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Summary

Political ideologies summarize dimensions of life that

define how a person organizes their public and pri-
vate behavior, including their attitudes associated with

sex, family, education, and personal autonomy [1, 2].
Despite the abstract nature of such sensibilities, funda-

mental features of political ideology have been found

to be deeply connected to basic biological mechanisms
[3–7] that may serve to defend against environmental

challenges like contamination and physical threat [8–12].
These results invite the provocative claim that neural

responses to nonpolitical stimuli (like contaminated
food or physical threats) should be highly predictive

of abstract political opinions (like attitudes toward gun
control and abortion) [13]. We applied a machine-

learning method to fMRI data to test the hypotheses that
brain responses to emotionally evocative images predict

individual scores on a standard political ideology assay.
Disgusting images, especially those related to animal-

reminder disgust (e.g., mutilated body), generate neural
responses that are highly predictive of political orientation

even though these neural predictors do not agree with
participants’ conscious rating of the stimuli. Images

from other affective categories do not support such
predictions. Remarkably, brain responses to a single

disgusting stimulus were sufficient to make accurate pre-
dictions about an individual subject’s political ideology.

These results provide strong support for the idea that
fundamental neural processing differences that emerge

under the challenge of emotionally evocative stimuli may
serve to structure political beliefs in ways formerly

unappreciated.
*Correspondence: read@vt.edu

This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
Results

We carried out a passive picture-viewing experiment to test
the hypothesis that nonpolitical but affectively evocative
images elicit brain responses that predict political ideology
as assessed by a standard political ideology measure. Healthy
volunteers (n = 83) were instructed to look at presented pic-
tures while lying in the scanner, and, to control for attentive-
ness, we instructed them to press a button when a fixation
cross appeared on the screen (Figure 1). Imageswere sampled
from the International Affective Pictures database [14] and
included disgusting, threatening, pleasant, and neutral images
(see Appendix S1 available online). Each emotional condition
had two subconditions (see the Supplemental Experimental
Procedures). After the fMRI session, participants completed
a behavioral rating session in which they rated all pictures
they had seen in the scanner (using a nine-point Likert scale)
as disgusting, threatening, or pleasant. Lastly, participants
filled out computer-based questionnaires assessing their
political attitudes, disgust sensitivity, and state/trait anxiety
level. See the Supplemental Experimental Procedures for de-
tails of the behavioral rating and survey sessions.
Political ideology was summed from several survey items

(Appendix S2), including ideological position, partisan affilia-
tion, and policy preferences (e.g., gun control and immigration,
presented in the well-known Wilson-Patterson format [15]).
Survey items on political ideology were normalized continu-
ously from 0 (extremely liberal) to 1 (extremely conservative)
(see the Supplemental Experimental Procedures). Figure 2A
shows its distribution across all participants. Political attitudes
and interest did not show a significant linear relationship
[r(81) = 20.148, p = 0.182], but instead showed a U-shaped
curve (Figure S1A), indicating that greater political interest is
associated with polarized political attitudes. When tested on
a subset of participants, our measure of political attitudes
shows excellent test-retest reliability (test-retest Pearson
correlation coefficient = 0.952; Figure 2B). To focus our ana-
lyses on polarized political groups, we divided participants
into three groups based on their political ideology scores
(Table S1): liberal (n = 28), moderate (n = 27), and conservative
(n = 28).
As seen in Figure 2C, groups did not significantly differ in

subjective ratings of disgusting, threatening, or pleasant pic-
tures (also see Table S2). Also, there were no significant group
differences on self-report measures except that the conserva-
tive group had marginally higher disgust sensitivity than the
liberal group [t(54) = 1.711, p = 0.093; Figure S1B and Table
S1]. Note that emotional states can be implicit or noncon-
scious under some conditions [16]. Self-report measures
may fail to detect some individual differences in disgust sensi-
tivity [17].
Having characterized liberal and conservative groups

behaviorally and confirmed blood-oxygen-level dependent
(BOLD) responses to affective pictures (Figure S2 and Table
S3), we used a machine-learning approach to predict individ-
ual differences in political orientation from the patterns of
whole-brain BOLD responses. Specifically, we applied a
penalized regression method called the elastic net [18] to
our fMRI data (Figures 2D and S3 and the Supplemental
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Figure 1. Time Course of the Experiment

Each subject first participated in an affective

picture-viewing task in the fMRI scanner, during

which they viewed 80 color pictures (20

disgusting, 20 threatening, 20 pleasant, and 20

neutral pictures). Occasionally, a fixation cross

appeared on the screen, and participants were

asked to press a button as soon as they saw the

cross. Each picture was presented for 4 s, and

the fixation crosswas presented until participants

pressed a button. The mean intertrial interval (ITI)

was 10 s. Next, participants completed a behav-

ioral rating session and several computerized

surveys (see the Supplemental Experimental Pro-

cedures). See also Figure S1.
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Experimental Procedures). The elastic net algorithm offers
several advantages for fMRI data, including automatic variable
selection (i.e., regression coefficients of unimportant variables
[voxels] shrink to zero) and model regularization, which in-
creases the interpretability of the findings. The elastic
net also enjoys a grouping effect, which clusters highly corre-
lated predictors into a set of groups. The grouping effect is
useful for fMRI data because they contain many correlated
predictors (voxels) due to its inherent nature (i.e., a brain region
may consist of many voxels) and spatial smoothing, which is
a commonly used preprocessing step. Previous studies
demonstrated that the elastic net performs better than least
absolute shrinkage and selection operator (LASSO), especially
when the number of predictors is much higher than the
number of observations [18]. The elastic net is beginning to
be applied to fMRI data [19, 20] and appears to be a promising
tool for developing predictive models from neuroimaging
(and other types of) data. Using the elastic net algorithm
(penalized logistic regression analysis) and contrast maps
([disgusting > neutral], [threatening > neutral], or [pleasant >
neutral]), we probed brain regions critical for cross-validated
classification accuracy (liberal versus conservative groups;
see the Supplemental Experimental Procedures).

Figure 3A shows a network of brain regions predicting con-
servative and liberal group membership revealed by the
machine-learning method with the [disgusting > neutral]
contrast. Separate tests for the out-of-sample performance
confirmed the robustness of the findings (Figure 3B and the
Supplemental Experimental Procedures). No voxel survived
cross-validations on other contrasts. Red-to-yellow and
blue-to-green regions indicate voxels predicting conservative
and liberal groups, respectively. As seen in Figure 3A, conser-
vative group membership was predicted by increases in the
basal ganglia (peak MNI = [16, 8, 28], k = 234)/thalamus
(peak MNI = [20, 218, 6])/periaqueductal gray (PAG; peak
MNI = [10, 224, 212]/hippocampus (peak MNI = [214, 24,
214])/amygdala (peakMNI = [218,24,214]), dorsolateral pre-
frontal cortex (DLPFC; peakMNI = [244, 4, 52], k = 26), middle/
superior temporal gyrus (MTG/STG; peak MNI = [260,244, 6],
k = 33), presupplementary motor area (pre-SMA; peak MNI =
[24, 8, 56], k = 56), fusiform gyrus (FFG; peak MNI = [242,
252, 210], k = 24 in the left side and [42, 260, 210], k = 16
in the right side), and inferior frontal gyrus (IFG; peak MNI =
[52, 28, 4], k = 15). The increase in the secondary somatosen-
sory cortex (S2)/posterior insula (peak MNI = [240, 226, 19])/
inferior parietal lobule (IPL; peak MNI = [248, 240, 36], k =
125 in the left side and [48, 252, 54], k = 17 in the right side),
frontal insula (MNI = [40, 16,212], k = 19), and precentral gyrus
(peak MNI = [238, 212, 50], k = 25 in the left sid and [40, 212,
52], k = 13 in the right side) predicted liberal group member-
ship. Note that the group differences using the traditional gen-
eral linear modeling (GLM) revealed similar findings with some
differences (Figure S2D, Table S4, and the Supplemental
Experimental Procedures). The mean area under the curve
(AUC) of the receiver-operating characteristic (ROC) curve
was 0.981 (SD = 0.043). See the Supplemental Experimental
Procedures and Figure S4 for more details and additional re-
sults using penalized linear regression across all participants.
When we examined the prediction accuracy of each disgust
subcondition (core/contamination and animal reminder), only
animal-reminder disgust (e.g., mutilated body) was a strong
predictor of political attitudes (Figure 3C; mean AUC = 0.998,
SD = 0.003 for animal reminder; mean AUC = 0.548, SD =
0.125 for core/contamination).
Recent work suggests that BOLD time-series data from a

single stimulus can categorically differentiate healthy individ-
uals from those diagnosed with autism spectrum disorder
(unpublished data). Lu et al. applied a machine-learning
approach to time-series data from a specific region of interest
and demonstrated that single-stimulus brain responses to a
specific kind of stimulus could be used to make accurate cat-
egorical predictions of disorder status. We tested the hypoth-
esis that a single-stimulus measurement combined with a
machine-learning approach may contain enough information
to predict liberal and conservative groupmembership per indi-
vidual participant. Following Lu et al., we extracted the entire
BOLD time-series response to the first disgusting picture.
Time-series data every 2 s were spatially averaged within
each of two types of patterns shown in Figure 3A: (+) voxels
(red-to-yellow regions predicting conservative group) and
(2) voxels (blue-to-green regions predicting liberal group)
(see the Supplemental Experimental Procedures).
As seen in Figure 4A, the single-stimulus presentation of the

disgusting pictures reliably differentiated the conservative and
liberal groups in the (+) voxels. The hemodynamic response of
the conservative group had a steeper slope and a higher peak
than that of the liberal group. The mean AUC of the ROC curve
using the single-stimulus presentation was 0.845 (SD = 0.009;
Figure 4B). When we used each region of interest within the (+)
voxels for the same analysis (Figure 4C), the thalamus (mean
AUC = 0.816, SD = 0.023) and the DLPFC (mean AUC =
0.807, SD = 0.018) were the strongest predictive regions,
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Figure 2. Behavioral Results and an Illustration of Workflow for Penalized Regression Analysis

(A) Distribution of political attitudes (orientation). Political attitudes are scaled from 0 (extremely liberal) to 1 (extremely conservative) (mean = 0.500, SD =

0.225). We divided participants (n = 83) into three groups (liberal [n = 28], moderate [n = 27], and conservative [n = 28]) based on their political attitudes. Red

dotted lines indicate tertiles (33.3% and 66.6%).

(B) Test-retest reliability of political attitudes. The Pearson correlation coefficient is 0.952, p < 2.23 10216, and the robust correlation coefficient is 0.986, p <

2.0 3 10216.

(C) Subjective ratings of emotional pictures for each group. Error bars indicate 61 SE.

(D) Schematic illustration of workflow for amachine-learning (penalized-regression) model. A 10-fold cross-validation is used to estimate two tuning param-

eters of the elastic net model. The survival rate was projected back into the brain space (see the Supplemental Experimental Procedures and Figure S3A).

See also Figure S3.
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followed by the basal ganglia (mean AUC = 0.789, SD = 0.005),
FFG (mean AUC = 0.764, SD = 0.047), pre-SMA (mean AUC =
0.733, SD = 0.044), amygdala/hippocampus (mean AUC =
0.721, SD = 0.079), PAG (mean AUC = 0.662, SD = 0.100),
andMTG/STG (mean AUC = 0.654, SD = 0.105). While increase
in the (2) voxels predicted liberal group membership with full
data, none of the BOLD time-series data from the (2) voxels
survived using the single-stimulus analysis.

Discussion

Neuroscience has started to provide rich information about the
neurophysiological processes underlying political behavior.
Our results have important implications for the links between
biology, emotions, political ideology, and human nature more
fundamentally. While previous studies using skin conductance
response [9–11], neuroimaging [21–24], and questionnaire [25,
26] measures suggested the role of emotions in political atti-
tudes, to our knowledge, this is the first fMRI study revealing
multivariate patterns of brain activity that differ between lib-
erals and conservatives during emotional processing of sen-
sory stimuli. Accumulating evidence suggests that cognition
and emotion are deeply intertwined [27], and a view of segre-
gating cognition and emotion is becoming obsolete [28].
People tend to think that their political views are purely cogni-
tive (i.e., rational). However, our results further support the
notion that emotional processes are tightly coupled to com-
plex and high-dimensional human belief systems [13], and
such emotional processes might play a much larger role than
we currently believe, possibly outside our awareness of its
influence [29]. Despite growing evidence from various fields,
including genetics, cognitive neuroscience, and psychology,
many political scientists remain skeptical of research connect-
ing biological factors with political ideology, arguing variously
that biology is irrelevant to central political questions [30], that
the theoretical basis for expecting biology to be relevant is
weak and murky [31], that acknowledging a role for biology
is reductionist [32], and that recognizing the relevance of
biology to human beliefs and behaviors is potentially
dangerous [33]. We hope some of this skepticism can be alle-
viated from our demonstration that fMRI data, even from a
single stimulus, can serve as a strong predictor of political
ideology.
Several groups have suggested that people are born with

certain dispositions and traits that influence the formation of
their political beliefs [3, 4]. Also, several studies have shown
that life history (e.g., [34]) and traumatic experiences [35] can
affect political views. Our results are consistent with the idea
that political beliefs are connected to neurobiological compo-
sition. But both genetics and life history play an important role
in establishing both connections between neuroanatomical re-
gions and the propensity for these regions to respond to envi-
ronmental stimuli. We have not isolated the distinct roles
played by genetics and life history in the development of the
brain responses that we measured.
A wide range of brain regions contributed to the prediction

of political ideology (Figure 3A), including those known from
past work to be involved in the processing and interoception
of disgust and other stimuli with negative affective valence,
but also those involved in more basic aspects of attentive
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Figure 3. Multivariate Patterns of Brain Activity that Predict Political Ideology

(A) Voxels predicting conservative (red-to-yellow) or liberal (blue-to-green) group membership from penalized logistic regression analysis (cluster size,

k R 10). Survival rate is closely related to voxel (regression) weights (see Figure S3B). DLPFC, dorsolateral prefrontal cortex; pre-SMA, presupplementary

motor area; Str, striatum; GP, globus pallidus; HIPP, hippocampus; AMYG, amygdala; MTG/STG,middle/superior temporal gyrus; IFG, inferior frontal gyrus;

S2, secondary somatosensory cortex; IPL, inferior parietal lobule; and FFG, fusiform gyrus. The color scale denotes the survival rate.

(B) Distribution of cross-validated area under the curve (AUC). We ran 1,000 iterations of 5-fold cross-validation procedure. For each iteration, we first found

the l that minimized the out-of-sample binomial deviance of four folds (80% of the data). Then, for each of the five folds, we computed the area under the

receiver-operating characteristic (ROC) curve using predictions from the model fit to the remaining data using the minimum l. This resulted in the 5,000

(1,000 iterations 3 5 AUCs per iteration) AUC calculations plotted in the histogram (mean = 0.757, median = 0.771, mode = 0.833, SD = 0.150). The inset

in the top-left corner shows out-of-sample prediction performance on the half of the data (test set) when the model is trained on the other half of the

data (training set) for penalized linear regression. The x and y axes show the Z scores of actual political attitudes and predicted political attitudes from

BOLD signals, respectively. Pearson correlation coefficient = 0.52, p = 0.0004; robust correlation coefficient = 0.44, p = 0.0024. See the Supplemental Exper-

imental Procedures for complete details.

(C) Voxels predicting conservative or liberal group membership from each subcondition of disgust (i.e., using contrast maps of [animal-reminder

disgust > neutral] or [core/contamination disgust > neutral]; see the Supplemental Experimental Procedures for the details of subconditions). The voxel sur-

vival criterion is the same as that for (A).

See also Figure S2.
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sensory processing: we found regions known to be involved in
disgust recognition [17, 36–38] (e.g., insula, basal ganglia, and
amygdala), perception of bodily signals [39] (e.g., insula), the
experience of physical/social pain [40] or observing others in
pain [41] (e.g., S2, insula, PAG, and thalamus), and emotion
regulation [42] (e.g., DLPFC, insula, amygdala, and pre-
SMA), along with regions involved in information integration
[43] (e.g., thalamus and amygdala), attention [43, 44] (e.g.,
amygdala, IPL, FFG, STG/MTG), memory retrieval [44, 45]
(e.g., hippocampus, amygdala, and IPL), and also inhibitory
control [46] (e.g., IFG, DLPFC, and pre-SMA), perhaps to sup-
press innate responses. Although our results suggest that
disgusting pictures evoke very different emotional processing
in conservatives and liberals, it will take a range of targeted
studies in the future to tease apart the separate contribution
of each brain circuit.
We proposed that conservatives, compared to liberals, have

greater negativity bias [13], which includes both disgusting
and threatening conditions in our study. Our finding that only
disgusting pictures, especially in the animal-reminder cate-
gory, differentiate conservatives from liberals might be
indicative of a primacy for disgust in the pantheon of human
aversions, but it is also possible that this result is due to the
fact that, compared to threat, disgust is much easier to evoke
with visual images on a computer screen.
Lastly, this study raises several important but unaddressed

questions. First, while political ideology has effects on many
forms of behavior (including, but not limited to, voting
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Figure 4. Single Presentation of a Disgusting

Stimulus Is Sufficient to Make Accurate Predic-

tions of Individual’s Political Orientation

(A) Hemodynamic response to the first disgusting

stimulus for the liberal and conservative groups,

extracted from the red-to-yellow voxels in Fig-

ure 3A. Shaded regions indicate 61 SE. Time-

series data were linearly interpolated every 1 s

for display purposes. ‘‘AUC’’ indicates the mean

AUC of ROC curves over 1,000 iterations.

(B) A representative ROC curve.

(C) Hemodynamic response to the first disgusting

stimulus, extracted from each predictive region,

as well as the mean AUCs of the corresponding

ROC curves. The x axis is time since stimulus pre-

sentation (s) and the y axis is the percent signal

change (percentage). Black inverse triangles indi-

cate the stimulus onset, the bottom of which is at

0.05% signal change. DLPFC, dorsolateral pre-

frontal cortex; pre-SMA, presupplementary motor

area; BG, basal ganglia; AMYG/HIPP, amygdala/

hippocampus; MTG/STG, middle/superior tem-

poral gyrus; FFG, fusiform gyrus; and PAG, peria-

queductal gray.

See also Figure S4.
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behavior), it is unknownwhether it does so thanks to the neural
differences in affective processing that wemeasured. Second,
and relatedly, it is important also to know how individual
differences in the capacity to regulate emotion [26], and the
neural bases of that capacity, are related to political ideology.
A third set of questions concerns the bearing of the present
study on the development of biological measures of political
ideology. While it is of use in a variety of settings to measure
political ideology (political polls, for instance, typically include
somemeasurement of it), it remains an open question whether
biological measures could become more accurate, or more
useful, than the tools (such as self-report measures) currently
employed. Determining the answer to that question would
require answering a host of others: How would a machine-
learning model based on data collected in one region (e.g.,
New York) support predictions of people’s political attitudes
in another region (e.g., Texas)? How fine-grained are the cate-
gories of affective response that are tied to political ideology?
Although our results show greater differentiation in political
ideology in cases of animal-reminder disgust than core/
contamination disgust, what are the links between political
ideology and other forms of disgust, such as moral disgust?
The more we learn about the sensitivity of political ideology
to subtle differences in affective response and their neural
bases, the more we will know about the feasibility of useful
and portable tools for ideology’s biological measurement.
This would then raise a further and difficult ethical question
about the circumstances, if any, in
which it is appropriate to use such
tools. And, finally, the present study
raises important questions about the
possibility of, and obstacles to, under-
standing and cooperation across divides
in political ideology. Would the recogni-
tion that those with different political
beliefs from our own also exhibit
different disgust responses from our
own help us or hinder us in our ability
to embrace them as coequals in
democratic governance? Future work will be necessary to
answer these important questions.

Experimental Procedures

Participants

Eighty-three healthy individuals (males/females = 41/42; age = 18–62; mean

[SD] = 29.0 [11.3] years) in Roanoke and Blacksburg, VA, areawere recruited

from a large database maintained by the Human Neuroimaging Laboratory

between September 2012 and September 2013. See the Supplemental

Experimental Procedures for inclusion/exclusion criteria for participants

and demographic data.

fMRI Task

Participants were informed that they would complete a simple visual

perception task. They were told to simply look at emotional pictures

when they were presented but to press a button when they saw a fixation

cross. Figure 1 depicts the time course of the fMRI experiment. It is a

passive picture-viewing task presenting a total of 20 disgusting, 20

threatening, 20 pleasant, and 20 neutral pictures, the order of which was

randomized for each participant. All the pictures were taken from the

International Affective Picture System (IAPS) [14]. See Appendix S1 for

IAPS picture numbers, description, and valence/arousal ratings of all

pictures. Table S2 summarizes the mean IAPS valence and arousal

ratings in each emotion condition. Each picture was presented for 4 s.

Ten button-press (fixation-cross) trials were pseudorandomly mixed

with emotional pictures to help participants stay fully awake and

pay attention to visual stimuli. The fixation cross stayed on the screen

until a button was pressed. Each trial was separated by a Poisson-

distributed variable interval (mean = 10 s, SD = 10 s, minimum = 6 s,

maximum = 17 s). The experiment took approximately 20 min in total.
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NEMO (http://labs.vtc.vt.edu/hnl/nemo/index.html) was used for stimuli

presentation and behavioral response collection.

MRI Data Acquisition and Analysis

The anatomical and functional imaging sessions were conducted on a 3.0

tesla Siemens Magnetom Trio scanner at VTCRI. We used SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/) for preprocessing and stan-

dard GLM fMRI analyses. For the elastic net analysis, we used the glmnet

package for MATLAB (http://web.stanford.edu/whastie/glmnet_matlab/)

and R [47]. See the Supplemental Experimental Procedures for complete

details.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, four tables, and two appendices and can be found

with this article online at http://dx.doi.org/10.1016/j.cub.2014.09.050.
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