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Abstract 
Large-scale high-resolution estimation of snow water equivalent (SWE) in mountainous areas is 
challenging. Two approaches currently deployable at continental scale are SWE reconstruction 
and regional climate model (RCM) simulation. Here, we present a method that produces a 
simultaneous estimate of daily mass and energy balances at 500 m resolution, including SWE 
timeseries, informed by RCMs and constrained by observations in a way similar to SWE 
reconstruction. We formulate this as a constrained optimization problem; we seek to minimize 
the difference between our estimates and observed MODIS snow-covered fraction (SCF) and 
CERES irradiance, as well as RCM SWE from 3-km Weather Research and Forecasting (WRF) 
model simulations, subject to mass and energy balances constraints. This problem is readily 
solved using off-the shelf software. We compute Tuolumne watershed SWE (where it flows into 
the Hetch Hetchy reservoir: 775 km2 or 3,612 MODIS pixels) in the Sierra Nevada, USA for 
water year 2009, a year with average snow accumulation. We validate against snow pillows and 
snow course data. We find that the SCF and irradiance observations constrain the WRF 
estimates significantly, with final RMSE of 66 mm and 98 mm at two snow pillows within the 
watershed, about 15% of peak SWE. Across the watershed, the total SWE volume estimated by 
our algorithm (0.34 km3) compared well to high-resolution (90 m) SWE reconstruction (0.38 
km3), while WRF alone was too high (0.45 km3). Our method represents a compromise, 
leveraging the beneficial qualities of both RCMs and reconstruction, and producing a 
simultaneous estimate of mass and energy fluxes and storages applicable to mountain regions.    
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1 Introduction 
Earth’s mountains cover 30 million km2, or 23% of global land (Fig. 1), and are water towers for 
major population centers (Viviroli et al., 2007). However, current estimates of water and energy 
balance suffer from poor representation of complex mountainous terrain. Existing global water 
and energy balance estimates typically do not accurately resolve mountain water and energy 
processes, leading to significant biases in some cases.  For example, Wrzesien et al. (2018) 
estimated that long-term average peak snow water equivalent (SWE) integrated across North 
American mountains is nearly three times greater than estimates from available global datasets. 
Presuming such underestimation exists in global estimates, these errors will result in the following 
issues: runoff will come too early, too much solar irradiance will be absorbed, and sensible heat 
flux and convective precipitation will be overestimated. 

RCMs such as WRF have demonstrated remarkable accuracy in simulating mountain 
precipitation and SWE (e.g. Hughes et al., 2017; Rasmussen et al. 2011), due in part to recent 
developments in snowflake hydrometeor shape for modeling snowfall (e.g. Thompson et al., 
2008). A considerable number of studies have found that WRF simulations at spatial resolutions 
less than 10 km reliably estimate precipitation (Warrach-Sagi et al., 2013; Qian et al., 2010; 
Currier et al., 2017; Hughes et al. 2017; Rasmussen et al. 2017). WRF coupled with the Noah-
MP hydrological model (Niu et al., 2011) also accurately estimates snow cover and SWE 
dynamics (Rasmussen et al., 2011; Pavelsky et al., 2011; Jin and Wen, 2012; Wrzesien et al., 
2015). Wrzesien et al. (2017) demonstrated that WRF reproduced the total SWS over the entire 
Sierra Nevada mountain range with reasonable accuracy (Fig. 5). Thus, a consensus has begun to 
develop that RCMs show enough skill to reproduce reasonable patterns of SWE in mountain 
terrain (Ikeda et al., 2010; Jin and Wen, 2012; Minder et al., 2016). 

RCMs are far from infallible: we here highlight two challenges. First is spatial resolution: 
Wrzesien et al. (2018) produced estimates across North American mountains at 9 km, because 
runs at 3 km were too resource-intensive. Secondly, WRF developers have focused on 
precipitation accuracy more than on energy balance. Lapo et al. (2017) found satellite 
observations consistently outperform WRF estimates of incoming solar irradiance in California. 
Among future efforts suggested in a recent survey of WRF development are improvements in 
energy cycle representation (Powers et al., 2017). 

In this paper, we constrain WRF with two types of remote sensing observations: MODIS snow 
covered-fraction (SCF) and CERES Syn radiation in order to estimate snow water equivalent 
(SWE). We refer to this method, not previously presented, as mass-and-energy constrained 
optimization (MECO). We test MECO SWE estimates by validating them against in situ data 
along with the Sierra Nevada Snow Reanalysis (SNSR) of Margulis et al. (2016). We demonstrate 
that this method is deployable at scale, and could thus be used to produce a new estimate of 
water and energy balance in global mountains. 

2 Datasets used 
• WRFv3.6 with Noah-MP model simulations: 3 km resolution, forced by NARR at 

boundary conditions. Datasets from Wrzesien et al. (2017). 
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• SCF: MODIS Snow Covered Area and Grain Size (MODSCAG: Painter et al., 2009).  

• 𝑅"↓ and 𝑅$↓ : CERES Synoptic: hourly, 1° resolution: Rutan et al. (2015). 

• In situ data: the CA DWR snow surveys and snow pillows, after QA/QC, as described by 
Lundquist et al. (2016). 

• 90 m SWE estimates from UCLA Margulis group Sierra Nevada Snow Reanalysis 
(SNSR): Margulis et al. (2016). 

3 Methods 
We use the HPC language Julia (Bezanon et al., 2017) to solve the following mass-and-energy 
constrained optimization problem: 
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where 𝑅"↓, 𝑅$↓, and 𝑅$↑ are the (surface) downwelling shortwave, upwelling longwave and 
downwelling longwave respectively, 𝛼 is albedo, 𝜌 is water density, 𝐿 is latent heat of 
vaporization, 𝐿𝐸 is latent heat flux, 𝐻 is sensible heat flux, 𝑃 is precipitation, and 𝑄 is runoff; the 
vector 𝑥 represents the MECO estimate of SWE, SCF, 𝑃, 𝑅$↑ , 𝐻, and 𝐸, σ represents 
uncertainty, and the overline denotes either WRF or observed estimate, respectively. CERES 𝑅"↓ 
and 𝑅$↓ and WRF 𝛼 are taken as given. Forest impacts will be considered in future versions.  

We use Julia, a new open source language for scientific computing designed for high 
performance computing (Bezanson et al., 2017). The “ForwardDiff” (Revels et al., 2016) and 
Julia for Mathematical Optimization (JuMP) (Lubin and Dunning, 2015), and the interior point 
line-search algorithm “Ipopt” (Biegler and Zavala, 2009) packages are used to provide automated 
differentiation tools and fast solvers to compute optimal estimates.  

 We analyze each pixel independently, so analysis can take maximum advantage of multiple 
computing cores. MECO is computed on the ~500 m MODIS grid, to which all algorithm 
inputs are scaled, including CERES Syn. We include SCF as a variable and relate it to SWE 
using the Noah-MP snow depletion curve. 

4 Results 
Fig. 1 shows results from a simplified version of the algorithm and a subset of the proposed 
observations: MODSCAG snow cover (Fig 1c) and CERES Syn 𝑅"↓ and 𝑅$↓. We tested with WRF 
3 km model runs of Wrzesien et al. (2017) for the Tuolomne watershed where it flows into 
Hetch-Hetchy (775 km2; 3,612 MODIS pixels) and compared to in situ validation data of 
Lundquist et al. (2016). Constrained by CERES 𝑅"↓ and 𝑅$↓, algorithm estimates of net radiative 
flux are lower than WRF (Fig 10d). At both TUM and DAN, the algorithm accurately estimates 
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SWE (RMSE of 66 mm and 98 mm, respectively) despite significant WRF overestimation at 
TUM.  

 

Figure 1. Example results from the proposed data merger algorithm: MODIS snow cover (c) 
and CERES (d) constrain SWE timeseries for two MODIS pixels (a and b) in the Tuolomne 
watershed. 

We also compared spatial results (Fig. 2) to the independent SNSR SWE (Margulis et al., 2016) 
on March 1, 2009. The merged estimate matches SNSR total SWS and spatial pattern (note that 
SNSR is ~100 m resolution) better than does WRF. 

Algorithm run-times benchmarked on the Owens Ohio Supercomputer (OSC) cluster took ~45 
seconds each on a single processor. No effort was yet made to optimize Julia code performance in 
any way; e.g. we have only tried a single algorithm, and have not yet consulted with computing 
experts. Given the additional speedup expected, and the need to solve for additional variables, 
we expect the runs to take approximately 1 minute per pixel. For global mountains, for three 
years each range, we estimate a total computational cost of 6 million core hours, aside from WRF 
run time. 
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Figure 2. Example algorithm results for Tuolomne watershed: Algorithm inputs include WRF 
SWE (a) and MODIS SCF (b). Merged SWE (c) compares well to SNSR SWE (d). Total SWS 
(km3) is shown in a, c, d. 

5 Conclusions 
We here demonstrate MECO, a new method for estimating SWE based on WRF, MODIS, and 
CERES Syn data. It compares well with in situ SWE estimates, as well as to a high-resolution 
reanalysis. It is 500 m spatial resolution, while the WRF output it drew from was at 3 km. It is 
scalable, and could be depolyed globally to better constrain global SWE estimates. 
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