
1

Embedded Vision Processing on
System-on-Chips (SoCs)

Menna El-Shaer

Abstract—The field of machine vision has evolved rapidly during the past few years, and embedded vision applications are ubiquitous
nowadays due to the availability of high quality vision sensors and cameras. Nevertheless, these applications usually have strict
real-time requirements that necessitate fast communication and processing. This article presents an overview of recent hardware and
software architectures and their use in real-time image processing.

Index Terms—Embedded Machine Vision, Real-time computer vision applications, multicore processing, graphical processing units,
deep learning, processor architectures, system-on-chip architectures

F

1 INTRODUCTION

THE past two decades have seen tremendous advances
in machine vision applications in consumer products

from smartphones and video analytics solutions to auto-
motive safety systems. In contrast to traditional computer
vision applications in industrial settings and automated
manufacturing; implementation is usually constrained by
cost, size and power consumption of system components.
In addition, vision processing does not start with an image
in the framebuffer [1], the entire real-time image processing
pipeline starting from image acquision to output needs to
be considered. Figure 1 shows the components that typically
constitute a real-time vision processing system. The pipeline
usually starts with the photoelectric conversion of input
light rays into voltage using CMOS transistors which is
passed through an ADC as digital pixels followed by their
packet representation to be transferred for application pro-
cessing using standard interfaces e.g. PCIe, USB, GigE, ...etc.
Application processing is done on multicore homogeneous
or heterogeneous processing elements that are built on a
single chip with their inter-network interfaces. Integrating
said components with memory and advanced peripherals
produces a System-on-Chip (SoC), that are predominant
in the embedded systems industry nowadays and have
replaced the older Digital Signal Processors (DSPs) since
they offer more computational power.

Most FPGAs nowadays have a soft core that includes
an SoC in addition to the reconfigurable fabric. This aids
in creating powerful vision systems since they combine the
flexibility of adding custom hardware to the embedded
peripherals to accelerate time-critical algorithms and frees
precious programmable LUTs for application acceleration.

Beyond general purpose processors, Application Specific
Integrated Circuit (ASIC) designs have existed since the
1980s [2] and have evolved with Moore’s Law and Very
Large Scale Integration (VLSI) technology into chips with
more than one million transistors, deep pipelining struc-
tures and massively connected parallel compute resources,

• M. El-Shaer was with the Department of Electrical and Computer Engi-
neering, The Ohio State University, Columbus, OH, 43210.
E-mail: el-shaer.1@osu.edu

Fig. 1. A very high-level view of a typical embedded processing system
used in machine vision applications

e.g. Network-on-Chip (NoC) designs that facilitate high per-
formance computing applications such as machine vision.
Low manufacturing costs and power budgets helped the
SoC evolution in the embedded industry, where all system
components are on the same die, thus reducing power
consumption with high compute resources.

2 HARDWARE ARCHITECTURES FOR EMBEDDED
VISION APPLICATIONS

Traditionally, low-level vision architectures utilized 1D ar-
rays or 2D meshes of processing elements for applications
such as edge detection and image smoothing operations.
The addition of DSP cores to multiprocessors on an SoC
e.g. Texas Instruments’ DaVinci family of processors [3]
helped in implementing more complex applications like
video processing. Nowadays, all systems have dedicated
accelerator cores in addition to main CPUs where applica-
tion specific vision algorithms are implemented. Dedicated
cores could be GPUs, video processing units or even FPGA-
implemented accelerator cores. Examples of different types
of hardware accelerator chips used in machine vision are
described next. By no means this list is exhaustive as the
field is evolving rapidly and new architectures are designed
everyday.



2

2.1 Hardware Accelerators Examples

A number of accelerators and vision and deep learning
specific purpose accelerators have emerged in the past few
years. Below are some of the most prominent at the time of
writing.

• Google Tensor Processing Units [4]
Their deep learning capabilities are accelerated by
a Matrix Mutliply and Accumulate (MMA) 256x256
array of 8-bit multipliers.

• NVIDIA’s Tesla V100 Chip [5]
The 640 Tensor cores on this chip are also designed
to accelerate MMA operations.

• Mobileye’s EyeQ [6]
This family of processors is designed specifically for
automotive driving and ADAS applications.

• Intel’s Knights Mill Chip (New generation Xeon Phi)
[7]
The individual cores on this many-core chip are
smaller where inner loops can fit in L1-instruction
caches. As a result, the performance of cores per
socket is decreased but the number of cores is greater,
which is good for compute intensive applications like
deep networks. Its design is said to be a midway
between a server CPU and a hardware accelerator.

• ThinCI’s Chip [8]
This chip incorporates small processors and a thread
scheduler analogous to a CPU with execution units
and an instruction scheduler. The new feature here
is that the processors can stream data to each other
instead of having to load/store from RAM each time
a computation is needed.

• Data-Flow Engines
One of the most sophisticated accelerator types. The
main design is focused on how to map data graphs
onto the data flow processing nodes to maximize
computation speed and minimize Inter Process Com-
munication overhead and synchronizations. They are
basically many-core coprocessors featuring a net-
work on a chip scratchpad memory model, suitable
for a dataflow programming model, which should be
suitable for many machine learning tasks.
Examples are the Adapteva Epiphany processors [9],
and Wave Computing’s DPU [10].

• Movidius Vision Processing Units (VPU) [11]
A multicore processor family with features fairly
consistent with vision processing units that handle
SIMD instructions and datatypes suitable for video
with an on-chip DMA between scratchpad memo-
ries.

• GPU-based Accelerators
Examples are NVIDIA’s Tegra family of processors
[12], and AMD’s Radeon Instinct accelerators [13].

• Eyeriss [14]
An FPGA-based accelerator for deep convolutional
neural networks with low real-time energy consump-
tion, that utilizes data reuse to avoid unnecessary
reads and computations, and data compression to
reduce memory bandwidth.

• Xilinx Automotive (XA) Spartan series [15]
FPGAs designed specifically for ADAS applications.

• Synopsys’ DesignWare EV5X processors [16], [17]
A family of embedded vision processors with CNN
capabilities.

• Intel’s Nervana Neural Network Processor (NNP)
[18]
Another ASIC developed specifically for deep learn-
ing computations and memory operations.

• Neuromorphic-based Processors
Integrated circuits design based on spiking neuron
elements instead of traditional boolean logic gates,
where a neuron fires a weighted range of values, in
response to input stimuli within a certain period of
time.
Examples are the TrueNorth processors [19], and
Intel’s Loihi [20].

3 HIGH-LEVEL SOFTWARE FRAMEWORKS

Despite the ease of directly using general parallel computing
frameworks such OpenMP for shared-memory architectures,
and MPI for distributed memory systems, on different mul-
ticore architectures to accelerate applications, that abstrac-
tion is usually not the best approach taken when designing
embedded software. To get the most out of multicore sys-
tems, using programming models mapped to the system
architecture that can well expose all types of parallelism
on that system is recommended. When designing parallel
programs, one should start with partitioning and breaking
up computation among the different Processing Elements
(PEs), either according to different functional steps in the
algorithm i.e. functional decomposition, or according to
data to be processed i.e. data decomposition [21]. After par-
titioning, mapping task groups to the available PEs is done.
When mapping, data dependencies between tasks should
be considered as well as reducing communication needs
between PEs i.e. type of memory used: shared memory is
usually fastest. Acceleration is thus achieved with increasing
the total amount of work done per unit time i.e. application
throughput, or decreasing turnaround times and overheads
i.e. latency. The availabilty of profiling tools that can provide
accurate space (memory) and time measurements can aid
in the optimization process by providing feedback on the
performance and adjusting accordingly.

4 CONCLUSION

New architectures are being developed everyday to speed
up the processing of the huge number of pixel data col-
lected from image sensors/cameras. Even though one might
initially achieve fast processing times using the appropriate
hardware or software; we usually optimize for acceleration
by finding the best software implementation for a specific
hardware implementation. Studying the interactions be-
tween hardware and software collectively at that optimiza-
tion stage is suggested to achieve real-time performance
requirements for many of the big data vision applications.
Despite the availability of different accelerator types, a thor-
ough study of an application’s algorithm implementation
on that accelerator instead of a generic solution can improve
the algorithm’s real-time performance moving forward.



3

REFERENCES

[1] K. Branislav, S. S. Bhattacharya, and S. Chai, Embedded computer
vision. Springer, 2010.

[2] S. K. Tewksbury, Application Specific Integrated Circuits (ASICs),
1996.

[3] “Digital video processors products.” [Online]. Avail-
able: http://www.ti.com/processors/dsp/media-processors/
digital-video/products.html

[4] [Online]. Available: https://cloud.google.com/tpu/docs/
system-architecture(7/12/2018)

[5] [Online]. Available: www.nvidia.com/v100(7/12/2018)
[6] [Online]. Available: https://www.mobileye.com/

our-technology/evolution-eyeq-chip/(7/12/2018)
[7] [Online]. Available: https://ark.intel.com/products/series/

132784/Intel-Xeon-Phi-72x5-Processor-Family(7/12/2018)
[8] [Online]. Available: https://thinci.com/about\ us.html(7/12/

2018)
[9] [Online]. Available: http://www.adapteva.com/epiphanyiv/(7/

12/2018)
[10] [Online]. Available: https://wavecomp.ai/technology(7/12/

2018)
[11] [Online]. Available: https://www.movidius.com/

vision-processing-units(7/12/2018)
[12] [Online]. Available: http://www.nvidia.com/object/tegra.

html(7/12/2018)
[13] [Online]. Available: https://www.amd.com/en/graphics/

servers-radeon-instinct-mi(7/12/2018)
[14] Y. H. Chen, T. Krishna, J. Emer, and V. Sze, “14.5 eyeriss: An

energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” in 2016 IEEE International Solid-State Circuits
Conference (ISSCC), Jan 2016, pp. 262–263.

[15] XA Spartan-6 Automotive FPGA, Xilinx, 12 2012, v1.3.
[16] DesignWare EV52 and EV54 Processors, Synopsis, 2015.
[17] J. Campbell and V. Kazantsev, Using an Embedded Vision Processor

to Build an Efficient Object Recognition System, May 2015.
[18] [Online]. Available: https://ai.intel.com/

intel-nervana-neural-network-processor/(7/12/2018)
[19] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy,

R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L. McKinstry,
T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir,
B. Taba, M. D. Flickner, and D. S. Modha, “Convolutional
networks for fast, energy-efficient neuromorphic computing,”
Proceedings of the National Academy of Sciences, vol. 113,
no. 41, pp. 11 441–11 446, 2016. [Online]. Available: http:
//www.pnas.org/content/113/41/11441

[20] [Online]. Available: https://newsroom.intel.com/editorials/
intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/(7/
12/2018)

[21] G. Barlas, “Chapter 2 - multicore and parallel program design,” in
Multicore and GPU Programming, G. Barlas, Ed. Boston: Morgan
Kaufmann, 2015, pp. 27 – 54. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/B9780124171374000022

Menna El-Shaer is an electrical and computer engineering Ph.D. stu-
dent at the Ohio State University. Menna got her B.S. in computer
engineering from Ain Shams University, Cairo, Egypt, in 2009. She has
extensive computer programming experience and worked on multiple
computer vision and image processing projects sponsored by the Office
of Naval Research, the National Institute of Health, and the National
Science Foundation. Menna has also taught multiple computer program-
ming and hardware design at Wright State and Ohio State Universities.


