ECE 2300

Electronics Circuits
and
Electronics Devices Laboratory

Gregg Chapman

Laboratory 1

Resistor Networks

Background

- Series and Parallel Resistor Combinations
- Ohm's Law
- Kirchoff Voltage Law
- Kirchoff Current Law
- Voltage Divider
- Current Divider

Screencast: 0:14

Ohm's Law

Ohms Law:

```
V = I*R (volts = amps*ohms)
```

Power in a Resistor

- 1. **P = V*I** (watts = volts * amps)
- 2. $P = V^2 / R$
- 3. $P = I^{2} R$

Screencast: 0:30

Kirchoff Laws

• Kirchoff Current Law:

The sum of currents in and out of any circuit node must equal zero.

•Kirchoff Voltage Law:

The sum of voltages in any closed circuit loop must be equal to zero.

Screencast: 0:55

Voltage Divider

$$V_{out} = V_{in} * \frac{R_2}{R_1 + R_2}$$

Current Divider

$$I_1 = I_{in} \frac{R_2}{R_1 + R_2}$$
 $I_2 = I_{in} \frac{R_1}{R_1 + R_2}$

Screencast: 2:19

Lab Supplies

- Resistors
 - 1 each of:

402 Ohm

499 Ohm

806 Ohm

1 Kilo-Ohm

2 Kilo-Ohm

4.99 Kilo-Ohm

10 Kilo-Ohm

• 2 each of: 100 Ohm

Some kits have a typo on Parts List. The 100 Ohm resistor should be **Brn-Blk-Blk-Blk-Brn**

Screencast: 2:56

1% Resistor Code

COLOR	1st BAND	2nd BAND	3rd B AND	MULTIPLIER	TOLERA	NCE	
Black	0	0	0	1Ω			
Brown	1	1	1	10Ω	± 1%	(H)	
Red	2	2	2	100Ω	± 2%	(G)	
Orange	3	3	3	1ΚΩ			
Yellow	4	4	4	10KΩ			
Green	5	5	5	100ΚΩ	±0.5%	(D)	
Blue	6	6	6	1ΜΩ	±0.25%	(C)	
Violet	7	7	7	10ΜΩ	±0.10%	(B)	
Grey	8	8	8		±0.05%		
White	9	9	9				
Gold				0.1	± 5%	(0)	
Silver				0.01	± 10%	(K)	
0.1%, 0.25%, 0.5%, 1% 237Ω± 1% 5-Band-Code							

Screencast: 3:10

Resistor Code

Examples:

1. Brown-Black-Black-Orange-Brown 100 KiloOhms Ohms 1% $100 \times 10^3 = 100 \times 1000 = 100,000$

- 2. Brown-Green-Black-Black-Brown 150 Ohms 1%
- 3. Red-Red-Blue-Red-Brown 22.6 KiloOhms 1%
- 4. Green-Blue-Orange-Gold 56 KiloOhms 5% $56 \times 10^{3} = 56 \times 1000 = 56000$

Do not confuse with Scientific Notation. There is no decimal point!

Screencast: 4:01

Test Set-up

- Breadboard
- Digital Multi-meter
- Mini grabbers
 - 2 red
 - 2 black

Screencast: 6:04

Easy Clips or Mini-Grabbers

Screencast: 6:17

The Breadboard

Handheld Digital Multimeter Fluke 117

Screencast: 7:45

Circuits

- Series Resistors
- Parallel Resistors and Current Divider
- Voltage Divider
- Resistor Network

Screencast: 7:55

Series Resistance

Resistors add in series

Screencast: 8:19

Parallel Resistance

$$R_{total} = \frac{R_3 * R_4}{R_3 + R_4} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4}}$$

Screencast: 8:26

Current Divider

Voltage Divider

$$V_{out} = +12V * \frac{R_6}{R_5 + R_6}$$

Screencast: 9:47

Screencast: 10.01

Thevenin Equivalent Circuit

Measurements

• Resistance - measured across resistor (in parallel)

Measurements

DC Voltage - measured in parallel

Measurements

DC Current – measured in series (you must insert the meter into the circuit)

Results

Laboratory 1

Circuit	Parameter	Calculated Value	Measured Value
Series Resistance	Total Resistance		
Parallel Resistance	Total Resistance		
	Input Current		
Current Divider	Current in R3		
	Current in R4		
Voltage Divider	Output Voltage		
	Total Resistance		
	Output Voltage		
	Voltage at Node 1		
	Voltage at Node 2		
	Current in R7		
	Current in R8		
Resistor Network	Current in R9		
	Current in R10		
	Current in R11		
	Current in R12		
	Voltage Across R7		
	Voltage Across R8		
	Voltage Across R9		
	Voltage Across R10		
	Voltage Across R11		
	Voltage Across R12		