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Abstract

This report describes efforts to model SARS-CoV-2 infection dynamics among un-
dergraduates living on The Ohio State University’s Columbus campus. The model
is simple, yet flexible enough to accommodate changes in behavior over time. Model
parameters are estimated using an approach that utilizes individual results of weekly
SARS-CoV-2 testing of residential undergraduate students. Model output serves sev-
eral purposes, including estimating the effective reproduction number (Rt) and pro-
viding predictions of disease prevalence that can help inform decisions about isolation
and quarantine bed capacity.

1 Overview

The Ohio State University has undertaken a robust testing and contact-tracing program
as part of mitigation and surveillance efforts for COVID-19. Here we describe modeling
efforts to assess intervention efficacy, estimate key quantities such as disease prevalence
and the reproduction number over time, and provide forecasts of cases in the near term.

Some important features of the model are:

• The modeling approach is simple, with basic ‘SEIR’ (Susceptible-Exposed-Infectious-
Removed) compartments in discrete time as the foundation.

• The modeling framework is flexible, allowing for changes in contact patterns,
transmissibility, and social distancing over time.

• Our estimation procedure makes use of individual-level testing data for the on-
campus population (time of last negative and first positive test).

• Statistical estimation allows for uncertainty quantification, and in particular gives
credible bounds for forecasts.

Limitations of the model include:

• The model treats the on-campus population as decoupled from the off-campus
population.
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• Contacts are treated as well-mixed. In particular, we ignore social network struc-
ture and heterogeneity in activity patterns.

The remainder of this report is organized as follows. Section 2 describes the model
formulation. Section 3 describes data sources and our process for integrating the model
with data. Section 4 gives some sample results of the model, including model fit,
model forecasts, and estimates of the effective reproduction number over time. Some
concluding remarks are given in Section 5.

2 Model

The base of our model is a Reed-Frost type SEIR model [1]. We treat residential un-
dergraduate students on OSU’s Columbus campus as a closed, well-mixed population
of known size n. The population is divided into susceptible (S), exposed (E), infec-
tious (I), and removed (R) compartments according to immunological status. Time is
treated as discrete, with units of days. We denote the counts of individuals in different
compartments at time t by St, Et, and It and assume that they evolve according to
the following rules:

• Each pair of one individual from St−1 and one from It−1 has probability βt(n) of
contact, and each individual in St−1 who experiences such a contact is infected
beginning at t,

• Following infection, an individual enters the exposed compartment and remains

there for three days, with E
(j)
t denoting the number of individuals at time t in

the jth day of their exposure period,

• Each infectious individual in It−1 is removed beginning at t with probability
γt(n).

The three day incubation period used here is comparable to but slightly shorter
than the median 5.1 day incubation period reported in [5]. We assume that individuals
in E are not yet infectious, nor are they detectable as infected by RT-PCR testing. By
contrast, individuals in I are both infectious and detectable as infected by RT-PCR
testing. While the time between exposure to detectability is not well established, it is
likely shorter than five days [2, 4], hence our use of three days for the exposed period
here.

Let δt be the daily decrease of susceptibles and εt be the daily decrease of infectious
individuals. Under this rule, we have the following probability laws for the daily incre-
ments of infection δt+1 = − (St+1 − St) and recovery εt+1 = Rt+1 −Rt, respectively:

δt+1|St, It, βt(n), n ∼ Binomial
[
St, 1− (1− βt(n))It

]
εt+1|It, γt(n), n ∼ Binomial [It, γt(n)] .

(1)

Note that recovery here encompasses not only biological clearance of infection, but also
removal from infectiousness due to isolation following positive test, as well as removal
due to quarantine of infected contacts of positive cases.

An important feature of the model is that the transmission parameter βt can poten-
tially change at each time point. The model thus can accommodate behavioral changes
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over time, for example in response to perceived risk of infection, policy changes, week-
end or holiday effects, and more.

Parameters for the model are the transmission rates βt, removal of infectiousness
γt, and initial conditions S0, E0, I0. In the remainder we treat the initial conditions as
fixed, and estimate βt, γt from data.

Given values for St, βt, γt, and n, we have the following expression for the effective
reproduction number at time t:

Rt =
βt
γt

St

n
. (2)

3 Estimation framework

3.1 Survival and hazard functions

The estimation approach builds off of the dynamical survival analysis methods given
in [3]. Specifically, we adapt the methods of [3] for the results of individual-level repeat
testing.

Consider the survival function St that describes the decay of susceptibles over time,
along with its associated hazard function ht. More precisely, St is the probability that
an initially susceptible individual is still susceptible at time t. Define βt(n) = βt/n
when n is assumed to be large (i.e., we have a large population of susceptibles). Define
also γt(n) = γt. Note that by the above discussion the probability that an initially
susceptible individual stays susceptible until t is

St =

t−1∏
s=0

(
1− βs

n

)Is

(3)

and thus the hazard function for a random susceptible being infected in [t, t+ 1] is

ht+1 =
St − St+1

St
= 1− St+1

St
= 1−

(
1− βt

n

)It

≈ βtIt
n
. (4)

By a similar calculation we obtain that the hazard of recovery in the interval [t, t+ 1]
is

gt+1 = γt.

In view of the above we may consider a simplified approximation to (1):

δt+1|St, It, βt, n ∼ Binomial [St, βtIt/n]
εt+1|It, γt, n ∼ Binomial [It, γt] .

(5)

3.2 Testing data and time of infection

Every residential undergraduate on the Columbus campus undergoes weekly SARS-
CoV-2 testing. Thus, for each individual we know

• tneg, the most recent time this individual was known to be susceptible, and

• tpos, the first time this individual was known to be infected.
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Note that it is possible that a particular individual was infected the first time they were
observed, in which case we set tneg = 0. It is also possible that a particular individual
has never been observed to be infected, in which case we set tpos =∞.

Given St, tneg, and tpos, we can find the probability that an individual became
infected on a particular day as follows:

• If tneg = i and tpos = j, then for each i < k ≤ j, the probability that this
individual became infected on day k is

Sk−1 − Sk
Si − Sj

.

• If tneg = 0 and tpos = j, then for each i < k ≤ j, the probability that this
individual became infected on day k is

Sk−1 − Sk
(1− ρ)− Sj

,

where ρ = I0/n.

• If tneg = i and tpos = ∞ and we have observed data until present time T , then
for each i < k ≤ j, the probability that this individual became infected before
time T is

PT :=
Si − ST
Si

.

• Thus, the probability this individual became infected on day i < k ≤ T is

PT
Sk−1 − Sk
Si − ST

. (6)

3.3 Parameter estimation algorithm

We use an iterative process to estimate the model parameters. Following initialization,
the process uses the current prevalence estimate to compute the survival function (3).
The survival function and individual interval censored testing data are then used to
compute daily incidence, which is then used to update the prevalence estimate. We
assume that exposed individuals remain exposed for m = 3 days before moving to

the I compartment, and let E
(j)
t contain individuals on their jth day of exposure.

Specifically, we use the following Gibbs Sampler to estimate model parameters:

1. Initiate St, (βt)Tt=1, (γt)
T
t=1, I0 = 1, E

(1)
0 = E

(2)
0 = E

(3)
0 = 1, S0 = n− 4.

2. Given St and the data, draw the (δt)
T
t=1 using the probabilities described in (6).

3. Given (δt)
T
t=1 and (γt)

T
t=1, draw (εt)

T
t=1 and compute (It)

T
t=1, (St)

T
t=1, and (E

(j)
t )Tt=1

for j = 1 . . . 3 using
ε1 ∼ Bin(I0, γ1),

εt ∼ Bin

(
I0 + E

(3)
0 +

t−1∑
i=1

(
E

(3)
i − εi

)
, γt

)
when t = 2 . . . T.
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It = I0 + E
(3)
0 +

t∑
i=1

(
E

(3)
i − εi

)
,

St = S0 −
t∑

i=1

δi,

E
(3)
t = E

(2)
t−1,

E
(2)
t = E

(1)
t−1,

E
(1)
t = δt,

for each t = 1 . . . T .

4. Update (βt)
T
t=1 by drawing βtIt/n ∼ Beta(δt + 1, St−1 − δt + 1).

5. Update (γt)
T
t=1 by drawing γt ∼ Beta(εt + 1, It−1 − εt + 1).

6. Given (βt)
T
t=1 and (It)

T
t=1, update St using (3).

7. Go to step 2.

Note that the updating (βt)
T
t=1 and (γt)

T
t=1 here uses a Beta-Binomial conjugate

prior model. For the transmission parameters βt we use an uninformative prior Beta(1,1).
For recovery parameter γt we use a prior of Beta(3,6), reflecting time from test result
to isolation.

The estimation scheme yields posterior samples for St, (βt)Tt=1, (γt)
T
t=1, (δt)

T
t=1, (ε)

T
t=1, (It)

T
t=1,

and (St)
T
t=1.

3.4 Testing gaps and backfill

Two challenges with the data are testing gaps and ‘backfill’.
Weekly testing is conducted via sign-up slots, typically available Monday through

Thursday. Little to no testing is done on Friday, Saturday, or Sunday, thus leaving
gaps in the testing data. We addressed gaps by treating the day before a gap, the gap
itself, and the day after the gap as a single time period and using St to estimate the
number of infections that should fall in this time period, rather than each day of this
time period. We then distribute the infections in the time period over the individual
days uniformly. An example of such a period is 9/5-9/8. We first use St to estimate the
number of infections in the four day period 9/5-9/8, then distribute them uniformly
over those 4 days when updating (δt)

T
t=1.

An additional challenge is the so-called backfill problem, which is a well-known
challenge in fitting epidemic models. Because there is a delay between when individuals
become infected and when they are observed to be infected (i.e. test positive), we have
only a fraction of the information about the most recent days on which we have data.
A standard solution, which we implement here, is to use data up to time T but only fit
the model to some earlier time T − s. Here we fit the model until time T − 4 and use
the forward prediction method outlined above to generate counts for T −3, . . . T . Note
that there is an additional two to three day delay from when tests are administered to
when the results are available, so that in practice there is typically a six or seven day
lag between the current date and dates for which parameter estimates can be made.
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4 Results

In this section we show results for model fits in terms of on-campus prevalence together
with estimates for the effective reproduction number over time (Section 4.1). We also
show forward predictions of the model, together with observed on-campus positivity
for comparison (Section 4.2).

4.1 Model fits and effective reproduction number

Figure 1: Model trajectories for on-campus prevalence It/n based upon tests administered
from 8/17/2020 through 9/18/2020. Circles correspond to empirically observed positivity.
Lines correspond to 10%, 25%, 50%, 75%, and 90% model quantiles.

Model trajectories for on-campus prevalence based upon fits to Vault testing data
through September 18, 2020 are shown in Figure 1. Estimates for the effective repro-
duction number over time from tests administered from August 17 to September 25,
2020 are shown in Figure 2.

4.2 Model predictions

Because βt and γt are allowed to vary each day, in order to predict forward in time,
it is necessary to make some assumptions. For βt, we average the values of (βt)

T
T−6

for the most recent seven days for each posterior sample, and use the quantiles of the
resulting distribution as assumed future values of βt to generate the model quantiles.
For γt, we use an informative prior based on the testing and contact tracing scheme by
which potentially infected individuals are isolated. Since Vault Health has usually
not tested on the weekends, we include a weekend effect that sets the prior for γt to
Beta(2, 14) on weekends.
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Figure 2: Estimates for the effective reproduction number Rt over time, from model fits
using tests administered from 8/17/2020 to 9/25/2020. Lines correspond to 10%, 25%,
50%, 75%, and 90% quantiles of the posterior Rt distribution.

Forward predictions are obtained by running the process forward in time using the
rules outlined in section 1, using as a starting point the state of the process in each
posterior sample and βt and γt as described above. We then take empirical quantiles of
the forward time simulation of the process as the range of predicted outcomes. Forward
predictions based upon tests administered from August 17 to September 18, 2020 are
shown in Figure 3.

5 Conclusions

The model fits given in Section 4 appear reasonable, as is agreement between forward
predictions from the model with the observed positivity on campus. We note that abil-
ity of the model to fit the testing data might be expected, as we allow the transmission
βt and recovery γt parameters to vary with time. However, the model does not have
an excess of parameters compared with data, as the individual test results are used
in the estimation. For example, one week of testing adds on the order of 12,000 data
points used for parameter estimation. Additionally, over-fitting in the model would
be expected to lead to poor forward predictions, whereas agreement between forward
predictions and the data to this point has been good.

Despite its flexibility, there are nonetheless structural limitations to the model,
including the absence of importation of infection from outside of the residential un-
dergraduate population. Mixing with students living off-campus or the surrounding
non-university community, for example, is not included in this model. Because of this,
caution should be used in interpreting Rt estimates when prevalence is low. For ex-
ample, steady low-level importation of cases could make Rt appear to be around one,
despite their being little transmission within the residential undergraduate community.
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Figure 3: The predicted trajectory of the epidemic, based upon model fits from tests
administered from 8/17/2020 to 9/18/2020. Different colors denote different quantiles for
model output. Circles denote observed on-campus Vault positivity.

Additional work is needed examining SARS-CoV-2 dynamics in the off-campus student
population, and the interaction between off-campus and on-campus students.
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