An Experimental Evaluation of Probabilistic Deep Networks for
Real-time Traffic Scene Representation Using Graphical Processing
Units

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By
Mennat Allah Ahmed Mohammed El-Shaer, B.Sc.

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2019

Dissertation Committee:

Fusun Ozguner, Advisor
Keith Redmill, Co-Advisor

Xiaorui Wang



(© Copyright by
Mennat Allah Ahmed Mohammed El-Shaer

2019



Abstract

The problem of scene understanding and environment perception has been an important
one in robotics research, however existing solutions applied in current Advanced Driving
Assistance systems (ADAS) are not robust enough to ensure the safety of traffic participants.
ADAS development begins with sensor data collection and algorithms that can interpret that
data to guide the intelligent vehicle’s control decisions. Much work has been done to extract
information from camera based image sensors, however most solutions require hand-designed
features that usually break down under different lighting and weather conditions.

Urban traffic scenes, in particular, present a challenge to vision perception systems due
to the dynamic interactions among participants whether they are pedestrians, bicyclists, or
other vehicles. Object detection deep learning models have proved successful in classifying or
identifying objects on the road, but do not allow for the probabilistic reasoning and learning
that traffic situations require. Deep Generative Models that learn the data distribution of
training sets are capable of generating samples from the trained model that better represent
sensory data, which leads to better feature representations and eventually better perception
systems. Learning such models is computationally intensive so we decide to utilize Graphics
Processing chips designed for vision processing. In this thesis, we present a small image
dataset collected from different types of busy intersections on a university campus along
with our CUDA implementations of training a Restricted Boltzmann Machine on NVIDIA

GTX1080 GPU, and its generative sampling inference on an NVIDIA Tegra X1 SoC module.
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We demonstrate the sampling capability of a simple unsupervised network trained on a
subset of the dataset, along with profiling results from experiments done on the Jetson TX1
platform. We also include a quantitative study of different GPU optimization techniques

performed on the Jetson TXI1.
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Chapter 1: Introduction

The problem of scene understanding and environment perception has been an important
one in robotics research, however existing solutions applied in current Advanced Driving As-
sistance systems (ADAS) are not robust enough to ensure the safety of traffic participants.
ADAS development begins with sensor data collection and algorithms that can be interpreted
to guide the intelligent vehicle’s control decisions. Much work has been done to extract in-
formation from camera based sensors, however most solutions require hand-designed features

that usually break down under different lighting and weather conditions.

1.1 Scene Perception in Automated Driving and ADAS applica-
tions

Scene perception remains one of the hardest problems facing intelligent vehicle navigation
and self-driving cars. If cars are meant to replace human drivers, then we at least need to
incorporate human cognition and perception into the problem. Human cognition is very
complex and involves many processing layers and is not the subject of our study. However,
neuroscientists have been modeling the human brain for years and we should be able to
use this knowledge to our advantage. Part of the problem lies in understanding how this
sensory data is represented. My goal in this work is to study and develop hierarchical internal

representations of the data similar to how cognition in the human brain is represented.



1.1.1 Related Work

Most of the work that has been done to understand scenes in images has been through
parsing the input image to detect objects or to extract information using pre-learned feature
representations. Thus, the success of classification algorithms depends heavily on how the
choice of features matches the sensory input data [1]. In the context of traffic scenes; where
extracting lane marks on the road, traffic signs, vehicles, and pedestrians is important;
traditional feature descriptors as SIFT [2], SURF [3], BRIEF [4], HOG [5], [6] and LBP [7],
[6] were previously used. Haar [8] and Gabor [9] wavelets are another popular feature-based
approach. Random Forest classification was explored in [10] using multimodal data from
RGB cameras and LiDARs to detect pedestrians. Appearance-based cues, such as color and
texture information were used in [11] and [12] respectively. Contextual information, such
as 3D road geometry and vanishing points, were used as priors in a Bayesian framework,
in addition to low-level cues in [13]. A probabilistic model for urban scene intersections
using vehicle tracklets, vanishing points, semantic labels, scene flow, and occupancy grid as
observations or evidence was developed in [14].

A popular image representation in the intelligent vehicle literature has been Stixels;
where an image is segmented into thin, vertical, stick like rectangles of superpixels. Seeking
a compact scene representation for real-time automative applications: in [15], a stixel model
for street scenes was defined by solving an energy minimization problem where a column
stixel segment is described by the number of stixels in a segment; the bottom-to-top row
vertical extent of the stixel; its semantic class label; its color and depth attributes. In [16],
instead of parsing the whole scene to output a driving decision, a mapping was done to use

a set of 13 affordance indicators trained using a deep convolutional network.



Deep Convolutional Neural Networks (CNNs) have been used in almost image segmenta-
tion and object classification tasks (e.g. semantic labeling) for the past few years. The recent
availability of GPUs and open-source deep learning libraries such as Caffe [17], Torch [18],
Tensor Flow [19], [20], PyTorch [21], [22] and MXNet [23] has spread their use. However,
choosing network parameters for best detection performance on a specific dataset is more of
an art than a science as their mechanics are not well understood. CNNs are formed of multi-
ple hierarchical Convolutional layers that learn filters which are activated on detecting some
specific feature at some spatial position in the input. Convolutional layers only require par-
tial connections between the neurons within a local receptive field where the learned weights
are shared among those neurons. A set of hyperparameters control these connections by, for
example, determining the depth of the layer and the number of filters (feature maps) learned.
As a result, these connections model the correlation pattern within the input; Pooling layers
reduce the amount of data by applying a non-linear function after the convolutional layer to

obtain a higher-resolution representation and reduce dimensionality.

Maps: In the context of automated driving, maps have been pivotal. Incorporating satellite
imagery with street views helped create rich maps with an accuracy of several meters. In the
DARPA Urban Challenge in 2007, detailed map information enabled autonomous driving
for several miles. For behavior and trajectory planning, the vehicle has to localize itself
within the environment created by these 2D maps. Localization based on visual sensors
can help create more detailed 3D maps than using GNSS-IMU localization alone in traffic

environments [24].



Generative Models: The recent success of deep learning in the autonomous vehicle indus-
try is largely attributed to how well those systems can classify objects in the traffic environ-
ment. Usually the most studied network architectures e.g. Convolutional Neural Networks
(CNNs) are discriminative learning models where a vast amount of human-annotated, i.e.
labeled, data is needed for training and learning features in the data. The system then
learns from the labeled examples and can detect or classify those objects on its own. While
this is important in solving a subset of situational awareness problems of self-driving cars,
identifying the class of an object in the environment, e.g. classifying the object that runs in
front of the car as a child or a squirrel, is irrelevant if the car is supposed to react in the same
way. Thus, training these deep networks in the supervised manner used is not very useful in
challenging urban traffic environments that need reasoning built into the learning process.
A class of deep networks that are better suited for reasoning tasks are generative learning
models that don’t require labeled examples and generally learn the joint distribution of the
training data. Thus, by training these networks with different traffic situations, they learn a
traffic model with specific parameters related to the traffic situation e.g. a moving object is
in front of the car, which is then used to control the vehicle to take the appropriate action

e.g. reduce speed to avoid collision.

1.2 Parallel Computing

The needs for faster processing times, along with stagnating clock speeds (see figure 1.1)
due to power budgets [25], has led to the rise of parallel multicore systems usage able to

increase performance at the same clock speed.
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Figure 1.1: Variation trends of processor clock speeds and sizes. Images courtesy of Nature
530, 144147 (11 February 2016), (a) Intel (b) SIA/SRC

1.2.1 Types of Parallelism

e Instruction-level Parallelism A well-known technique of concurrent execution of inde-
pendent instructions. It exploits the implicit parallel operations that could be done in

a loop or otherwise.

e Thread-level Parallelism A software capability where a program is divided in to several
units that could be executed in parallel; this kind of parallelism could be on a single-

core or multicore system.

e Task-level Parallelism (Function Parallelism) A method of dividing an application into

multiple tasks such that their execution could be distributed across processing cores.



e Data-level Parallelism According to Flynn’s taxonomy [26], Single-Instruction Multi-
ple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) are types of data
parallelism where data is distributed across threads executing the same (or different)

instructions in parallel.

1.3 Real-time Sensor Data Processing

Since the evolution of General Purpose GPU computing (GPGPU) over the last decade,
several research studies have applied GPUs in different intelligent vehicle ADAS applica-
tions: [27], [28] and [29] used GPU architectures to classify pedestrians on the road. [30]
computed occupancy grids on the GPU to detect road boundaries, while [31] and [32] were
interested in detecting traffic signs using a GPU implementation. A hybrid GPU-FPGA
architecture was used in [33] where the feature extraction was implemented on an FPGA,
and the SVM-based pedestrian classification was done on the GPU. A GPU-based imple-
mentation of HOG pedestrian detectors was developed in [34] and [35]. Real-time depth
information was computed on the NVIDIA Tegra X1 [36] at 42 fps, using 4-path semi-global
matching of stereo views in [37].

In addition, a complete end-to-end computer system [38] that performs learning, inference
and vehicle control decisions is usually sought after, and has been popular in the last two
years.

1.3.1 Why we need Parallel (Multicore) Computing for Percep-
tion Systems

Data from real-world sensors such as cameras and LiDARs are known to be bandwidth

heavy. In addition, almost all developed perception algorithms require lots of computation,



whether to achieve convergence or accuracies acceptable for real-life deployment. The cur-
rent resurgence in neural network research is mainly attributed to the success of parallel
computing architectures, the availability of programming models and development libraries,
and the ease of their application. Even though tremendous success has been achieved in the
last few years in object classification systems, that does not translate to better intelligence
in real-life traffic situations, and using those systems in a world where the safety of traffic
participants is dependent on real-time decisions made by the intelligent system is not just

measured by how accurate the system can recognize objects in the scene.

1.4 Organization of this Thesis

This thesis addresses the general problem of real-world scene understanding from the
embedded computing point of view for autonomous driving and assistance applications.
Our scene understanding strategy can be divided into three parts: We start with scene
representation in chapter 2 where we explore how to best represent sensor signal data in
an unsupervised learning way using deep generative neural networks. Scene reconstruction
using learned feature representations using classic statistical inference algorithms is discussed
in chapter 3. An overview of recent developments in generative learning is also introduced
in chapter 3. Interpreting scenes is crucial in machine vision applications and even more
so to ensure the safety of traffic participants e.g. drivers, pedestrians, bicyclists. Chapter
4 continues the theme of probabilistic graphical models to infer objects and moving scene
characteristics such as velocities.

We introduce embedded vision computing and newly developed hardware architectures

for deep learning and inference in chapter 5, followed by a discussion of NVIDIA’s parallel



processing models including the CUDA programming model and GPU architectures in chap-
ter 6. We finish by conducting experiments to implement generative modeling on NVIDIA’s
embedded GPU architectures using our own collected traffic scene dataset. Program profiling
and performance evaluation is also discussed in chapter 7, as well as quantitative analyses

of program optimization techniques on embedded GPUs, and their results.



Chapter 2: Scene Representation Learning

2.1 Generative Models

Cognitive Perception: Computational neuroscientists model cognitive processes as non-
linear interactions among a large number of simple, neuron-like processing units that form
a neural network [39]. However, shallow architectures of the neural networks used cannot
capture the complex processes presented; which is why several ” deep” layers are required and
are being used. Deep neural architectures, in contrast with the shallow architectures, have
been argued to better represent complex sensory data [40]. Most of the learning of these
non-linear interactions is done in an unsupervised manner; hence the modeling of those
interactions or functions is ” generative” — which models the latent (hidden) causes of the
data — rather than ” discriminative” where a certain classification or regression function is
computed. Generative representations are good for finding meaningful latent representations
for the data which can be helpful not just for classification tasks down the road, but are
good for analytical reasoning that comprise a big part of intelligence.

Figure 2.1 classifies generative models into two categories: one that models observed data
directly in an unsupervised manner, while the other kind of models assumes hidden layers
(or variables) that are latent causes for the data. The second interpretation fits the general

description of deep autoencoder networks, where input data is encoded as vectors and hidden



representations are learned to best represent the raw data in a compressed state (or with
lower dimensionality). To summarize, generative models always model the joint distribution
of the data, in contrast with discriminative models that find the conditional distribution of

some target variable given the observed evidence.

*

7

(a) Modeling observed data  (b) A latent variable model
as unknowns z distributed by where h; and hg are hidden
a model with parameters 6 variables

Figure 2.1: Types of Generative Models

2.2 Energy-based Generative Models

A building block of the more complex networks to follow is a Boltzmann Machine [41].
A 2-layer BM will consist of a visible layer and a fully-connected single hidden layer. Net-
work activations are governed by an energy function defined as in equation 2.1. Inspired
by statistical mechanics, the network state changes probabilistically to reach equilibrium a

”global energy minimum” gradually using a process known as simulated annealing [42]. A

10



certain temperature parameter allows for increasing and decreasing the energy to prevent

the optimization from getting stuck at a local minimum.

—E(v,h)

Z

(&

P(v,h) =

(2.1)
2.2.1 Restricted Boltzmann Machines

Removing the within-layer lateral connections in the bipartite graph of Boltzmann ma-
chines gives rise to a variant — the Restricted Boltzmann Machine (RBM). This special
network structure allows for efficient learning and inference as the hidden layer nodes are
conditionally independent given the visible layer nodes and vice-versa. This speeds up the
learning and inference dramatically since there will be no need to use maximum likelihood
estimation to compute the model parameters since this requires learning the Markov chain
until convergence which is usually exponential in running time.

Assuming binary hidden and visible input variables; i.e. v € {0,1}¥ and h € {0,1}%,
the energy of the network can be expressed as:

E(v,h) = —v"Wh —b"vc'h

:_ZZWWU’ val Zc]

=1 j=1

(2.2)

Since modeling binary inputs is not always appropriate; if we have real-valued inputs
v € RY, the Gaussian-Bernoulli variant [43] is usually used. In this case, the energy is given

as:

- Z Z Wij “h Z Z cih; (2.3)

i=1 j=1 i=1

The variance o2 is usually a predetermined parameter [44], although it can also be learned.

11
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Figure 2.2: A graphical representation of a Restricted Boltzmann Machine

Markov Chain Monte Carlo sampling algorithms:

Usually, when one wants to find a model that best fits certain data, one would want
to find the model parameters that can explain the data with minimum error. This error
is usually measured as the Kullback-Liebler divergence between the two distributions and
defined for discrete distributions D and M as the expectation of the logarithmic distance

taken over the distribution D.

D(i)
7 (2.4)

dgr(D||M) = ZD(i)log

A faster, more tractable way — instead of using Maximum Likelihood Estimation — to
find the model parameters is to form a Markov chain of the data variables states, collect
samples from that target distribution and repeat till the chain best approximates the target
(data) distribution. This is the general idea of several MCMC sampling algorithm variations
including Gibbs sampling. In Gibbs sampling, described by equations (2.5 and 2.6), this
Markov chain is constructed such that a variable is sampled at a certain step, given the

values of all other variables at that step. We can use the structure of the graph to our

12



advantage here as the conditional independences between the variables can help speed up

the process when used.

P(hlv;0) = [ ] p(hslv)
7 (2.5)
plhy = 1lv) = Q(Z Wijvi + b;)

P(ulhi0) = [T p(wiln)

p(v; = 1|h) = Q(Z Wiihj + ¢;)

J

(2.6)

2.2.2 Deep-Belief Networks

A deep belief network [40] is a hierarchical probabilistic generative model composed of
one undirected layer (an RBM) and multiple directed layers, a sigmoidal-belief network. The
network is usually greedily trained layer-by-layer [40], [45] until the complex structure of the
input sensory data is captured within the hidden units. Stacking layers allows for a better
representation of the data as a single RBM is only 2-layer deep. Figures 2.3 and 2.4 show a
deep belief network formed by stacking three RBM layers.

Learning is defined here as maximizing the likelihood of the observed data. In general,
learning Boltzmann machines requires sampling from the joint distribution of the visible and
hidden layer nodes to compute variable correlations. Given the hidden layer nodes, we can
sample the visible layer nodes in parallel since they are then conditionally independent. This

variation of sampling is called block Gibbs sampling.

Bottom-Up Layer Greedy Training: Let ' be the parameters of layer i in the network.

1. Fit the input data to the first RBM layer, i.e. find the parameters 6'.

13
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Figure 2.4: Three-layer Deep Belief Network



2. Use 0! as initial #* to ensure that the 2-layer network is at least as good as the single
RBM (6? = transpose(6')). Sample h' from the approximate posterior distribution
Q(hv), which is the true distribution initially P(h!|v;0'), and use as training data

for 62.

3. Use 67 as initial 6 as 0> = transpose(#?)). Sample h? from the distribution Q(h?|h!)

= P(h*h';0%) and use as training data for 6.

4. Repeat recursively for the remaining layers till all #° are learned.
Analysis: For any Q(h/!|h/), the log-likelihood logP(h?; 67):

logP(l7;67) = " logP(h!, 1/ ~";67)

hi—1

=log Y P(W,h~"0)

hi—1

QU h) 2D
QUTIh)

Using Jensens Inequality [46] gives a variational lower bound for the likelihood:

> Z Q(hj—1|hj)longL<];Ljh_jl|Zjij> = Z QW ) logP(h?, i~ 67)
hi—1 hi—1
o 1
A VY Yy P —
2 QI ey 2:8)
= QW) logP (W, W~ 67)
hi—1

+HogP(W =1 67)] + H(Q(W (7))
Fixing 6’~! and maximizing the variational lower bound is equivalent to maximizing the
likelihood when sampling A7~ from Q(h?~!|h7) as it maximizes Y, ;1 Q(h/~|h/)logP(h'~1; 67);

which means that the next layer will learn a better posterior model given h?~!, and so on.
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Inference: To infer the values of the top-hidden variables, a single bottom-up pass is used

where sampling is done from a fully-factorized approximate posterior distribution:

Q(h' 12, . ") = ] Q(W'|v) (2.9)

=1

where L is the number of network layers — instead of the non-factorized multimodal form :
QI 2, ., BEJ0) = QURM ) Q(R2AY)... Q(RE[AE) (2.10)
2.2.3 Deep Boltzmann Machines

Another version of deep graphical models that can learn complex internal representations,
the Deep Boltzmann Machine (DBM) [47], is different from the DBN in the sense that it
is completely undirected, i.e. a Markov Random Field. This allows for top-down feedback
after the initial bottom-up pass during training and inference. As a result, the DBM can
improve on the learned intermediate features which could result in better representations.

The energy of the DBM, the probability over the visible layer and the conditional distri-

butions in figure 2.5 can be expressed respectively as:

E(v,h!, B2, 13) = —o"W'h! — BTW2R% — n2T W3R (2.11)

—E(v,h!,h2 3
D nt w2 s € (WA

P 2.12
(v) Z (2.12)
p(hy = 1o, k%) = g3 Whoi+ > Wihi) (2.13)
% k
p(hy = 1R' B3 = g Wihy + Y Wi hd) (2.14)
7 m
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p(h®, = 1|h?) = ZkahQ (2.15)

p(v; = 1|hY) Z ) (2.16)

Learning DBMs is done through maximizing the log-likelihoods with respect to the model

OlogP(v) 0OlogP(v) and 8logP(v).

parameters W', W2 and W? by computing the derivatives =357, 92 and =2

Exact computation of the derivatives requires computing the data and model expectations
which is exponential in the number of hidden, and hidden and visible variables respectively. A
variational approach using mean-field inference is used to approximate the data expectations

while MCMC sampling is used for model expectations [47].

2.3 Evaluating Generative Models

Representation results shown by generative models should be evaluated directly with
respect to the applications for which they were intended [48]. One could use performance
metrics to quantitatively analyze the performance of probabilistic models such as fidelity and
coverage. The model’s fidelity is described by how much of the synthesized generated data
points resemble the actual training data points, while coverage quantifies the data distri-
bution a generated sample represents. Average log-likelihood or KL-Divergence criteria are
default criteria used to optimize generative models. The following three distance measures
can be used to assess the similarity between two sets of data points based on the nearest
neighbor concept of metric spaces: one being the training dataset and the other is the syn-
thesized or the generated sample data. It is to be noted that only the third metric can be

used as a measure for log-likelihoods and KL-Divergence criteria.
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e Chamfer Distance Transform defined as: the sum of closest point distances between

sets X and Y

H(X,Y) = 3 mip o =y (217)

zeX

e Hausdorff Distance defined as: the maximum distance of set X to the closest point in
set Y

X,Y) = in ||z — 2.1
WX, Y) = maxmin |z —y| (2.18)

e Wasserstein Metric can be used as a distance metric between two probability distribu-

tions P and () defined as:

L(P,Q) = —5——— (2.19)

Define P and () as two cluster distributions of points p; and ¢; respectively, where
1 <t <mand1l < j < n; the optimal flow f that minimizes the distance d be-
tween the two distributions P and @) is to be found using the optimization problem:
min i i fi.;di j, where d; ; is the distance between clusters p; and g;, subjected to the

i=1j=1
following constraints:

(a) fi; >0;1<i<m,1<j<n

NgE

(b) fi; < 1; ;fi,j <1

1

<.
Il

n

> fij = min{m,n}

i=1j=1

NIE

()

For image data, a subjective evaluation based on the visual fidelity of samples is usually
appropriate. [49] developed an image quality metric using cues from human perception of

distortions by assigning a score from 0 to 100% to blocks in an image. Such score represents
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the perceptual quality of the image; a higher score indicates a poorer quality image and vice
versa. Algorithm steps used to compute the perception score are summarized in figure 2.6.
Natural scene statistics of the input image are first computed and a normalization operation
is applied to each pixel intensity value as in equation 2.20. The image is then segmented into
16 x 16 non-overlapping blocks that are labeled either spacially-active (SA) or not (U) using
the variance parameter of the block. For each spatially-active block, a Noticable Distortion
Criterion (NDC) and Noise Criterion (NC) are computed. The block distortion is then
quantified using its variance based on the NDC and NC values computed for that block.
(We refer the reader to [49] for calculation details.) Finally, the PIQUE score is computed

as shown in equation 2.21.

u(i, j) = Z Z Wi 111 (4 )

o(i,7) = Z Z Wit (I (i, §) — pli, 5))? (2.20)
k=—31=—3

2N [(l,]) _M(i7j>

16.9) = =26 7 +1

where (i, 7) is the intensity value at pixel (7, j) and wy,; is a 2D symmetric Gaussian weight-

ing function

S NsA Dy + 1
Nsa+1

PIQUE = (2.21)
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B, — {U vy < o1

SA v, > o1

Figure 2.6: Algorithm steps used to compute PIQUE perception scores of images

where Ng4 is the number of spacially active blocks in the image and Dy, is the block distortion

parameter defined in equation 2.22.

1 ,NCand NDC
Dsk = Ublock s NC (222)
1 — Vbioek , NDC

Evaluation metrics that use statistical features of an image such as PIQUE don’t require
a reference training image set. In addition, they correlate better with subjective human
quality scores [49] than using log-likelihood metrics when judging image samples, as these

metrics are not indicative of the quality of samples produced [48].
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Chapter 3: Scene Reconstruction

We formulate reconstruction here as an inference problem: finding the maximum likeli-
hood distribution of the observed data from sensor signals, in other words, finding the exact
inference is intractable, and approximating the solution, either by variational approxima-
tions or having enough samples can recover important information about the distribution.
What follows is a brief discussion of two classical inference methods that have been previ-
ously studied extensively over the years, and generally require an optimization approach to
do inference i.e. finding likelihood or Maximum A Posteriori (MAP) estimations, followed
by a quick review of more recent inference algorithms that fall under the umbrella of differ-
entiable inference algorithms, where tuning the inference procedure can be done end-to-end,

since they have differentiable loss functions.

3.1 Classic Inference Algorithms

3.1.1 Markov Chain Monte Carlo (MCMC)

MCMC methods rely on constructing a Markov chain with a stationary probability dis-
tribution as the unknown distribution of interest, i.e. running the chain for a few steps will
generate samples that approximate the unknown probability distribution. These methods

are very general and can theoretically approximate any distribution of interest [50].
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3.1.2 Variational Inference

Instead of using MCMC methods: constructing a Markov chain over the hidden vari-
ables that represents the posterior distribution, running it to convergence (equilibrium) and
collecting samples that approximate that posterior, one can define a parametric distribution
that approximates the posterior and find its best set of parameters. In this case, the inference
becomes an optimization problem. Since this optimization problem is also intractable just
like the MCMC methods, stochastic optimization methods (e.g. stochastic gradient descent)
is preferred. In this case, the minimum of the cost function is reached by using noisy esti-
mates of the gradient. Also, representing the cost function as a sum of several independent
terms allows for faster gradient computations; a technique called mean-field approximations

that is generally used [50].

3.2 Differentiable Inference Algorithms

3.2.1 Variational Autoencoders (VAEs)

Defined in 2013 in [51], variational autoencoders (VAEs) assume local latent variables z
for datapoints x. As usual, inference is defined as finding the posterior distribution p(z|x).
Using variational inference, we can approximate the posterior with variational distributions
gr(z|x). Instead of minimizing the KL-divergence to find the best family of distributions A
that approximate the posterior, since it’s intractable; an Evidence Lower BOund is usually

maximized using equation 3.1:

ELBO(X) = Eqllog(p(x, 2))] — Eyllog(ga(z|z))] (3.1)
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For a VAE, the ELBO for each x; can then be written as equation 3.2 and A\ is found

using Stochastic Gradient Descent algorithms [51].

ELBOi(A) = Eqgy (2l llog(p(w:i|2))] = K L{ql|p) (3.2)

We then form two networks: an encoder network that encodes input data x with param-
eters A, followed by a decoder network that outputs the likelihood data distribution p(x|z)
given the latent variables from the encoder network [51]. Decoder network parameters are
found using variational Expectation Maximization [51], i.e. finding the model parameters by
maximizing the likelihood of the data with respect to the parameters, in a variational way

i.e. maximizing the ELBO with respect to the model parameters [51].
3.2.2 Generative Adversarial Networks (GANs)

Generative Adversarial Models [52] have been gaining interest in the past couple of years
in deep learning research. While discriminative models are very good at object classification,
they fail at reasoning tasks that generative models can accomplish. A GAN model where
both a discriminative and a generative model are trained simultaneously is defined [52]. The
goal of the generative model (as the case with all generative models) is to capture the data
distribution, while the goal of the discriminative model is to estimate that a drawn sample
is more likely to have come from the training data rather than generated from its adversary
i.e. by the generative model.

This translates to two simultaneous optimization scenarios, where one model D tries to

maximize the probability that it assigns the correct label to samples generated from G, and
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G tries to minimize the success of D i.e. log(1—D). This results in the following optimization

scenario:

mingmazp = Ex[log(D(z))] + Ez[log(1 — D(G(2)))] (3.3)

Minibatch Stochastic Gradient Learning is used to learn network parameters by alter-

nating ascents and descents to both discriminator and generator networks respectively [52].
3.2.3 Invertible Density Estimation Models

They are classes of probabilistic generative models that are invertible. Instead of starting
out with observations x, one starts from the latent space and samples z. Latent samples are
then passed through a deterministic function ¢(.), which results in exact sampling. One can
argue that the inference is exact also, as function g has to be chosen bijective, where there
is one-to-one correspondence between both spaces. Thus, given any observed input x, one
can exactly infer z. Finally, assuming the generative function ¢ is known and bijective, and
given random variable z, the likelihood function for x can be expressed in terms of g and z,

giving an exact likelihood computation as shown in equation 3.4.

Px(x) = Py(f(x))det(0(f(x))/0(z")) (3-4)

The challenging tasks to solve now are computing the Jacobian 9(f(x))/0(z?) as well
as its determinant when the number of input variables is large. In [53] and [54], function f
was learned by stacking individual bijection layers y in an affine way (see equation 3.5), and

propagating through the layers in a certain alternating pattern that makes the Jacobian of
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the transformation f a triangular matrix, thus its determinant can be computed easily by

multiplying the diagonal elements.

Y1:d = T1:d

Yd+1:D = Xd+1:D @ €$p(h($1:d)) + k(Ilzd)

3.3 Conclusion

The above mentioned methods all solve the problem of reconstructing data from hierar-
chical features learned by generative modeling of the data, i.e. finding a latent distribution
that we assumed to have generated the data. They mostly rely on the Maximum-Likelihood
principle, and use either sampling (MCMC) or variational distributions and lower bounds
to approximate the intractable inference problem. VAE adds neural networks (similar to
an autoencoder), with a reconstruction cost or loss function, while GANs avoid maximum-
likelihood altogether and use a discriminative model instead. Invertible density estimations
rely on finding invertible transformations that can relate the input data and latent vari-
ables. It is our future goal to further study these models on real-world data in real-time

environments.
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Chapter 4: Scene Interpretation and Object Classification

The main task of machine vision is to understand real-world scenes, as a result, much
work has been done in this area. Since the problem is usually under-determined [55], there
are too many scene attributes in natural images to be solved for, most methods involve
statistical estimation or even optimization theory. Prior statistical feature models are often
handcrafted or tweaked for a better fit to the data. Some approaches use synthetic scenes
using simulations and graphics techniques to control for some scene attributes like shading
and color models [56], [57]. Others implement statistical models and use learning-based
approaches to estimate the model’s parameters [58]. This chapter introduces three different

scene interpretation models that are founded in Bayesian statistical methods.

4.1 Naive Bayes Classification

We define an image as a random field of independently and identically distributed 4D
random variables or pizels, each pixel belongs to a discrete object class with prior distri-
bution « which represents the probability distribution of each object class given RGBD
values. We then define a probabilistic model to represent the image using pixel RGB values
{R,G, B}, and depth measures {D} calculated from the stereo pair of cameras, as evidence

(observations). Assuming all observations to be conditionally independent given the pixel
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class, using the chain rule of conditional probability, we can write the joint distribution as:

P(pizel, R,G, B, D;w) = a.P(R|pizel;w).P(G|pizel; w).P(B|pizel; w).P(D|pizel; w)
(4.1)
where w is the hidden-visible weight activations in the deep neural network, i.e. image pixel
(4D) distribution.

For an object detection/classification task, one might wish to find the posterior P(pizel =
class|R,G, B, D;w). Using the Bayesian inference framework, posterior integrals are in-
tractable [59] which leads to adopting approximate methods of estimating that posterior
(please refer to chapter 3 for inference methods). Thus, the classification problem becomes

an inference problem [60].

4.2 Probabilistic Markov Networks

Here, the problem is formulated as given two images from a video sequence, infer the
velocities of the moving objects in the scene. This problem is especially interesting in au-
tomated driving and ADAS;, since motion is the main component of these applications, and
inferring current and future states of moving participants in the traffic scene is often advan-
tageous.

To define this optical flow estimation problem, we first model two consecutive image
frames as an undirected graph G(V, E'), with observations I; e V', and unknown scene quan-
tities or explanations h; € V', where j € {1,2,3,...,2N}; and N is the number of image pixels
equal to the image size N = m x n. Nodes represent states evolving over time such that I; is
observed dependent on hidden state h; at the same time step. Edges in the graph represent

statistical dependencies between nodes. An example is given in figure 4.1.
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Figure 4.1: Representing an image as a Markov network

The undirected graph in figure 4.1 represents a Markov network, where the Markov
property [50] is satisfied between the nodes. The graph represents the joint probability

distribution P(h, I) given in equation 4.2 [61].

P(hiho, o hon, I Iy By = [ @ by) [ [ @0, I) (4.2)
neighboring k
Zh]
The scene-scene graph potential ¥ and image-scene potential ®, also known as compat-
ibility functions [61], [55] can both be learned from the graph statistics e.g. co-occurence
histograms of the training data or modeled as mixture of gaussians [61]. It is to be noted

that for real-world scenes, learning an exact representation for the potentials is intractable

due to the large number (almost infinite) of scene/image pairs available.
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Image-Scene Estimation

Recall that an “image” is a concatenated set of pixels from consecutive time frames, and a
“scene” is the projected velocity at those pixels. To generate scene estimates, the likelihood
of different optical flow vectors at a pixel is calculated using the directional image derivative
VI-v= —%, although a least squares estimate is usually used since the equality is not exact

for real-world images [55].

MAP Estimation using Belief Propagation

Now, we go back to the Markov assumption and figure 4.1 to use an example to estimate
the hidden states given all observations. This translates to a Maximum A Posteriori (MAP)
problem that can be easily solved by belief propagation in undirected graphs e.g. Markov
Random Fields [61], [55], [50], [62]. MAP estimation at node j is given in equation 4.3

~MAP  arg max

hi = "h, ®(hy, 1) [ [ M} (4.3)
k

where M Jk is the message sent from node k to node j and is given by equation 4.4

MEF = "W Wby, hy) D (R, I) [ [ M} (4.4)
14k

where Mﬁ is the message from the previous iteration. Repeated iterations of calculating
equations 4.3 and 4.4 for every hidden node until convergence will give the estimated scene
value at the specified image node. The complexity of this MAP elimination algorithm is
bounded by the size of the largest fully-connected loop in the graph, the graph size, and is

exponential in the image size [50].
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Chapter 5: Embedded Vision Processing on SoCs

The past two decades have seen tremendous advances in machine vision applications in
consumer products from smartphones and video analytics solutions to automotive safety
systems. In contrast to traditional computer vision applications in industrial settings and
automated manufacturing; implementation is usually constrained by cost, size and power
consumption of system components. In addition, vision processing does not start with an
image in the framebuffer [63], the entire real-time image processing pipeline starting from
image acquision to output needs to be considered. Figure 5.1 shows the components that
typically constitute a real-time vision processing system. The pipeline usually starts with
the photoelectric conversion of input light rays into voltage using CMOS transistors which is
passed through an ADC as digital pixels followed by their packet representation to be trans-
ferred for application processing using standard interfaces e.g. PCle, USB, GigE. Application
processing is done on multicore homogeneous or heterogeneous processing elements that are
built on a single chip with their inter-network interfaces. Integrating said components with
memory and advanced peripherals produces a System-on-Chip (SoC), that are predominant
in the embedded systems industry at present and have replaced the older Digital Signal
Processors (DSPs) since they offer more computational power.

Most FPGAs have a soft core that includes an SoC in addition to the reconfigurable

fabric. This aids in creating powerful vision systems since they combine the flexibility of
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Figure 5.1: A very high-level view of a typical embedded processing system used in machine
vision applications

adding custom hardware to the embedded peripherals to accelerate time-critical algorithms
and frees precious programmable LUTSs for application acceleration.

Beyond general purpose processors, Application Specific Integrated Circuit (ASIC) de-
signs have existed since the 1980s [64] and have evolved with Moore’s Law and Very Large
Scale Integration (VLSI) technology into chips with more than one million transistors con-
tain deep pipelining structures and massively connected parallel compute resources, e.g.
Network-on-Chip (NoC) designs that facilitate high performance computing applications
such as machine vision. Low manufacturing costs and power budgets helped the SoC evo-
lution in the embedded industry, where all system components are on the same die, thus

reducing power consumption with high compute resources.
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5.1 Hardware Architectures for Embedded Vision Applications

Traditionally, low-level vision architectures utilized 1D arrays or 2D meshes of processing
elements for applications such as edge detection and image smoothing operations. The
addition of DSP cores to multiprocessors on an SoC, e.g. Texas Instruments’ DaVinci family
of processors [65], helped in implementing more complex applications like video processing.
Nowadays, all systems have dedicated accelerator cores in addition to main CPUs where
application specific vision algorithms are implemented. Dedicated cores could be GPUs,
video processing units or even FPGA-implemented accelerator cores. Examples of different
types of hardware accelerator chips used in machine vision are described next. By no means
this list is exhaustive as the field is evolving rapidly and new architectures are designed

everyday.
5.1.1 Hardware Accelerators Examples

A number of accelerators and vision and deep learning specific purpose accelerators have

emerged in the past few years. Below are some of the most prominent.

e Google Tensor Processing Units [66]
Their deep learning capabilities are accelerated by a Matrix Mutliply and Accumulate

(MMA) 256x256 array of 8-bit multipliers.

e NVIDIA’s Tesla V100 Chip [67]

The 640 Tensor cores on this chip are also designed to accelerate MMA operations.

e Mobileye’s EyeQ [68]
This family of processors is designed specifically for automotive driving and ADAS

applications.
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e Intel’s Knights Mill Chip (New generation Xeon Phi) [69]
The individual cores on this many-core chip are smaller where inner loops can fit in
Ll-instruction caches. As a result, the performance of cores per socket is decreased
but the number of cores is greater, which is good for compute intensive applications
like deep networks. Its design is said to be a midway between a server CPU and a

hardware accelerator.

e ThinCT’s Chip [70]
This chip incorporates small processors and a thread scheduler analogous to a CPU
with execution units and an instruction scheduler. The new feature here is that the
processors can stream data to each other instead of having to load/store from RAM

each time a computation is needed.

e Data-Flow Engines
One of the most sophisticated accelerator types. The main design is focused on how to
map data graphs onto the data flow processing nodes to maximize computation speed
and minimize Inter Process Communication overhead and synchronizations. They are
basically many-core coprocessors featuring a network on a chip scratchpad memory
model, suitable for a dataflow programming model, which should be suitable for many
machine learning tasks. Examples are the Adapteva Epiphany processors [71], and

Wave Computing’s DPU [72].

e Movidius Vision Processing Units (VPU) [73]
A multicore processor family with features fairly consistent with vision processing units
that handle SIMD instructions and datatypes suitable for video with an on-chip DMA

between scratchpad memories.
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e GPU-based Accelerators
Examples are NVIDIA’s Tegra family of processors [74], and AMD’s Radeon Instinct

accelerators[75].

e Eyeriss [76]
An FPGA-based accelerator for deep convolutional neural networks with low real-
time energy consumption, that utilizes data reuse to avoid unnecessary reads and

computations, and data compression to reduce memory bandwidth.

e Xilinx Automotive (XA) Spartan series [77]

FPGAs designed specifically for ADAS applications.

e Synopsys’ DesignWare EV5X processors [78], [79]

A family of embedded vision processors with CNN capabilities.

e Intel’s Nervana Neural Network Processor (NNP) [80]
Another ASIC developed specifically for deep learning computations and memory op-

erations.

e Neuromorphic-based Processors
Integrated circuits design based on spiking neuron elements instead of traditional
boolean logic gates, where a neuron fires a weighted range of values, in response to
input stimuli within a certain period of time. Examples are the TrueNorth processors

[81], and Intel’s Loihi [82].

5.2 High-Level Software Frameworks

Despite the ease of directly using general parallel computing frameworks such OpenMP
for shared-memory architectures, and MPI for distributed memory systems, on different
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multicore architectures to accelerate applications, that abstraction is usually not the best
approach taken when designing embedded software. To get the most out of multicore sys-
tems, using programming models mapped to the system architecture that can well expose
all types of parallelism on that system is recommended. When designing parallel programs,
one should start with partitioning and breaking up computation among the different Pro-
cessing Elements (PEs), either according to different functional steps in the algorithm, i.e.
functional decomposition, or according to data to be processed, i.e. data decomposition
[83]. After partitioning, mapping task groups to the available PEs is done. When mapping,
data dependencies between tasks should be considered as well as reducing communication
needs between PEs through the type of memory used: shared memory is usually fastest.
Acceleration is thus achieved with increasing the total amount of work done per unit time,
i.e. application throughput, or decreasing turnaround times and overheads, i.e. latency. The
availabilty of profiling tools that can provide accurate space (memory) and time measure-
ments can aid in the optimization process by providing feedback on the performance and

adjusting accordingly.
5.3 Conclusion

New architectures are being developed everyday to speed up the processing of the huge
number of pixel data collected from image sensors/cameras. Even though one might ini-
tially achieve fast processing times using the appropriate hardware or software; we usually
optimize for acceleration by finding the best software implementation for a specific hardware
implementation. Studying the interactions between hardware and software collectively at
that optimization stage is suggested to achieve real-time performance requirements for many

of the big data vision applications. Despite the availability of different accelerator types, a
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thorough study of an application’s algorithm implementation on that accelerator instead of

a generic solution can improve the algorithm’s real-time performance moving forward.

38



Chapter 6: Heterogeneous Processing GPU Models

The definition of a multiprocessor system varies according to context. A traditional
multiprocessor implies the use of more than one CPU to execute a task. Symmetric Mul-
tiprocessing systems adopt using a homogeneous set of CPUs with the same instruction
set architecture, that share the main memory, while assymmetric systems could be either
homogeneous or heterogeneous with their separate memory space.

This chapter discusses another type of heterogeneous multiprocessing: the usage of a
co-processor as a hardware accelerator in addition to a host processor. Both processors can

have the same architecture e.g. Intel MIC, or different architectures e.g. NVIDIA GPUs.

Multithreading on CPUs and GPUs Parallel processing on CPUs is not the same
as that on GPUs. Even though both architectures use multiple threads to parallelize the
execution of tasks, Context Switching on CPUs is much more expensive and slower than on
GPUs. GPU threads are designed to maximize throughput by supporting a large number of
threads in a streaming multiprocessor using schedulers (please refer to section 6.1.1 for more
details) to allocate resources to active threads, in comparison with CPU cores that rely on
separate copies of resources for each thread. This results in the capability of GPUs running

thousands more threads concurrently than CPUs [84].

39



/ /
/ 0
J /
Z A
/ J ./ J ./
Host PCl-e Device
(Processor) \ (Co-processor)

Figure 6.1: The Heterogeneous Computing Model

6.1 The CUDA Programming Model

The CUDA programming model assumes the heterogeneous processing model, where
parallel code executes on a device separate from the main processor. Each processor has its
own memory, with a high bandwidth PCle bus used for data transfer between both memories.
Parallel code is launched in a kernel by the host and runs concurrently on several Streaming
Multiprocessors or SMs on the GPU. From a programmer’s point of view, the functional
tasks are in parallel code that is run in a grid of blocks of multiple threads, each of which
runs the whole function of tasks on a part of the input data. Figure 6.1 shows the general

heterogeneous computing model on which the CUDA framework is based.
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6.1.1 Single Instruction Multiple Thread (SIMT) Execution Model

Unlike a CPU, a GPU is built of a scalable array of multiprocessors called Streaming
Multiprocessors (SM) [85]. Streaming Multiprocessors can run one or more blocks of threads
concurrently utilizing thread-level parallelism while instruction-level parallelism is exploited
within single threads by pipelining instructions [85]. NVIDIA SMs partition thread blocks
to groups of 32 threads called warps. Threads within a warp execute the same instruction,
however each thread has its own register state to enable independent branching. This execu-
tion model called the Single Instruction Multiple Thread (SIMT) model is similar to Single
Instruction Multiple Data (SIMD) models on CPUs but they can provide much lower la-
tencies without lowering the throughput (especially in indirect memory accesses), as well as
easier (albeit slower) divergence control e.g. SIMT does not use flag registers for conditional

branching [85].
6.1.2 Memory Organization (excluding registers)

A GPU has several types of memory, each characterized by their size, latency and
throughput. Due to the principle of data locality [86], computing performance is greatly
affected by type of memory storage used for a particular task. Table 6.1 illustrates the
different types of memory found in a GPU, along with their caching behavior and data

lifetime.

6.2 Heterogeneous Memory Systems

6.2.1 Unified Memory

CUDA 6.0 introduced a managed memory model where a coherent memory image is

shared across all processing elements [87]. In this model, all processors see a common memory
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Figure 6.2: The Parallel Thread Execution Model

address space and no explicit data transfer is required between processors which is usually
done using the traditional runtime API routines cudaMemcpy() [85]. This model should be
useful for applications running on Tegra devices since both the CPU and GPU are on the
same physical silicon chip and share the same DRAM.

The Tegra X1 SoC on the Jetson development board is a good application case for the
unified memory model compared to the ones on the Drive PX system since the Jetson system

doesn’t have a discrete GPU unit.

Pinned Memory vs. Unified Memory

Even though the CPU and the GPU on Tegra devices share physical DRAM, accessing
and caching this memory can be done in various ways. Thus, it is important to select the

appropriate memory type for each application to ensure efficient program execution.
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Table 6.1: Summary of different memory types on the GPU

Global Memory

Shared Memory

Local Memory

Constant Mem-
ory

Texture Memory

Off-chip DRAM

On-chip DRAM

Off-chip DRAM
(Allocated  in
global memory)

Off-chip ROM

Off-chip ROM

Uncached Behaves like L1 | Uncached Cached per SM | Cached per SM
cache for a block
on an SM

High latency, | Low latency, | High latency On a cache miss, | Accessed

low throughput

high throughput

the cost is one
memory read

through a dedi-
cated read-only
cache

Host and device
access

Within-block
thread access

Individual
thread access

Located in de-
vice memory
and accessed
through a spe-
cial  read-only
cache

Located in de-
vice memory

Kernel Persis-

tent

Lifetime of block

Lifetime of
thread

On traditional heterogeneous memory systems e.g. CPU with dGPUs, CPU host memory

is pageable by default and not directly accessible by the GPU. This is the case when explicit

data transfers using cudaMemcpy() routines are needed for the GPU to access CPU data

memory. Although host memory is cached, data transfers can still slow down the application

significantly. An alternative method is to pin host memory to the GPU through the Pinned

(Non-pageable) Memory Model. In this method, data is allocated in pinned host memory

instead, thus saving the CUDA driver the time of allocating a temporary pinned host data

arrays before transferring them to the GPU, as in traditional pageable memory models.
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Pinned Memory models are also known as Zero Copy Memory models since data allocated
in host memory is accessible to device memory using the allocated pointers.

It is to be noted that Tegra X1 is compute capability 5.3, which is not cache coherent,
thus data is not cached on the CPU which increases data access times [88].

On the other hand, unified memory is cached on all compute capability devices, which
introduces a slight overhead on non-cache coherent devices like the TX1. Despite that
overhead, it is still preferable to use unified memory over pinned memory for large arrays

that are frequently accessed [88]. We aim to demonstrate that in sections 6.2.2 and 6.2.3.

What memory model to use?

The CUDA for Tegra guide [88] says that zero-copy or pinned memory is preferable to
use in low latency applications, and that is due to the non-cached behavior of zero-copy
memory. Memory selection is dependent on required kernel execution times, data transfers,

data locality and latency.

Page Migration and Data Coherence

Unified Memory works in a similar way to Unified Virtual Addressing (UVA) in the
sense that all system memory has a single virtual address space. However, unified memory
automatically migrates data from one physical location to another [87], [89], [85] based
on where the data needs to be accessed. From a programmer’s standpoint, to use unified

memory, one has to allocate dynamic memory using cudaMallocManaged(). Behind the

scenes, this translates to the following steps [89]:
1. New pages are allocated on the GPU

2. Old pages are unmapped from the CPU
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3. Data is copied from CPU to GPU
4. New pages are mapped on the GPU
5. Old pages are freed from the CPU

On older GPU architectures, e.g. Maxwell in the TX1, managed memory has to be syn-
chronized between the CPU and the GPU before launching any kernels. Newer architectures
of compute capability greater than 6.x implement a page faulting mechanism where data is
migrated on demand when a page fault occurs [89], [85]. On page faulting, the Translation
Lookaside Buffer (TLB) for the corresponding SM is locked and any new translations are
suspended until all faults are handled by the driver. This ensures a consistent and coherent
view of memory for each SM.

When profiling the generative sampling application on the TX1, as shown in figure 6.3,
most if not all processing time is spent in synchronizing between CPU and GPU, which is
typical on old Tegra SoC architectures.

On-demand page migration is an interesting feature that can help improve unified memory
performance, albeit it is not supported on Maxwell architectures and thus won’t be explored

further here.
6.2.2 Pinned Memory and Data Transfers

On dGPU systems, page-locked or pinned memory is sometimes used to increase appli-
cation performance by reducing data transfers and overlapping them with kernel executions.
However on iGPU systems such as the TX1, using pinned memory can degrade performance
with repetitive memory access patterns due to the non-caching behavior on the TX1 [88].

Table 6.2 shows the duration times for a kernel performing addition on a vector of one million
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Testing completed successfully

Profiling application: ./RBM_PG_Generative

Profiling result:

Time Calls Avg Min Max MName

T1.77% 35.1307s 1 35.1307s 35.1307s 35.1307s vis_to_hid_kernel(float*, float*, flo
at*, float*, float*, float*)
28.23% 13.8206s 1 13.8206s 13.8206s 13.8206s hid_to_vis_kernel(float*, float*, flo
at*, float*, float*, float*)

API calls:

Time ; Avg Min Max MName
48.9949s 24.4975s 13.8584s 35.1365s cudaDeviceSynchronize
165.85ms 165.85ms 165.85ms 165.85ms cuDevicePrimaryCtxRetain
7.5844ms 1.2641ms 77.552us 3.0603ms cudaMallocManaged
5.6557ms 2.8279ms  1.2628ms 4.3930ms cudalaunch
4.4774ms 746.24us 55.833us 1.8762ms cudaFree
86.814us 954ns 416ns 20.990us cuDeviceGetAttribute
48.594us 48.594us 48.594us 48.594us cudaGetDeviceProperties
17.448us 17.448us 17.448us 17.448us cudaSetDevice
12.5808us 4.1660us 1.7190us B8.2290us cuModuleGetGlobal
12.5008us 6.2500us 3.1250us 9.3750us cuModuleGetFunction
11.456us 954ns 573ns 1.7190us cudaSetupArgument
9.9480us 4.9740us 1.8230us B8.1250us cudaConfigurecCall
9.7920us 4.8960us 4.7400us 5.0520us cudaGetLastError
7.1890us 2.3960us 938ns 4.8960us cuDeviceGetCount
4.6880us 4.6880us 4.6880us 4.6880us cuDeviceTotalMem
2.4480us 2.4480us 2.4480us 2.4480us cuCtxSetCurrent
2.1870us 729ns 521ns 885ns cuDeviceGet
1.9280us 964ns 834ns 1.0940us cuCtxGetCurrent
1.4580us 1.4588us 1.4588us 1.4588us cuDeviceGetName

781ns 781ns 781ns 781ns cuCtxGetDevice

Figure 6.3: Profiling example showing 99.63% of processing time spent in device synchro-
nization on the Tegra X1 to ensure memory coherence
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Table 6.2: Kernel Execution Times

GPU Device Zero-copy Memory Unified Memory
Tegra X1 (cc 5.3) 17.846 ms 17.856 ms
GTX 1080 (cc 6.1) 700.424 ps 3.064 ms

elements using both memory models independently. As expected, the zero-copy memory im-
plementation on the TX1 was not as fast as the corresponding implementation on the GTX

1080.
6.2.3 Unified Memory Optimizations on the TX1

As stated in section 6.2.1, using unified memory on the TX1 requires cache coherence
and synchronization steps. These steps are usually taken care of by the CUDA driver.
However, we can assist the driver by providing some hints on where to access this data; this
idea is called Data Prefetching, and can decrease latencies produced from synchronization
operations of managed memory.

Even though the TX1 does not support concurrent managed memory access of the CPU
and the GPU so that the concurrentManagedAccess flag is equal to 0 always when calling
cudaDeviceGetAttribute(), concurrent access can be achieved through the usage of streams
[88], [85]. CUDA Streams were introduced to allow concurrent execution of kernels. Since
streams running in parallel are independent, managed memory allocations could be explicitly
set for each stream. The state of the flag in the cudaStreamAttachMemAsync() API function
causes data to be fetched to the CPU or the GPU, thus calling that function before launching
a host operation or kernel with the correct flag set saves the Unified Memory system from

having to migrate all data between host and device. Figure 6.4 demonstrates how to use such
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CudaMemAttaChHost — Memory is prefetched to host thus

is visible to host functions.

cudaMemAttachGIobaI s Memory is prefetched to device

and can be accessed by any
stream running a kernel.

Memory is prefetched to device

CUdaMemAttaChSingle — and can be accessed only by the

associated stream.

Figure 6.4: CUDA API flags used to change behavior of managed memory that can be used
for data prefetching

flags [88]. It is to be noted however that the default managed allocation, allocating memory
using cudaMallocManaged() without attaching it to a specific stream, makes it visible to all

kernels that are running.

6.3 Performance Analysis and Profiling

It is always essential in all hardware and software system designs to measure the per-
formance of the system to assess whether the specific application could be implemented
more efficiently given the system’s resources. One of the most recommended approaches to
optimization is the APOD approach [90] where optimization is a cycle of Assessing the ap-
plication’s requirements and analyzing the performance of the current design; Parallelizing

the solution with the goal of achieving those requirements; Optimizing the parallel solution
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to improve performance; Deploying the optimized parallel implementation on real-world sys-
tems; and repeating the cycle until a satisfactory performance is achieved. This section will

introduce performance strategies and metrics that are used in that cycle.
6.3.1 Parallel Execution

Perhaps one of the naive methods of achieving less kernel execution time is to divide the
work across as many threads as possible. However, as seen in the next few sections, this is
not always the best optimization strategy. In the SIMT model as discussed in section 6.1.1,
threads are grouped into warps for global memory access and general instruction execution.
This model works well if all threads in the warp are executing the same set of instructions,
i.e. there is no branch divergence (see section 6.3.3). Problems arise when some threads in
the warp are stalled since they are waiting on the rest of the warp threads to execute their
path. This defeats the whole parallelism idea and is called thread divergence. Redundant use
of barrier synchronization functions like __syncthreads() can also lead to wasted time since
all threads in the same block have to finish execution before the next instruction is serviced.
Thus the use of barrier synchronization and atomic functions should only be used for data

and memory coherence.
6.3.2 Global Memory Bandwidth

Two approaches are usually taken to maximize memory bandwidth: hiding memory
latency by increasing the number of warps executing concurrently along with coalescing and
aligning memory accesses [84]. The measured bandwidth a kernel actually achieves is known

as Effective Bandwidth and is calculated using:

(Number of bytes read + Number of bytes written) * 1077
Total time taken

Bandwidth (GB/s) =

(6.1)
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Global Memory Access Patterns

How a warp accesses the memory, whether it is reading or writing, can greatly affect a
kernel’s performance. When all threads in a warp read from or write to the same contiguous
segment, the access is said to be coalesced; which is almost always desirable to reduce
the number of memory transactions required to service the warp. Figure 6.5 shows six
different memory access load /read patterns. Load Efficiency or Bus Utilization is calculated
as number of bytes requested by a warp divided by the total number of loaded bytes. If each
thread accesses a word size greater than 4-bytes (FP32 value), warp memory requests are

split into independent 128-byte transactions [85].

Caching Behavior
Caching is always done in L2 for devices of cc 5.x. Only data that is read-only can be cached
in the unified L1/texture cache. Cache line is 128 bytes, and L2-cached memory accesses are
serviced with 32-byte transactions. On cache hit, requests are serviced at the throughput of
L2, when L2 misses, global memory DRAM throughput is achieved.

It is therefore recommended to have block sizes be a multiple of the warp size i.e. 32

threads, so the memory accessed by warps is aligned to L2-cache lines.

The Effect of Block size on Memory Bandwidth

In section 6.1, it was explained how the CUDA model is well-suited to multidimensional
data arrays by mapping the data onto grid blocks and the programmer has the freedom to
choose appropriate grid and block sizes that will speed up the application. From the hardware
point of view, those blocks are not multidimensional at all and are organized into groups
that run on the SMs called warps. Warps are one dimensional, hence those multidimensional

grids and blocks are flattened to run on the SMs. Although the order of thread execution is
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(a) Coalesced and Aligned (d) Mis-Aligned and Sequential
LT LA T LA L) ||||||||||||||‘y|
| | | | \ | | |
0 128 256 0 128 256
(b) Aligned and Non-Sequential (e) Mis-Aligned and Non-Sequential
(Randomized) (Randomized)
LT T T LT II%HII&
| | | | | \
0 128 256 0 128 256
(c) Same Address (f) Scattered and L2-cached
CLLEETT T LT LTI L \IIIII\IIHII\IIIHIHIHHHI\III
Sl .
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0 128 256 0 32 64 96 128 160 192 224 256 288 320 352

Figure 6.5: Global Memory Access Patterns. (a-c) Aligned memory access: the first address
of access is a multiple of 32. Bus utilization is 100% in (a,b) and 3.125% in (c) for 4-byte
words (d,e) Misaligned memory access: access is spread across two 128-byte transactions.
Bus utilization is 50% (f) Scattered memory access: Warp requests six 4-byte words scattered
across global memory; over-fetching is avoided here since L2-cached accesses are always 32
bytes.
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non-deterministic and controlled by the CUDA scheduler, each thread gets a unique id by
the programmer based on how those blocks are flattened i.e. whether they are row-major
order — like C arrays — or column-major order. As a result, a block size of (16, 16) will not
execute in the same way as a block size of (8, 32), even though both block sizes expose the
same amount of parallelism i.e. each block has 256 threads. A kernel of block size (8, 32) will
have a higher effective memory bandwidth than the (16, 16) sized kernel [84]. That is due
to the way global memory is accessed and how requests to DRAM are serviced, as described

before.
6.3.3 Instruction Throughput

Whether the instruction is an arithmetic, load or a branch instruction, every executed
instruction consumes processing time and bandwidth, thus redundancy in instruction usage
should be avoided. In addition, not all arithmetic instructions are created equal: Single-
Precision Floating Point (FP32) instructions have higher throughput than Double-Precision
Floating Point (FP64) instructions, and in vision applications one can get away with using
Half-Precision Floating Point (FP16) or even INTS instructions without losing much accu-
racy [91]. Using intrinsics are also more efficient than using regular functions for standard
arithmetic operations [90].

Instruction serialization or encoding is sometimes a metric to consider. Serialization
percentage can be measured by comparing the number of instructions executed to the number
of instructions issued. The NVIDIA profiling tool nvprof provides such metrics.

Another factor that can affect instruction throughput is thread granularity and thread
reuse [92], [93]. Using fewer threads by making them do more work on the same dataset can

often result in eliminating redundant memory load operations [92], and thread creation and
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destruction cost [93]. Thread reuse, however, consumes more resources such as registers and
shared memory — a trade-off discussed in section 6.3.4, and might not be efficient for small
datasets since not enough parallelism is used.

Warp and Branch Divergence is another important performance metric provided by
nuprof that affects instruction throughput when the number of active threads in a warp
is low [84]. The concept of branch divergence in parallel algorithm design is well-studied,
and nonetheless applies to the SIMT execution model. Little warp divergence is indicated
by a reported high branch efficiency percentange, and is a representation of good control
flow in the design. Unrolling loops also helps avoid thread synchronization and loop control

executions that can affect throughput as well [84].

6.3.4 Occupancy

Occupancy is a measure of hardware utilization; how much of the device’s resources are
being used to execute a specific kernel. The Best Practices Guide [90] defines it as the ratio
of the number of active warps per SM to the maximum possible number of warps the device
can run concurrently. While higher occupancy does not guarantee better performance, low
occupancy is usually a sign of high memory latency that can degrade a kernel’s performance.

Resource utilization is described in terms of block size, i.e. number of threads per block;
number of thread blocks running on an SM; number of registers available for a thread block
to use; and the amount of shared memory used by a thread block. All four factors are
interdependent and increasing one can lead to resource under-utilization, which affects the
occupancy ratio. Experimentation is needed here to find the best possible utilization. A

plateau is usually reached at 50%, and increasing it further does not translate to better
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kernel performance. In [94], it was even shown that in some cases, it is possible to hide

latencies using fewer warps and Instruction-Level Parallelism (ILP) techniques.
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Chapter 7: Experiments

7.1 Image Representation and Reconstruction

Two sets of images were used in this experimental section. The first dataset was col-
lected to test the experimental setup, while the second dataset was collected to model and
reconstruct traffic scene intersections. Algorithm implementation and testing were done on
both datasets, and are discussed in sections 7.1.1 and 7.1.2 respectively. An overview of the

experiment done is shown in figure 7.1.

7.1.1 Dataset 1: Bike Path Images
System Setup

Figure 7.2 shows the experimental setup to collect image data using an electric golf cart
as the moving vehicle. Images were captured using one StereoLabs ZED camera [95] mounted
on the bottom right-side of the windshield connected using USB 3.0 to an NVIDIA Jetson

TX1 development board [96]. Images were recorded using ZED SDK 1.0.

Data Collection

We drove the golf cart along the gravel bike path and captured images of walking, running
and jogging pedestrians along with some on bicycles. A collection of seven sample videos in

.svo format were recorded. Example images from a sample video are shown in figure 7.3.
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Figure 7.1: Experiment Overview
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Figure 7.2: Experimental Setup used to collect real-world images along a gravel bike path
using an electric golf cart

7.1.2 Dataset 2: Urban Traffic Intersections
System Setup

Images were captured using two Point Grey GigE Flea3 cameras [97] mounted on the
car’s dashboard angled 45° to the left and right, connected using Intel Network Gigkl PCle
Adapter 82576 to an NVIDIA Jetson TX1 development board [96]. Image acquisition was

done synchronously using both cameras.

Data Collection

Images of real-life traffic intersections were collected while driving around campus. We

focused on including images of the following five types of intersections in the dataset:

e Four-way stop sign controlled

Traffic light signal controlled

Cross-walks without stop signs

Roundabout-type intersections

Three-way intersections
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Figure 7.3: Sample images recorded from an .svo video file using ZED SDK 1.0
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The total number of images in the dataset were 5859 images from each camera. Sample
images from this dataset can be seen in figure 7.4. We divided the dataset into independent

training and test sets in the typically used ratio of 5:1.
7.1.3 Model Training

All image frames in an .svo video were used to train a Restricted Boltzmann Machine
as an example of a probabilistic one-layer unsupervised network. Images were cropped from
720 x 1280 to 360 x 960 to remove redundant pixels e.g. sky regions. 2D image data used
were normalized grayscale values stored as FP64 data type of 8 bytes. This was done to
best match the RBM model that uses probability values for its input visible layer. One
container for all training data was created indexed by the frame number as the container’s
row pointer. This speeded up the copying process since images were copied as in blocks of
their rows instead of individual pixels.

Before training the network, a set of initial weights and biases had to be computed.Theoretically,
any random weights and biases will do but since usually there are thousands of visible and
hidden neurons, any hints on where to start the search in the weight space could lead to
faster convergence in the Markov chain. The procedure used for initializing weights was sim-
ilar to the training procedure: all training data was divided into batches, and each complete
round constituted an epoch. We followed the procedure in [98]: initial weights were allowed
to vary using the harmonic mean of the weight matrix dimensions; this was done using the
fact that summing the dot product of neuron activations and a weight vector depends on

the length of that vector. Weights were initialized using the following formula:

4 xrand(0, 1)
AV NV * NH

Initial
Wt = * (rand(0,1) — 0.5) (7.1)
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Figure 7.4: Sample images recorded from the collected dataset of traffic intersections

60



Initial Weight Matrix

Figure 7.5: Initial weight matrix displayed as 360 x 960 image. This weight matrix is for the
first hidden neuron in the RBM layer of 200 hidden neurons

. To compensate for a potential unbalance in the random weight set, we add an initial bias
aj = — Y. %;Wj;, where Z; is the mean of the input dataset, to each hidden neuron such that
for the average training set, its net input is zero because the distribution is centered. To
ensure a somewhat small reconstruction error, we set an initial bias b; for the visible neuron
activation that depends on the average activation of the hidden layer ¢ using equation 7.2,
and an initial bias for the hidden neuron activation as in equation 7.3.

' j

6 =log({20) ~ oy (7.3)

Figure 7.5 displays the weight matrix of the first hidden neuron as an image.
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Alternatively, one could follow the recipe described in [99], and use small random values
chosen from a distribution N(0,0.01), zero hidden biases, and bias for visible unit i as
log[pi/(1 — p;)]; where p; is the proportion of training samples that turn unit i on.

Training was done in batches on an NVIDIA GTX-1080 [100] which is based on the Pascal
GPU architecture. Since the card follows the typical heterogeneous memory architecture,
data has to be copied into device memory space before processing. Training hyperparameters
were declared in global device memory, while pointers to dynamic device memory were used
for data and weight arrays. At the beginning of each training epoch, data was shuffled
using a standard Fisher-Yates shuffle [101] and indices were copied to the device. There are
usually some serial correlations in the data so shuffling helps to vary the contents of batches
throughout training epochs.

A training epoch thus becomes a loop through all batches of the following:
1. Start batch (loop)

1.1. Get visible unit values for the current batch from the data

1.2. Compute the hidden probabilities without sampling from the visible layer values

as in equation 2.5
1.3. Start Markov chain (loop)

1.3.1. Sample the computed hidden activation values

1.3.2. Compute using equation 2.6 the visible layer values from the hidden activation
values sampled in the previous step

1.3.3. Compute the reconstruction error for the current chain by subtracting the
difference of the computed visible layer values from the original provided in
the dataset
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1.3.4. Use the latest visible layer probability values to get the hidden layer proba-

bilities according to equation 2.5
1.4. End Markov chain (loop)
1.5. Update Parameters and Error

1.5.1. Update the visible bias vector using the current momentum and learning rate
values

1.5.2. Update the hidden bias vector using the current momentum and learning rate
values

1.5.3. Update the weight matrix using the current momentum and learning rate
values

1.5.4. Add current batch error to previous batch error for a single epoch error

1.6. Compute weight gradients and gradient differences for adjusting the learning rate

heuristically
2. Repeat for next batch (loop) until all batches in the epoch are done

3. Test for convergence by measuring the largest weight gradient computed during the

current epoch relative to the largest weight magnitude

4. Adjust momentum and learning values independently for the next epoch — if needed

to prevent large deviations when near convergence

Each training step was implemented on the device as a CUDA kernel. Columns of work-
ing vectors were mapped to grid blocks along x-dimension, while rows were mapped to the
y-dimension. Each element in the working vector was assigned to a thread, launching the
kernel with a number of threads per block that is a multiple of the warpsize, i.e. 32 threads,
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(a) Weight matrix relating hg, the first hidden (b) Weight matrix relating hg, the first hidden
neuron to the input. A total of 5 hidden neurons neuron to the input. A total of 200 hidden neu-
were used in this network rons were used in this network

Figure 7.6: Computed weight matrices computed after training using the bike path dataset

to ensure coalesced memory reads/writes and general concurrent instruction execution. Par-
allel reduction using shared memory was used to compute the weight gradients and weight
gradient differences using partial sums, and the maximum weight magnitude using partial
maximuims.

A total number of 2110 images from the first dataset were used in training, while 4883
combined images from both cameras were used from the second dataset. Each dataset was
trained separately. Final weights and biases were copied back to the host and displayed.
Figures 7.6 and 7.7 shows sample weight matrices from trained networks on both datasets.

We used the recommended values for setting training hyperparameters from [98] and [99].

Table 7.1 shows their descriptions and values used.
7.1.4 Model Inference

To test the trained model on new image samples, we performed a round of Gibbs sampling.
Test images were provided from another recorded .svo video from the first dataset, pre-
processed in the same manner as the training images, and fed to the trained network in a

random order, to assess the generative ability of the training by generating feature samples.
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(a) Weight matrix relating ho, the first hidden (b) Weight matrix relating h;, the second hidden
neuron to the input. A total of 20 hidden neurons neuron to the input. A total of 20 hidden neurons

were used in this network were used in this network

Figure 7.7: Computed weight matrices computed after training using the urban intersections

dataset

Table 7.1: Hyperparameters Constants in training our experimental networks

Hyperparameter
Name Description Value
Markov Chain Start Beginning index of markov chain 1
Markov Chain End Ending index of markov chain 4
Markov Chain Rate Exponential Smoothing Rate of markov chain 0.5
Mean Field Use meanfield activations = 0; use random sampling = 1 1
Greedy Mean Field if == 07 use for training 1
Max Epochs Maximum number of epochs for training )
Max No Improvments Converge if this many epochs without ratio improvements )
Convergence Criterion Convergence heuristic 0.5
Learning Rate Stochastic Gradient Descent Rate 0.1
Momentum Start Network’s momentum start value 0.005
Momentum End Network’s momentum end value 1
Weight Penalty Cost® assigned to weights 0.005
Sparsity Penalty Sparsity® cost 0.1
Sparsity Target Sparsity target value 0.1

%ntroduced parameter to discourage large weights associated with poor mixing rates

b

average probability of a neuron being active
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Inference was done on the Tegra X1 SoC [96], which is based on the older Maxwell GPU
architecture. In contrast to how we used the system memory for training; no explicit data
copies were done on the TX1. Network hyperparameters were defined as static variables in
managed device memory space; working vectors and data were dynamically allocated on the
TX1’s unified memory. A one-step Gibbs sampling is the process of first sampling the hidden
layer activations using the input visible neurons followed by sampling the visible layer from
the computed hidden values. As stated in multiple previous work [43], [102], [103] we found
the one-step contrastive divergence, i.e. one-step sampling, to be sufficient.

Gibbs sampling was done on the device using two CUDA kernels, one for each sampling
phase. Thread mapping was done in a similar case to our training implementation. 2D
image data were treated as 32-bit floats (FP32).

The same inference procedure was done for the second dataset except that images from
both cameras were used, which enriched the data, but meant that a sampling step could
contain two images captured simultaneously.

Samples from both datasets are shown in figure 7.8 respectively. No data copying between
processing systems was needed here to display sample results, since both the CPU and GPU
share the memory space. Total number of test images in both datasets were 817 and 976

images respectively.

Generative Capability: Images in figure 7.8 represent the hidden features found after
training the model with 20 hidden units, which is equivalent to representing the data in a
20 hidden (latent) dimensions. Grayscale images (0 to 255) are mapped from the 0 to 1
probability space of the RBM. Visible neurons in the RBM represent discrete input pixel

values of images while hidden neurons represent the lower dimensional feature space learned
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Figure 7.8: Generated Samples from the trained model in section 7.1.3

by the model. The goal of generative models is to find the representation space that best
describes real-world image features, so the hypothesis is the more hidden neurons used in
the implementation, the better image representation we get. It is to noted that the CUDA
APT function we used cudaMallocManaged() could only allocate up to half the size of the

physical RAM (at the time of writing), which restricted the number of hidden neurons used.

Image Perception Evaluation: To test the generative capability of the model, we used
the Perception-based Image QUality Evaluator (PIQUE) metric defined in section 2.3 and
[49]. PIQUE calculates the quality score of an image using a block-wise distortion map of
local features that are extracted from perceptually significant spatial regions. We refer the
reader to figure 2.6 and [49] for more details.

Our average perception scores were 28.3107% and 42.9174% for each dataset respec-
tively. We measured the mean score for 20 different generative samples from each dataset

independently.

Image Quality versus Network Size: To get an idea of how the image perception

quality varies with the network size, we retrained both datasets with different numbers of
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Figure 7.9: Image quality (PIQUE) scores (%) computed for five different image samples
generated using different number of hidden nodes for both datsets respectively

hidden units, reconstructed the images and measured their perception scores using the same
quality evaluator. Figure 7.9 shows the results.

Figure 7.10 shows the images used in the evaluation process. The images generated from
the first dataset show more variation between individual pixels when changing the hidden
nodes representation than the second dataset, thus having a low distortion value or a low
score on the evaluator scale. We hypothesize two possible explanations for this behavior.
First, the range of hidden nodes used in the generator network is larger in the first dataset
compared to the range used in the second dataset, thus enabling the network to represent
more features. Second, the first datset originally had more correlated images, as a result
modeling the images of the first dataset using the network was more biased and thus it is

easier to capture their distribution.
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Figure 7.10: Images used for quality evaluation from figure 7.9. The images in the first
column are from the Bike Path Dataset generated using 5, 20, 100, 200 and 400 hidden
nodes respectively. The images in the second column are from the Intersection Dataset
generated using 5, 10, 20, 40 and 45 hidden nodes respectively.
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__global _ void vis_to_hid_kernel()

¢ int ihid = blockIdx.x * blockDim.x + __global__ void hid_to_vis_kernel()
threadIdx.x; {
int ichain = blockIdx.y; int ivis = blockIdx.x *
blockDim.x + threadIdx.x;
float sum = hid_bias[ihid]; int ichain = blockIdx.y;
int randnum; float sum = vis_bias[ivis];
for (int ivis = @; ivis < n_vis; ivis++) - for (int ihid = ©; ihid < n_hid;
sum += wtr[ivis*n_hid+ihid] * ihid++){ L. L.
sum += w[ihid*n_vis+ivis]
vis_layer[ichain*n_vis+ivis]; * hid layer[ichain*n_hid+ihid];
float act_Q = 1.ef / (1.0f + __expf(- vis_layer[ichain*n_vis+ivis] =
sum)); 1.0 / (1.9 + __expf(-sum));
hid_layer[ichain*n_hid+ihid] = (frand < }
act_ Q) ? 1.0 : 0.0;
}

Figure 7.11: Implementation of Gibbs sampling kernels

7.1.5 Profiling on the TX1

Figure 7.11 shows our implementation of Gibbs sampling as CUDA kernels on the TX1.
We expect our wvis_to_hid kernel to be more computationally expensive than the hid_to_vis
kernel, since we there are more visible than hidden neurons. We measured vis_to_hid kernel
runtimes with four different block sizes of 32, 64, 128 and 1024 threads, and plotted them
in figure 7.12. Figure 7.13 shows a profiler plot of the number of warps issued per SM on
the Maxwell GPU with different block sizes. Figures 7.14 and 7.15 show the utilization of
each function unit, and the percentage of execution of each instruction type respectively. We

follow with a discussion of the optimization strategies utilized in our implementation.

70



The effect of varying the block size on kernel run-time
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Figure 7.12: A plot of vis_to_hid kernel duration times ran with block sizes of 32, 64, 128
and 1024 threads
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Global Memory Bandwidth Calculations: We calculated the effective memory band-
width used by the vis_to_hid kernel by calculating the number of bytes read and written by
the kernel over its run time. A memory bandwidth of 2.35GB/s was achieved.

We utilized the unified memory model in our inference implementation. This avoided
unnecessary data copies between host and device, in addition to utilizing the L2- cache, in
contrast with zero-copy implementations where caching behavior is disabled [88]. Row-major
order global memory reads and writes were coalesced, which ensured no unnecessary memory
transactions were issued [85], [90], [84]. Achieved occupancy was 23.4% versus 31.2% for the

32 thread block kernel.

Active warps: Warp execution efficiency, the average percentage of active threads in
the executed warps, for the vis_to_hid kernel was 62.5% due to the presence of intra-warp

divergence in the if-branching statements.

7.2 Optimization Study

This research presents the costs and benefits of using different types of GPU memories
presented in table 7.2 and data formats and memory access patterns previously discussed
in chapter 6, to perform the same inference algorithm from section 7.1.4 on the dataset of

images described in section 7.1.2. For all experiments in this section, we assume a fixed

block size of 1024 threads.
7.2.1 Implementation

We implemented our algorithm using different optimization techniques used for compute-
bound and memory-bound applications, and measured performance accordingly. We defined

our baseline measurements as those resulting from an unoptimized version of the algorithm
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Table 7.2: Summary of different GPU memory types used in this study

Global Memory

\ Local Memory

\ Constant Memory

Off-chip DRAM

Off-chip DRAM (Allocated
in global memory)

Off-chip ROM

Uncached Uncached Cached per SM
High latency, low through- | High latency On a cache miss, the cost is
put one memory read

Host and device access

Individual thread access

Located in device memory
and accessed through a spe-
cial read-only cache

Kernel Persistent

Lifetime of thread

implementation: all variables are FP32, defined in pageable global memory and are read
and written in a column major order. Table 7.3 shows all experimental test cases run on 40
random images selected from our traffic intersection scene dataset. One step Gibbs sampling

was done on all 40 images simultaneously and execution times were measured using CUDA

Events.

Table 7.3: Test Cases

Case number ~ Weights Image Data Access Pattern Format
Zero (Baseline) Pageable  Pageable Column FP32
One Pageable = Pageable Row FP32

Two Constant ~ Pageable Column FP32
Three Constant Unified Column FP32
Four Constant Pinned Row FP32

Five Constant Unified Row FP32

Six Constant Unified Row FP16
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Image data and trained parameters are to be read from ROM (SSD) into the standard
OpenCV /C++ convention of row-based order. To test row-major ordering vs column-major
ordering, a transposition operation was done on the image data and stored independently in
global memory. We performed the transposition using the cuBLAS library GEMM function
cublasSgeam(). Using this function with managed (unified) memory allocation and initial-
ization was not successful unless host-device synchronization was called before data re-access

on host.
7.2.2 Results and Discussion

Total execution times for each of the cases in table 7.3 were measured using cudaEvents
and the resulting times are shown in table 7.4. Total execution time was defined as the sum of
memory transfers and one iteration of a Gibbs sampling kernel run. One sampling iteration
is defined as the total time taken by both kernels (visible-to-hidden and hidden-to-visible),
kernel launching times by the host and host-device synchronizations before and after each
kernel launch. The times in tables 7.4, 7.5, 7.6 and 7.7 were measured as the average of 5
runtimes for each test case.

The Tegra X1 chip has a 64-bit DRAM interface with memory clock DDR rate of 13MHz
(by checking CUDA 8.0 SDK’s deviceQuery), which translates to a theoretical bandwidth
of 0.208 GB/s. Actual memory transactions can be different from load/store throughput,
which is why we decided to calculate the global memory efficiency as stated in section 6.3.2.
Tables 7.9 and 7.10 show the results of global memory efficiency obtained for each case.

From table 7.4, we can see that the baseline case took the longest, which agrees with our
hypothesis that this is the least optimal case, followed by the zero-copy (case 4). Case 1

(pageable) took the least amount of time, less than cases 4 (unified) and 5 (zero-copy) which
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is surprising on the TX1 given memory duplication. We posit the question whether there is
significant overhead to use those memory models on the TX1 such that the unified memory
choice is not as significant an optimization technique as hypothesized.

Data layout and memory access patterns proved an important optimization technique.
Even though cases 3 and 5 share memory and data types, row-major data ordering is faster.
This agrees with NVIDIA’s SIMT model of warp access.

Using constant memory to store network coefficients and parameters proved faster than
traditional pageable global memory. Case 2 performed much faster than the baseline case.

As shown in table 7.8, the highest throughput was obtained in case 4 (pinned memory)
for both kernels, while the lowest was case 2 for the visible-to-hidden kernel and case 5 for
the hidden-to-visible kernel. Referring to sections 7.1.4 and 7.1.5, the network has more
visible than hidden neurons and with mapping the same number of CUDA threads to our
resulting neurons, the hidden-to-visible kernel (5746ms) executed faster (on-average) than
the visible-to-hidden kernel (37834.7ms), which was expected as shown in tables 7.5 and 7.6.

The most optimization benefit was gained from case 6, by using half-precision floats
instead of full-precision numbers. Using half-precision operations allowed us to double the

throughput by vectorizing floating point instruction operations.
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Table 7.4: Total Execution Times (ms)

Case number  Time (milliseconds)

Zero (Baseline) 50929.7
One 38633.2

Two 44499.8
Three 42582.1
Four 46352.5

Five 39072.4

Six 28336.5

Table 7.5: Visible to Hidden Execution Times (ms)

Case number  Time (milliseconds)

Zero (Baseline) 45146.6
One 32684.6

Two 38737.2
Three 36672.5
Four 40408.2

Five 33359.6

Six 23007.3

Table 7.6: Hidden to Visible Execution Times (ms)

Case number  Time (milliseconds)

Zero (Baseline) 5637.67
One 5819.69

Two 5644.01
Three 5841.66
Four 5881.62

Five 5651.93

Six 5185.46
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Table 7.7: Gibbs Sampling Execution Times (ms)

Case number  Time (milliseconds)

Zero (Baseline) 50787.7
One 38509.1

Two 44383.6
Three 42516.7
Four 46294.7

Five 39014.5

Six 23347.4

Table 7.8: Global Memory Throughput

Throughput (MB/s)
Case number  vis to hid hid to vis

Zero (Baseline) 82.6 121.21
One 89 124

Two 74.1 117.72

Three 82.6 114.12

Four 95.23 125.65

Five 92.21 107.99

Six® 95.236 125.653

Six? 99.43 486.66

%half number of threads

bsame number of threads
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Table 7.9: Global Memory Load Efficiency

Global Load Efficiency (%)

Case number  vis to hid hid to vis

Zero (Baseline) 36.1 56.5
One 36.1 56.5

Two 36.1 96.95
Three 36.1 56.5
Four 36.1 56.5

Five 62.5 36.1

Six“ 36.1 56.5

Six? 36.1 56.5

%half number of threads

bsame number of threads

Table 7.10: Global Memory Store Efficiency

Global Store Efficiency (%)

Case number  vis to hid hid to vis

Zero (Baseline) 83.3 100
One 83.3 100

Two 83.3 100
Three 83.3 100
Four 83.3 100

Five 12.5 83.3

Six*® 83.3 100

Six? 83.3 100

%half number of threads

bsame number of threads
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Table 7.11: Optimization Benefit for each case in terms of time

Case number Optimization Benefit (%)

One 24.14
Two 12.62
Three 16.39
Four 8.9
Five 23.28
Six 44.36
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Chapter 8: Conclusion

This research addressed the problem of computational problems associated with real-
time scene understanding and environment perception in the context of traffic scenes for
different Advanced Driving Assistance systems (ADAS) and automated driving applications.
It concerned finding suitable representations for image data by using probabilistic generative
methods to model the hidden or latent variables in the data. The claim here was that if we
could find the optimal space representation, classification (e.g. labeling vehicles, pedestrians
and other objects in the traffic scene), regression tasks and inference become easier and
more accurate. Traffic image data from camera sensors have proven to be complex and
thus require multiple stages for best feature extraction. This, in addition to the amount of
available sensory data, become bottlenecks for the real-time processing requirement of traffic
applications.

We introduced a probabilistic framework for traffic scene understanding comprised of
unsupervised representation of sensory data using deep neural networks and reconstruction
and interpretation of traffic scenes using probabilistic inference methods.

The availability of parallel computing architectures like GPUs has helped improve the
work complexity of these feature learning algorithms. Multi-layer supervised feed-forward

convolutional neural networks have proved successful in various object detection tasks using
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traffic image data, however not much has been done to investigate the performance of unsu-
pervised probabilistic networks in the same context. The goal of this research was to study
these approaches, their behavior and real-time performance on the NVIDIA Tegra X1 SoC
which is computational processor in the DrivePX automotive platform designed for ADAS
and automated driving applications.

To summarize, the contributions of this work can be listed as follows:

1. Collection of real-world images of traffic intersections and a dataset that could always

be expanded in the future.

2. Implementing and training a probabilistic unsupervised generative network on GPUs,

utilizing and studying its architecture for best computational processing power.

3. Implementing an inference model on embedded SoCs and studying performance opti-

mization strategies.

4. Analyzing of different GPU optimization techniques for real-time inference applica-

tions.

Although runtimes of our implementation are not real-time ready, understanding the

effects of the different techniques can help towards achieving real-time performance.
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Appendix A: Data Collection and Processing Setup

A.1 The Development Environment

Two machines were used for development, each with its own compatible binaries and li-
braries for developing and testing the algorithms in question.

The Jetson System was flashed with Linux For Tegra (L4T) release 24.2.1 which runs a
sample file system derived from Ubuntu v16.04 LTS. Flashing was done through an Ubuntu
Linux x86_64 v14.04 desktop system.

The Host System was a hexcore Intel Core i7-6700K CPU which needed aarch64 compila-
tion libraries for cross-compilation on the Jetson.

CUDA 8.0 was used in the experiments on both machines.

The image processing part was done on the Jetson due to SDK compatibility issues with

the ZED camera, CUDA 8.0 version and the Ubuntu 14.04 host machine.
A.1.1 NVIDIA TX1 Quick Overview

The NVIDIA Tegra X1 SoC [104] features four 64-bit ARM Cortex A57 CPU core archi-
tecture; four 32-bit ARM Cortex A53 CPU cores; and a Maxwell GPU architecture with

256 cores built on 20nm TSMC.

91



The four high performance A57 CPU cores share a 2MB L2 cache, with a 48KB L1 in-
struction cache and a 32KB data cache each. The more power efficient A53 cores share a

512KB L2 cache with a 32KB instruction and data caches.
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(a) Maxwell Tegra X1 Archi- (b) Maxwell Streaming
tecture Overview Multiprocessor Architecture

Figure A.1: NVIDIA’s Maxwell GPU Architecture

The Tegra X1 SoC has two Maxwell Streaming Multiprocessors (SMM) with 128 CUDA
Cores (Single Precision Floating Point ALU) each, partitioned into four distinct 32-core
blocks. This organization aligns with the warp size for a more efficient datapath. The tex-

ture/L1 cache memory is shared between each pair while the total amount of shared mem-

ory available is 64KB [36].
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A.2 NVIDIA Tegra X1 Device Specifications

[0] NVIDIA Tegra X1
Compute Capability 53
Max. Threads per Block 1024
Max. Threads per Multiprocessor 2048
Max. Shared Memory per Block 48 KiB
Max. Shared Memory per Multiprocessor 96 KiB
Max. Registers per Block 32768
Max. Registers per Multiprocessor 65536

Max. Grid Dimensions

[ 2147483647, 65535, 65535 ]

Max. Block Dimensions

[ 1024, 1024, 64 ]

Max. Warps per Multiprocessor

64

Max. Blocks per Multiprocessor

32

Half Precision FLOP/s

36.864 GigaFLOP/s

Single Precision FLOP/s

36.864 GigaFLOP/s

Double Precision FLOP/s

1.152 GigaFLOP/s

Number of Multiprocessors 2
Multiprocessor Clock Rate 72 MHz
Concurrent Kernel true

Max IPC 6

Threads per Warp 32

Global Memory Bandwidth 204 MB/s
Global Memory Size 3.901 GiB
Constant Memory Size 64 KiB
L2 Cache Size 256 KiB

Memcpy Engines

1

Figure A.2: TX1 Device Specifications
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