
Implementing Communicable Measurement Grid
Algorithms on Graphical Processing Units

Menna El-Shaer

The Ohio State University

205 Dreese Labs, 2015 Neil Ave, Columbus, OH 43210 USA

el-shaer.1@osu.edu

John M. Maroli

The Ohio State University

205 Dreese Labs, 2015 Neil Ave, Columbus, OH 43210 USA

maroli.2@osu.edu

Abstract

Occupancy grid maps are a commonly used and highly practical method of

representing the occupancy state of space surrounding a vehicle across a prob-

abilistic range. They serve as a suitable medium for representing the fusion

of multiple sensors and can be transmitted between vehicles with lower data

overheads compared to sharing raw data. Occupancy grid maps are constructed

using measurement grids, which represent the spacial occupancy of a sensor as

strictly free or occupied. This work introduces a compact measurement grid

representation tailored toward vehicle to vehicle (V2V) and vehicle to infras-

tructure (V2I) communication. The representation’s data size is not only lower,

but can also be adjusted for varying data transmission rates. This new mea-

surement grid representation can lower bandwidth requirements but must be

reconstructed by the receiving party. It’s structure, however, is ideal for paral-

lel processing on a GPU (Graphics Processing Unit).

In this work, we demonstrate how grid maps can be reconstructed from

LIDAR point cloud sensor data, that are usually large, on a multiprocessing

system, using the CUDA programming model. We will discuss our implemen-

tation and give general tips for migrating serial CPU code to a GPU system.

2018



Keywords: occupancy grid map; measurement grid; vehicle-to-vehicle;

vehicle-to-infrastructure; Graphical Processing Units; Parallel Programming;

CUDA; LIDAR Sensors

1. Introduction

Occupancy grid maps serve as a valuable media for storing spatial occupancy

data obtained from a time-series of sensor measurements and/or a fusion of data

from different sensors. They are a probabilistic representation of space, often

used in robotics and intelligent vehicles [1]. Fusing occupancy grid maps from

multiple vehicles can extend the perception range of vehicles involved in sharing.

The occupancy grid is beneficial in reducing data sharing bandwidth require-

ments in comparison to sharing raw data [2], however bandwidth reductions

can still yet be beneficial since the current Dedicated Short Range Communica-

tion (DSRC) standard for sharing data may not be able to support large-scale

deployment [3].

Reconstructing grid maps from the large amount of sensor data, to be shared

between vehicles, is memory and time consuming on the processing system. The

availability of multicore processors and System-on-chips (SoCs) nowadays has

made the task more feasible. However being able to use said systems efficiently

is necessary to achieve the real-time constraints, most intelligent vehicles require

such as reconstructing occupancy grid maps.

In this paper, we start by giving a brief review of occupancy grid map-

ping methods, followed by an introduction to heterogeneous processors of which

GPUs are an example, in section 2. The core of the paper is divided into two

parts: In section 3, we describe our occupancy measurement algorithm along

with results and discussion; the parallel implementation and on the GPU and

its discussion are described in section 4, comprising the second half of the paper.

We end with a general discussion and suggested future work.

2



2. Background

2.1. Occupancy and Measurement Grids

The occupancy grid is constructed from a number of measurement grids

using a technique such as the binary Bayes filter [4], where each measurement

grid represents the spatial occupancy from a single sensor at a single time step.

The measurement grid can be represented as a 2D image with only one of two

occupancy states for known cells; free or occupied. Similarly, the occupancy grid

map represents spatial occupancy but each cell holds a value representing the

probability of occupancy in a range. As a result, an occupancy grid map with

an equal number of cells as a measurement grid will contain more occupancy

information but at the cost of a larger data size.

We represent the occupancy grid as a 2D array of cells akin to a grayscale

image, where a pixel value of 0 represents free space (white) while a pixel value

of 255 represents occupied space (black). Any intermediate values represent the

probability of spatial occupancy. We represent a measurement grid similarly as

a 2D array of cells, except the cells can hold states representing the sensor mea-

surement; free (white), occupied (black), or unknown (gray). All measurement

and occupancy grids in this work are 2D where the focus is a ground vehicles

plane of movement.

Since an occupancy grid can be constructed from a series of measurement

grids, the measurement grids can be transmitted between vehicles in lieu of the

occupancy grid and the occupancy grid constructed on the receiving vehicle.

This may be advantageous depending on the transmittable size of the occupancy

grid map and the number of measurement grids desired to be shared. If sharing

only the latest measurement grid from a vehicle’s LIDAR sensor for example,

the measurement grid will yield lower data transmission costs and should be

shared rather than the vehicle’s occupancy grid map.

2.2. Heterogeneous Processing Model

GPUs are an example of heterogeneous processors, where two separate dif-

ferent architecture processors are connected via a PCIe bus. Each system has its

3



own DRAM and resources. The GPU is comprised of a scalable array of Stream-

ing Multiprocessors or SMs. Parallelism is achieved using NVIDIA’s Single In-

struction Multiple Thread (SIMT) model, where multiple threads are execute

the same instruction in a group called warp. [5, 6, 7] The SMs are responsible for

processing thread blocks of the kernel grid launched by the CPU co-processor

which the programmer gets to control. Figure 1 shows the heterogeneous pro-

gramming structure. [7]

3. Measurement Grid Algorithm

A compact measurement grid format is introduced in this paper that relies

on the sectorized nature of many vehicle sensors, where the sensor values are

obtained from some sector of the circle containing the sensor as its origin. Light

Detection and Ranging (LIDAR) sensors are an ideal example of this, with

many LIDAR sensors having a 360 degree field of view. The LIDAR sensor

emits laser pulses and measures the return distance to each laser strike as well

as information for determining the precise angle.

For creating the compact representation, the area within a specified radius

around the vehicle or sensor is broken up into a designated number of sectors

with the vehicle or sensor as the center of the grid at (0, 0). Only the clos-

est (x, y) spacial coordinate of objects is recorded for each sector, and empty

sectors will be represented by an invalid data point such as (0, 0). The com-

pacted measurement grid can now be represented as an array of (x, y) coordinate

pairs containing no occupancy information and sent over Dedicated Short Range

Communication (DSRC) to neighboring vehicles.

To reconstruct the measurement grid from the compact representation, the

receiving vehicle must process it to retrieve occupancy information, converting

it into a standard measurement grid. The first step in processing the compact

measurement grid is to connect points of neighboring segments using a line

drawing algorithm such as Bresenham’s line algorithm. Points on this line are

assumed to be occupied space. Any points on the side of the line closer to the

4



Figure 1: The Heterogeneous Programming Model [7]

5



vehicle or sensor are assumed to be free space while points on the side of the

line further from the vehicle are marked as unknown space. Sectors containing

points that border free space are split with a ray going from the vertex of

the circle through the sector’s coordinate and the edge of the map. Points on

the side of this ray bordering the unoccupied sector are marked as free space,

while points on the other space have unknown occupancy. The compressed

and reconstructed measurement grid concepts are shown in 2 The computation

overhead is not trivial, however measurement grids can be reconstructed in real

time through parallel implementation on a GPU as shown in this work.

Figure 2: The compact measurement grid representation (left) and the reconstructed mea-

surement grid (right)

3.1. Discussion and Results

The resulting measurement grid has inaccuracies incurred by the reconstruc-

tion process, but the closest occupied area in each sector has been preserved.The

inaccuracies incurred in the reconstruction process may be insignificant for cer-

tain applications, especially when looking at the data bandwidth gained. For

example, a compact measurement grid comprised of 360 sectors would have 360

coordinate pairs with each sector covering a 1 degree viewing angle. If using 16

bit floating point numbers, this compact representation would be 1,440 bytes

in size. A similarly sized standard measurement grid using 2 bits per cell (to

represent free, occupied, and unknown space) would be 1,444 bytes in size at a

resolution of 76x76 pixels. For a 38 meter square grid, the cell size would be

6



50 centimeter square. The compact representation in this scenario can much

more accurately represent the distance to objects since the exact point of clos-

est distance to the vehicle or sensor is maintained in each sector. An example

reconstructed measurement grid is shown in 3.

Figure 3: The reconstructed measurement grid of LIDAR data generated from a 180 sector

compact measurement grid array. The resulting measurement grid is 512x512 cells. The

black pixels in the center of the grid represent the vehicle that is capturing data while driving

through a parking lot. White cells represent free space while black cells represent occupied

space (vehicle edges in this scenario). The parked vehicles detected in this measurement grid

occlude the space behind them, which is marked as unknown space and colored gray. The two

thinnest occluded areas are the result of parking signs detected by the LIDAR sensor.

While Bresenham’s line algorithm is used to connect the closest points from

each sector in a smooth manner representing vehicle edges, it may lead to oc-

cupied space being marked as free space in sectors where neighboring points

are further away than the closest point in the examined sector. To avoid oc-

cupied space being inferred as free space, the compact measurement grid can

be represented as an array of n distances [d1, d2, d3, ..., dn] to the closest sensor

measurement in each sector. Cells along the circle of radius dn in sector n are

marked as occupied, while cells within the circle are marked as free and cells

outside the circle are marked as unknown.

7



4. Parallel Implementation

In this section, we describe in detail how our parallel implementation of

the measurement grid algorithm was done. Following the CPU-GPU memory

organization and the CUDA programming model [7], to generate the grid sector

data on the GPU, input sensor data must be copied from CPU memory to

GPU global memory via the connecting PCIe bus. Global memory allocations

and copies can be expensive, so choosing the appropriate data structures and

containers is essential to ensure correct program execution and performance.

The following subsection explains how we implemented our data structures for

that purpose.

4.1. Parallel Data Structures

The C++ Standard Template Library (STL) [8] provides data structures

and containers, that while convenient for writing serial code, are not supported

by the NVIDIA CUDA Compiler Driver (NVCC) [9] to run on the device. As a

result, we had to implement our own structures to run on the CUDA accelerated

device. The two main basic containers that we needed were: vector containers

to store 2D grid pixel coordinates in a segment; and map containers where the

grid segment structures are sorted using their index as key. Although using

already constructed containers from the STL templates was not feasible, the

availability of the CUDA-accelerated Thrust library [10] was helpful, especially

to allocate and handle host-side data.

As discussed in section 3, reconstructing the measurement grid is done in

sectors or segments, this reconstruction is done in the SIMT fashion discussed

previously. Using segment data in CUDA kernels requires them to be present

in device memory, thus we needed portable containers that can be processed

in both host and device memories. Figures 4 and 5 show our implementations

of the vector structure implemented on the device and the map structure that

could be implemented in both host and device memories, respectively.

8



Figure 4: Implementation of the Vector structure on the device

9



Figure 5: Implementation of the Map structure

10



4.2. Host Code

Global memory device allocations and copies have to be done by the host

CPU [5, 6, 7, 11]. Allocating simple structures like arrays are usually done in

a straighforward way using the CUDA API functions:cudaMalloc() and cud-

aMemcpy() [7]. However, using complex user-defined structures in device code

requires a few more steps than straight cudaMalloc() and cudaMemcpy(). De-

tailed steps shown in figure 6 are explained below:

• First allocate space on host for any needed user-defined class instances.

• Allocate space on device using cudaMalloc() to store a copy of the in-

stances defined on the host.

• Copy object from host to device using cudaMemcpy().

• If object has a pointer member variable, the above steps should be re-

peated for each member variable. This ensures a Deep Copy process be-

tween the host and device.

It is to be noted that Thrust library structures cannot be used directly on

the device [10], thus a raw pointer to any those structures has to be passed to

device kernels on launching. This was how we were able to use our input sensor

data in our CUDA kernels.

4.3. Device Code

Filling up the grid map with input sensor data was done in parallel in a

CUDA kernel. Input sensor data can be pretty large so dividing the input

data among available threads was significant. As stated before, reconstructing

the grid map along with all its computations were also implemented in device

memory. Full code implementation can be found in the supplementary material.

4.4. Discussion and Results

The occupancy measurement grid algorithm was initially implemented in

standard C++ to run on one CPU. However, map generation and sharing are

11



Figure 6: Allocating structures on the device and creating pointers to their members

12



both memory and time expensive, especially with increasing data size. Paral-

lelizing the algorithm on the GPU presented commonly-faced challenges when

migrating serial code for GPU processing: mainly system memory management

and data dependencies.

While the GPU implementation of the measurement grid reconstruction

reduced computational overhead; there are more optimization strategies that

could be applied, but were not discussed in this paper [12], There is also room

for creating original data structures that are optimized for parallel processing,

for example, the commonly used ”push back” style of appending vector element

operations, that was used extensively in this work is not parallel-friendly since it

usually involves an atomic or thread-locking process in parallel execution models

which can cause unnecessary waits and hold-ups.

Occupancy [12] is important to ensure maximum resource usage given the

amount of work required by each thread. Organizing our structures as Structure

of Arrays (SOA) instead of Array of Structures (AOS) ensured device global

memory coalesced access and efficient use of memory bandwidth. Utilizing the

shared memories between threads in a block might result in faster execution

times especially among neighboring thread segments.

Optimization for the Tegra X1 and X2 SoCs. Algorithms such as our grid map-

ping reconstruction are generally implemented in robotics and intelligent vehicle

systems. These systems are usually run by System-on-chips (SoCs) as they con-

sume much less power. Among our future interests is deploying our parallel

algorithm on NVIDIA’s Tegra X1 SoC [13] and optimizing it for real-time con-

straints.

5. Conclusion

As intelligent vehicles are equipped with more sensors each day, processing

and extracting information from sensor data in a timely manner is essential to

ensure their operation. The availability of faster system processors allows us

to do just that. In this work, we have presented a sharable occupancy grid

13



algorithm along with the parallel implementation of the grid reconstruction on

Graphical Processing Units (GPUs).

6. References

References

[1] A. Elfes, Using occupancy grids for mobile robot perception and navigation,

Computer 22 (6) (1989) 46–57.

[2] G. Ozbilgin, U. Ozguner, O. Altintas, H. Kremo, J. Maroli, Evaluating the

requirements of communicating vehicles in collaborative automated driving,

in: 2016 IEEE Intelligent Vehicles Symposium (IV), 2016, pp. 1066–1071.

doi:10.1109/IVS.2016.7535521.

[3] Y. J. Li, An overview of the dsrc/wave technology (01 2012).

[4] K. C. J. Dietmayer, S. Reuter, D. Nuss, Representation of fused environ-

ment data (01 2016). doi:10.1007/978-3-319-09840-1_25-1.

[5] J. Sanders, E. Kandrot, CUDA by example : An Introduction to General-

Purpose GPU Programming, Addison-Wesley Professional, 2010.

[6] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors : A

Hands-on Approach, Elsevier Science, 2012.

[7] NVIDIA, Cuda c programming guide (2018).

URL http://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html

[8] cplusplus.com (2000-2017).

URL http://www.cplusplus.com/reference/stl

[9] NVIDIA, Nvcc: Nvidia cuda compiler driver (2018).

URL http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

index.html

14

http://dx.doi.org/10.1109/IVS.2016.7535521
http://dx.doi.org/10.1007/978-3-319-09840-1_25-1
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.cplusplus.com/reference/stl
http://www.cplusplus.com/reference/stl
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html


[10] G. Barlas, Chapter 7 - the thrust template library, in: G. Barlas (Ed.), Mul-

ticore and {GPU} Programming, Morgan Kaufmann, Boston, 2015, pp. 527

– 573. doi:https://doi.org/10.1016/B978-0-12-417137-4.00007-1.

URL https://www.sciencedirect.com/science/article/pii/

B9780124171374000071

[11] Copyright, in: S. Cook (Ed.), {CUDA} Programming, Applications of

GPU Computing Series, Morgan Kaufmann, Boston, 2013, pp. iv –.

doi:https://doi.org/10.1016/B978-0-12-415933-4.02001-9.

URL https://www.sciencedirect.com/science/article/pii/

B9780124159334020019

[12] NVIDIA, Cuda c best practices guide (2018).

URL http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

index.html

[13] Nvidia tegra x1: Nvidia’s new mobile superchip, Tech. rep., NVIDIA Cor-

poration (Jan 2015).

15

https://www.sciencedirect.com/science/article/pii/B9780124171374000071
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-417137-4.00007-1
https://www.sciencedirect.com/science/article/pii/B9780124171374000071
https://www.sciencedirect.com/science/article/pii/B9780124171374000071
https://www.sciencedirect.com/science/article/pii/B9780124159334020019
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-415933-4.02001-9
https://www.sciencedirect.com/science/article/pii/B9780124159334020019
https://www.sciencedirect.com/science/article/pii/B9780124159334020019
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

	Introduction
	Background
	Occupancy and Measurement Grids
	Heterogeneous Processing Model

	Measurement Grid Algorithm
	Discussion and Results

	Parallel Implementation
	Parallel Data Structures
	Host Code
	Device Code
	Discussion and Results

	Conclusion
	References

