the probability distribution of real-world
traffic scenes. We studied the application of four optimiza-
tion techniques and experimentally tested seven different
combinations of memory types, access patterns, data layout
and format on the sampling algorithm. The results of our
experiments showed that more optimization benefit can be
achieved by ensuring data coalescence and vectorization
than choosing the memory type which is consistent with
SIMD parallelization. One type of memory that we didn’t
study in our implementation was the use of shared memory
for sharing data among threads in a block. Since this is the
only on-chip memory in a GPU, it will likely lead to the most
performance benefit provided that any overhead produced
from thread dependence and synchronization operations is
minimal. Although runtimes of our implementation are not
real-time ready, understanding the effect of the different
techniques can help towards achieving real-time perfor-
mance.

TABLE 7
Optimization Benefit for each case in terms of time

Case number Optimization Benefit (%)
One 24.14
Two 12.62

Three 16.39
Four 8.9
Five 23.28
Six 44.36

ACKNOWLEDGMENTS

This work was partially funded by NSF grant number CNS-
1446735.

REFERENCES

[1] “6.438 Algorithms for Inference. fall 2014,” Massachusetts In-
stitute of Technology: MIT OpenCourseWare, Available at http:
//ocw.mit.edu under Creative Commons BY-NC-SA (Accessed
September 2, 2017).

[2] R. R. Salakhutdinov, “Learning deep generative models,” Annual
Review of Statistics and its Application, vol. 2, pp. 361–385, April
2015.

[3] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy
layer-wise training of deep networks,” in Proceedings of the 19th
International Conference on Neural Information Processing Systems,
ser. NIPS’06. Cambridge, MA, USA: MIT Press, 2006, pp. 153–
160.

[5] G. E. Hinton and S. Osindero, “A fast learning algorithm for deep
belief nets,” Neural Computation, vol. 18, 2006.

[6] J. Sanders and E. Kandrot, CUDA by example : An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional,
2010.

[7] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Proces-
sors: A Hands On Approach, 2nd ed. San Francisco, CA: Elsevier
Science and Technology, 2012.

[8] “CUDA C programming guide,” Available at http://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html
(2018/04/16), NVIDIA Corporation.

[9] P. J. Denning, “The locality principle,” Communication Networks and
Computer Systems, p. 4367, 2006.

[10] S. Cook, “Chapter 6 - memory handling with cuda,” in CUDA
Programming, ser. Applications of GPU Computing Series, S. Cook,
Ed. Boston: Morgan Kaufmann, 2013, pp. 107 – 202.

[11] M. Harris, “Mixed-precision programming with
CUDA 8,” Available at https://devblogs.nvidia.com/
mixed-precision-programming-cuda-8/ (2018/05/18).

[12] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C
Programming. Wrox, 2014.


