Akira Yasuhara (Waseda University)
We develop a calculus for diagrams of knotted objects. We define arrow presentations, which encode the crossing information of a diagram into arrows in a way somewhat similar to Gauss diagrams, and more generally w–tree presentations, which can be seen as “higher-order Gauss diagrams”. This arrow calculus is used to develop an analogue of Habiro’s clasper theory for welded knotted objects, which contain classical link diagrams as a subset. This provides a “realization” of Polyak’s algebra of arrow diagrams at the welded level, and leads to a characterization of finite- type invariants of welded knots and long knots. This is a joint work with Jean-Baptiste Meilhan (University of Grenoble Alpes).