

ISE 7200 Advanced Nonlinear Optimization

This is not an Advanced Nonlinear Optimization class, but an Introductory Nonlinear Optimization class.

What you should necessarily know:

- "Prereq.:
 - Calculus,
 - linear algebra,
 - computer programming, and an
 - introductory optimization course, or
 - permission of instructor.

"

• • •

What you should necessarily know:

If you have not taken an introductory optimization course,

you do not have my permission to enroll!

What you should necessarily know:

- Linear programming
- Duality in linear programming
- Sensitivity in linear programming

Instructor

Prof. Antonio J. Conejo 286 Baker Systems conejonavarro.1@osu.edu

Textbook

David G. Luenberger, Yinyu Ye.

"Linear and Nonlinear Programming,"

Third Edition, Springer, New York, 2008.

Available as an e-book from OSU libraries: <u>http://osu.worldcat.org/title/linear-and-nonlinear-</u> programming/oclc/272298748&referer=brief_results

Other book

E. Castillo, A. J. Conejo, et al.

Building and Solving Mathematical Programming

Models in Engineering and Science

John Wiley & Sons, Inc., 2001

Check it in the Eighteenth Avenue Library!

Office hours

Prof. Antonio J. Conejo Wednesdays 1:00PM - 3:00PM, and by appointment: <u>conejonavarro.1@osu.edu</u> 286 Baker Systems

Grading

- Four homeworks: 40% (10% each)
- Final exam (open books, no electronic devices , no calculators of any type): 50%
- Class participation: 10%

Grading

No "A" inflation!!!

Grading

- Each one of the four homeworks is like a "take-home" exam!
- No late homeworks, please.
- Hand in: at the beginning of the class, in paper, as indicated in class.
- Each homework needs to be presented in class!

Exams

Final Exam: Thursday Apr 27, 2:00PM - 3:45PM, Baker Systems 272

Key element for A+++

- Introduction
 - Optimization problems
 - Convex sets and convex functions
 - Local minima and global minima

- Optimality conditions for Unconstrained Problems (UP)
 - First order necessary conditions
 - Second order sufficient conditions
- Optimality conditions for Equality Constrained Problems (ECP)
 - Regularity
 - First order necessary conditions
 - Second order sufficient conditions
- Optimality conditions for Inequality Constrained Problems (ICP)
 - First order necessary conditions
 - Second order sufficient conditions
- Optimality conditions for Equality and Inequality Constrained Problems (EICP)
 - First order necessary conditions
 - Second order sufficient conditions

- Complementarity
 - Equilibria
 - Bi-level models
 - Equilibria of bi-level models
- Line search
 - Direct solution
 - Quadratic interpolation
 - Others

- Iterative algorithms to solve UPs
 - Steepest-decent
 - Newton
 - Quasi-Newton
 - Coordinate-descent
- Iterative algorithms to solve ECPs
 - Penalty
 - Multipliers
- Iterative algorithms to solve ICPs
 - Barrier
 - Multipliers
- Iterative algorithms to solve EICPs
 - Penalty and Barrier
 - Multipliers

Software

Octave: www.gnu.org/software/octave/

Software

GAMS: <u>www.gams.com</u>

Software

- We will do lab work at class
- If possible, bring your laptop to class
- No cell phones, please

I hope you will enjoy this course!