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Abstract

Motivation: Approximate Bayesian computation (ABC) methods provide an elaborate approach to

Bayesian inference on complex models, including model choice. Both theoretical arguments and

simulation experiments indicate, however, that model posterior probabilities may be poorly eval-

uated by standard ABC techniques.

Results: We propose a novel approach based on a machine learning tool named random forests

(RF) to conduct selection among the highly complex models covered by ABC algorithms. We thus

modify the way Bayesian model selection is both understood and operated, in that we rephrase the

inferential goal as a classification problem, first predicting the model that best fits the data with RF

and postponing the approximation of the posterior probability of the selected model for a second

stage also relying on RF. Compared with earlier implementations of ABC model choice, the ABC RF

approach offers several potential improvements: (i) it often has a larger discriminative power

among the competing models, (ii) it is more robust against the number and choice of statistics

summarizing the data, (iii) the computing effort is drastically reduced (with a gain in computation

efficiency of at least 50) and (iv) it includes an approximation of the posterior probability of the se-

lected model. The call to RF will undoubtedly extend the range of size of datasets and complexity

of models that ABC can handle. We illustrate the power of this novel methodology by analyzing

controlled experiments as well as genuine population genetics datasets.

Availability and implementation: The proposed methodology is implemented in the R package

abcrf available on the CRAN.

Contact: jean-michel.marin@umontpellier.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Approximate Bayesian computation (ABC) represents an elaborate

statistical approach to model-based inference in a Bayesian setting

in which model likelihoods are difficult to calculate (due to the com-

plexity of the models considered).

Since its introduction in population genetics (Beaumont et al.,

2002; Pritchard et al., 1999; Tavaré et al., 1997), the method has

found an ever increasing range of applications covering diverse types

of complex models in various scientific fields (see, e.g. Arenas et al.,

2015; Beaumont, 2008, 2010; Chan et al., 2014; Csillèry et al.,

2010; Theunert et al., 2012; Toni et al., 2009). The principle of

ABC is to conduct Bayesian inference on a dataset through compari-

sons with numerous simulated datasets. However, it suffers from

two major difficulties. First, to ensure reliability of the method, the

number of simulations is large; hence, it proves difficult to apply

ABC for large datasets (e.g. in population genomics where tens to
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hundred thousand markers are commonly genotyped). Second, cali-

bration has always been a critical step in ABC implementation

(Blum et al., 2013; Marin et al., 2012). More specifically, the major

feature in this calibration process involves selecting a vector of sum-

mary statistics that quantifies the difference between the observed

data and the simulated data. The construction of this vector is there-

fore paramount and examples abound about poor performances of

ABC model choice algorithms related with specific choices of those

statistics (Didelot et al., 2011; Marin et al., 2014; Robert et al.,

2011), even though there also are instances of successful

implementations.

We advocate a drastic modification in the way ABC model selec-

tion is conducted: we propose both to step away from selecting the

most probable model from estimated posterior probabilities and to

reconsider the very problem of constructing efficient summary stat-

istics. First, given an arbitrary pool of available statistics, we now

completely bypass selecting among those. This new perspective dir-

ectly proceeds from machine learning methodology. Second, we

postpone the approximation of model posterior probabilities to a se-

cond stage, as we deem the standard numerical ABC approxima-

tions of such probabilities fundamentally untrustworthy. We instead

advocate selecting the posterior most probable model by construct-

ing a (machine learning) classifier from simulations from the prior

predictive distribution (or other distributions in more advanced ver-

sions of ABC), known as the ABC reference table. The statistical

technique of random forests (RF) (Breiman, 2001) represents a trust-

worthy machine learning tool well adapted to complex settings as is

typical for ABC treatments. Once the classifier is constructed and

applied to the actual data, an approximation of the posterior prob-

ability of the resulting model can be produced through a secondary

RF that regresses the selection error over the available summary stat-

istics. We show here how RF improves upon existing classification

methods in significantly reducing both the classification error and

the computational expense. After presenting theoretical arguments,

we illustrate the power of the ABC-RF methodology by analyzing

controlled experiments as well as genuine population genetics

datasets.

2 Materials and methods

Bayesian model choice (Berger, 1985; Robert, 2001) compares the

fit of M models to an observed dataset x0. It relies on a hierarch-

ical modelling, setting first prior probabilities pðmÞ on model indices

m 2 f1; . . . ;Mg and then prior distributions pðhjmÞ on the param-

eter h of each model, characterized by a likelihood function

f ðxjm; hÞ. Inferences and decisions are based on the posterior proba-

bilities of each model pðmjx0Þ.

2.1 ABC algorithms for model choice
While we cannot cover in much detail the principles of ABC, let us

recall here that ABC was introduced in Tavaré et al. (1997) and

Pritchard et al. (1999) for solving intractable likelihood issues in

population genetics. The reader is referred to, e.g. Beaumont (2008,

2010), Toni et al. (2009), Csillèry et al. (2010) and Marin et al.

(2012) for thorough reviews on this approximation method. The

fundamental principle at work in ABC is that the value of the in-

tractable likelihood function f ðx0jhÞ at the observed data x0 and for

a current parameter h can be evaluated by the proximity between x0

and pseudo-data xðhÞ simulated from f ðxjhÞ. In discrete settings, the

indicator IðxðhÞ ¼ x0Þ is an unbiased estimator of f ðx0jhÞ (Rubin,

1984). For realistic settings, the equality constraint is replaced with

a tolerance region IðdðxðhÞ; x0Þ� � Þ, where dðx0;xÞ is a measure of

divergence between the two vectors and � > 0 is a tolerance value.

The implementation of this principle is straightforward: the ABC al-

gorithm produces a large number of pairs ðh;xÞ from the prior pre-

dictive, a collection called the reference table, and extracts from the

table the pairs ðh; xÞ for which dðxðhÞ; x0Þ� � .

To approximate posterior probabilities of competing models,

ABC methods (Grelaud et al., 2009) compare observed data with a

massive collection of pseudo-data, generated from the prior predict-

ive distribution in the most standard versions of ABC; the compari-

son proceeds via a normalized Euclidean distance on a vector of

statistics SðxÞ computed for both observed and simulated data.

Standard ABC estimates posterior probabilities pðmjx0Þ at stage (B)

of Algorithm 1 below as the frequencies of those models within the

k nearest-to-x0 simulations, proximity being defined by the distance

between Sðx0Þ and the simulated SðxÞ’s.
Selecting a model means choosing the model with the highest fre-

quency in the sample of size k produced by ABC, such frequencies

being approximations to posterior probabilities of models. We stress

that this solution means resorting to a k-nearest neighbor (k-nn) esti-

mate of those probabilities, for a set of simulations drawn at stage

(A), whose records constitute the so-called reference table, see Biau

et al. (2015) or Stoehr et al. (2015).

Algorithm 1. ABC model choice algorithm

(A) Generate a reference table including Nref simulations ðm;
SðxÞÞ from pðmÞpðhjmÞf ðxjm; hÞ

(B) Learn from this set to infer about m at s0 ¼ Sðx0Þ

Selecting a set of summary statistics S(x) that are informative for

model choice is an important issue. The ABC approximation to the

posterior probabilities pðmjx0Þ will eventually produce a right order-

ing of the fit of competing models to the observed data and thus se-

lect the right model for a specific class of statistics on large datasets

(Marin et al., 2014). This most recent theoretical ABC model choice

results indeed shows that some statistics produce nonsensical deci-

sions and that there exist sufficient conditions for statistics to pro-

duce consistent model prediction, albeit at the cost of an

information loss due to summaries that may be substantial. The toy

example comparing MA(1) and MA(2) models in Supplementary

Informations and Figure 1 clearly exhibits this potential loss in using

only the first two autocorrelations as summary statistics. Barnes

et al. (2012) developed an interesting methodology to select the sum-

mary statistics but with the requirement to aggregate estimation and

model pseudo-sufficient statistics for all models. This induces a

deeply inefficient dimension inflation and can be very time

consuming.

It may seem tempting to collect the largest possible number of

summary statistics to capture more information from the data. This

brings pðmjSðx0ÞÞ closer to pðmjx0Þ but increases the dimension of

SðxÞ. ABC algorithms, like k-nn and other local methods suffer from

the curse of dimensionality [see e.g. Section 2.5 in Hastie et al.

(2009)] so that the estimate of pðmjSðx0ÞÞ based on the simulations

is poor when the dimension of SðxÞ is too large. Selecting summary

statistics correctly and sparsely is therefore paramount, as shown by

the literature in the recent years. [See Blum et al. (2013) surveying

ABC parameter estimation.] For ABC model choice, two main pro-

jection techniques have been considered so far. First, Prangle et al.

(2014) show that the Bayes factor itself is an acceptable summary

(of dimension one) when comparing two models, but its practical

evaluation via a pilot ABC simulation induces a poor approximation
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of model evidences (Didelot et al., 2011; Robert et al., 2011). The

recourse to a regression layer like linear discriminant analysis (LDA,

Estoup et al., 2012) is discussed below and in Supplementary

Section S1. Other projection techniques have been proposed in the

context of parameter estimation: see, e.g. Fearnhead and Prangle

(2012); Aeschbacher et al. (2012).

Given the fundamental difficulty in producing reliable tools for

model choice based on summary statistics (Robert et al., 2011), we

now propose to switch to a different approach based on an adapted

classification method. We recall in the next section the most import-

ant features of the RF algorithm.

2.2 RF methodology
The classification and regression trees (CART) algorithm at the core

of the RF scheme produces a binary tree that sets allocation rules for

entries as labels of the internal nodes and classification or predic-

tions of Y as values of the tips (terminal nodes). At a given internal

node, the binary rule compares a selected covariate Xj with a bound

t, with a left-hand branch rising from that vertex defined by Xj < t.

Predicting the value of Y given the covariate X implies following a

path from the tree root that is driven by applying these binary rules.

The outcome of the prediction is the value found at the final leaf

reached at the end of the path: majority rule for classification and

average for regression. To find the best split and the best variable at

each node of the tree, we minimize a criterium: for classification, the

Gini index and, for regression, the L2-loss. In the randomized ver-

sion of the CART algorithm (see Supplementary Algorithm S1), only

a random subset of covariates of size ntry is considered at each node

of the tree.

The RF algorithm (Breiman, 2001) consists in bagging (which

stands for bootstrap aggregating) randomized CART. It produces

Ntree randomized CART trained on samples or sub-samples of size

Nboot produced by bootstrapping the original training database.

Each tree provides a classification or a regression rule that returns a

class or a prediction. Then, for classification we use the majority

vote across all trees in the forest, and, for regression, the response

values are averaged.

Three tuning parameters need be calibrated: the number Ntree of

trees in the forest, the number ntry of covariates that are sampled at

a given node of the randomized CART and the size Nboot of the

bootstrap sub-sample. This point will be discussed in Section 3.4.

For classification, a very useful indicator is the out-of-bag error

(Hastie et al., 2009, Chapter 15). Without any recourse to a test set,

it gives some idea on how good is your RF classifier. For each elem-

ent of the training set, we can define the out-of-bag classifier: the ag-

gregation of votes over the trees not constructed using this element.

The out-of-bag error is the error rate of the out-of-bag classifier on

the training set. The out-of-bag error estimate is as accurate as using

a test set of the same size as the training set.

2.3 ABC model choice via RF
The above-mentioned difficulties in ABC model choice drives us to a

paradigm shift in the practice of model choice, namely to rely on a

classification algorithm for model selection, rather than a poorly

estimated vector of pðmjSðx0ÞÞ probabilities. As shown in the ex-

ample described in Section 3.1, the standard ABC approximations

to posterior probabilities can significantly differ from the true

pðmjx0Þ. Indeed, our version of stage (B) in Algorithm 1 relies on a

RF classifier whose goal is to predict the suited model m̂ðsÞ at each

possible value s of the summary statistics SðxÞ. The RF is trained on

the simulations produced by stage (A) of Algorithm 1, which

constitute the reference table. Once the model is selected as m?, we

opt to approximate pðm�jSðx0ÞÞ by another RF, obtained from re-

gressing the probability of error on the (same) covariates, as ex-

plained below.

A practical way to evaluate the performance of an ABC model

choice algorithm (test a given set of summary statistics and a given

classifier) is to check whether it provides a better answer than

others. The aim is to come near the so-called Bayesian classifier,

which, for the observed x, selects the model having the largest pos-

terior probability pðmjxÞ. It is well known that the Bayesian classi-

fier minimizes the 0–1 integrated loss or error (Devroye et al.,

1996). In the ABC framework, we call the integrated loss (or risk)

the prior error rate, since it provides an indication of the global

quality of a given classifier m̂ on the entire space weighted by the

prior. This rate is the expected value of the misclassification error

over the hierarchical prior

X
m

pðmÞ
ð

1fm̂ðSðyÞÞ 6¼ mg f ðyjh;mÞpðhjmÞdydh :

It can be evaluated from simulations ðh;m; SðyÞÞ drawn as in stage

(A) of Algorithm 1, independently of the reference table (Stoehr et

al., 2015), or with the out-of-bag error in RF that, as explained

above, requires no further simulation. Both classifiers and sets of

summary statistics can be compared via this error scale: the pair that

minimizes the prior error rate achieves the best approximation of

the ideal Bayesian classifier. In that sense, it stands closest to the de-

cision we would take were we able to compute the true pðmjxÞ.
We seek a classifier in stage (B) of Algorithm 1 that can handle

an arbitrary number of statistics and extract the maximal informa-

tion from the reference table obtained at stage (A). As introduced

above, RF classifiers (Breiman, 2001) are perfectly suited for that

purpose. The way we build both a RF classifier given a collection of

statistical models and an associated RF regression function for pre-

dicting the allocation error is to start from a simulated ABC refer-

ence table made of a set of simulation records made of model indices

and summary statistics for the associated simulated data. This table

then serves as training database for a RF that forecasts model index

based on the summary statistics. The resulting algorithm, presented

in Algorithm 2 and called ABC-RF, is implemented in the R package

abcrf associated with this article.

Algorithm 2: ABC-RF

(A) Generate a reference table including Nref simulation

ðm; SðxÞÞ from pðmÞpðhjmÞf ðxjm; hÞ
(B) Construct Ntree randomized CART which predict m using

SðxÞ
for b¼1 to Ntree do

draw a bootstrap (sub-)sample of size Nboot from the ref-

erence table

grow a randomized CART Tb (Supplementary Algorithm

S1)

end for

(C) Determine the predicted indexes for Sðx0Þ and the trees

fTb; b ¼ 1; . . . ;Ntreeg
(D) Sðx0Þ according to a majority vote among the predicted

indexes

The justification for choosing RF to conduct an ABC model se-

lection is that, both formally (Biau, 2012; Scornet et al., 2015) and

experimentally (Hastie et al., 2009, Chapter 5), RF classification

was shown to be mostly insensitive both to strong correlations
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between predictors (here the summary statistics) and to the presence

of noisy variables, even in relatively large numbers, a characteristic

that k-nn classifiers lack.

This type of robustness justifies adopting a RF strategy to learn

from an ABC reference table for Bayesian model selection. Within

an arbitrary (and arbitrarily large) collection of summary statistics,

some may exhibit strong correlations and others may be uninforma-

tive about the model index, with no terminal consequences on the

RF performances. For model selection, RF thus competes with both

local classifiers commonly implemented within ABC: It provides a

more non-parametric modelling than local logistic regression

(Beaumont, 2008), which is implemented in the DIYABC software

(Cornuet et al., 2014) but is extremely costly—see the method of

Estoup et al. (2012) to reduce the dimension using linear discrimin-

ant projection before resorting to local logistic regression. This soft-

ware also includes a standard k-nn selection procedure [i.e. the so-

called direct approach in Cornuet et al. (2008)] which suffers from

the curse of dimensionality and thus forces selection among

statistics.

2.4 Approximating the posterior probability of the

selected model
The outcome of RF computation applied to a given target dataset is

a classification vote for each model which represents the number of

times a model is selected in a forest of n trees. The model with the

highest classification vote corresponds to the model best suited to

the target dataset. It is worth stressing here that there is no direct

connection between the frequencies of the model allocations of the

data among the tree classifiers (i.e. the classification vote) and the

posterior probabilities of the competing models. Machine learning

classifiers hence miss a distinct advantage of posterior probabilities,

namely that the latter evaluate a confidence degree in the selected

model. An alternative to those probabilities is the prior error rate.

Aside from its use to select the best classifier and set of summary

statistics, this indicator remains, however, poorly relevant since the

only point of importance in the data space is the observed dataset

Sðx0Þ.
A first step addressing this issue is to obtain error rates condi-

tional on the data as in Stoehr et al. (2015). However, the statistical

methodology considered therein suffers from the curse of dimension-

ality and we here consider a different approach to precisely estimate

this error. We recall (Robert, 2001) that the posterior probability of

a model is the natural Bayesian uncertainty quantification since it is

the complement of the posterior error associated with the loss

Iðm̂ðSðx0ÞÞ 6¼ mÞ. While the proposal of Stoehr et al. (2015) for esti-

mating the conditional error rate induced a classifier given S ¼ Sðx0Þ

Pðm̂ðSðYÞÞ 6¼ mjSðYÞ ¼ Sðx0ÞÞ ; (1)

involves non-parametric kernel regression, we suggest to rely instead

on a RF regression to undertake this estimation. The curse of dimen-

sionality is then felt much less acutely, given that RF can accommo-

date large dimensional summary statistics. Furthermore, the

inclusion of many summary statistics does not induce a reduced effi-

ciency in the RF predictors, while practically compensating for

insufficiency.

Before describing in more details the implementation of this con-

cept, we stress that the perspective of Stoehr et al. (2015) leads to ef-

fective estimates of the posterior probability that the selected model

is the true model, thus providing us with a non-parametric estima-

tion of this quantity. Indeed, the posterior expectation (1) satisfies

E½Iðm̂ðs0Þ 6¼ mÞjSðx0Þ� ¼
Xk

i¼1

E½Iðm̂ðSðx0ÞÞ 6¼ m ¼ iÞjSðx0Þ�

¼
Xk

i¼1

P½m ¼ iÞjSðx0Þ� � Iðm̂ðSðx0ÞÞ 6¼ iÞ

¼ P½m 6¼ m̂ðSðx0ÞÞjSðx0Þ�

¼ 1� P½m ¼ m̂ðSðx0ÞÞjSðx0Þ� :

It therefore provides the complement of the posterior probability

that the true model is the selected model.

To produce our estimate of the posterior probability

P½m ¼ m̂ðSðx0ÞÞjSðx0Þ�, we proceed as follows:

1. We compute the value of Iðm̂ðsÞ 6¼ mÞ for the trained RF m̂ and

for all terms in the ABC reference table; to avoid overfitting, we

use the out-of-bag classifiers;

2. We train a RF regression estimating the variate Iðm̂ðsÞ 6¼ mÞ as a

function of the same set of summary statistics, based on the

same reference table. This second RF can be represented as a

function . ðsÞ that constitutes a machine learning estimate of

P½m 6¼ m̂ðsÞjs�;
3. We apply this RF function to the actual observations summar-

ized as Sðx0Þ and return 1� .ðSðx0ÞÞ as our estimate of

P½m ¼ m̂ðSðx0ÞÞjSðx0Þ�.

This corresponds to the representation of Algorithm 3 which is

implemented in the R package abcrf associated with this paper.

Algorithm 3: Estimating the posterior probability of the

selected model

(a) Use the RF produced by Algorithm 2 to compute the out-

of-bag classifiers of all terms in the reference table and

deduce the associated binary model prediction error

(b) Use the reference table to build a RF regression function

.ðsÞ regressing the model prediction error on the sum-

mary statistics

(c) Return the value of 1� .ðSðx0ÞÞ as the RF regression esti-

mate of P½m ¼ m̂ðSðx0ÞÞjSðx0Þ�

3 Results: illustrations of the ABC-RF
methodology

To illustrate the power of the ABC-RF methodology, we now report

several controlled experiments as well as two genuine population

genetic examples.

3.1 Insights from controlled experiments
The Supplementary Information details controlled experiments on a

toy problem, comparing MA(1) and MA(2) time-series models, and

two controlled synthetic examples from population genetics, based

on single-nucleotide polymorphism (SNP) and microsatellite data.

The toy example is particularly revealing with regard to the discrep-

ancy between the posterior probability of a model and the version

conditioning on the summary statistics Sðx0Þ. Figure 1 shows how

far from the diagonal are realizations of the pairs

ðpðmjx0Þ; pðmjSðx0ÞÞÞ, even though the autocorrelation statistic is

quite informative (Marin et al., 2012). Note in particular the vertical

accumulation of points near Pðm ¼ 2jx0Þ ¼ 1. Supplementary Table

S1 demonstrates the further gap in predictive power for the full

Bayes solution with a true error rate of 12% versus the best solution

(RF) based on the summaries barely achieving a 16% error rate.
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For both controlled genetics experiments in the Supplementary

Information, the computation of the true posterior probabilities of

the three models is impossible. The predictive performances of the

competing classifiers can nonetheless be compared on a test sample.

Results, summarized in Supplementary Tables S2 and S3 in the

Supplementary Information, legitimize the use of RF, as this method

achieves the most efficient classification in all genetic experiments.

Note that that the prior error rate of any classifier is always

bounded from below by the error rate associated with the (ideal)

Bayesian classifier. Therefore, a mere gain of a few percents may

well constitute an important improvement when the prior error rate

is low. As an aside, we also stress that, since the prior error rate is

an expectation over the entire sampling space, the reported gain

may exhibit much better performances over some areas of this

space.

Supplementary Figure S2 displays differences between the true

posterior probability of the model selected by Algorithm 2 and its

approximation with Algorithm 3. Moreover, we found that the val-

ues of the votes provided by Algorithm 2 is only useful to assess the

model that best fits the data but that any conclusion regarding level

of confidence necessitates the computation of the posterior probabil-

ity of the selected model provided by Algorithm 3.

3.2 Microsatellite dataset: retracing the invasion routes

of the Harlequin ladybird
The original challenge was to conduct inference about the introduc-

tion pathway of the invasive Harlequin ladybird (Harmonia axyri-

dis) for the first recorded outbreak of this species in eastern North

America. The dataset, first analyzed in Lombaert et al. (2011) and

Estoup et al. (2012) via ABC, includes samples from three natural

and two biocontrol populations genotyped at 18 microsatellite

markers. The model selection requires the formalization and com-

parison of 10 complex competing scenarios corresponding to vari-

ous possible routes of introduction [see Supplementary Information

for details and analysis 1 in Lombaert et al. (2011)]. We now com-

pare our results from the ABC-RF algorithm with other classifica-

tion methods for three sizes of the reference table and with the

original solutions by Lombaert et al. (2011) and Estoup et al.

(2012). We included all summary statistics computed by the

DIYABC software for microsatellite markers (Cornuet et al., 2014),

namely 130 statistics, complemented by the nine LDA axes as add-

itional summary statistics (see Supplementary Section S4).

In this example, discriminating among models based on the ob-

servation of summary statistics is difficult. The overlapping groups

of Supplementary Figure S8 reflect that difficulty, the source of

which is the relatively low information carried by the 18 autosomal

microsatellite loci considered here. Prior error rates of learning

methods on the whole reference table are given in Table 1. As ex-

pected in such a high dimension settings (Hastie et al., 2009, Section

2.5), k-nn classifiers behind the standard ABC methods are all de-

feated by RF for the three sizes of the reference table, even when

k-nn is trained on the much smaller set of covariates composed of

the nine LDA axes. The classifier and set of summary statistics

showing the lowest prior error rate is RF trained on the 130 summa-

ries and the nine LDA axes.

Supplementary Figure S9 shows that RFs are able to automatic-

ally determine the (most) relevant statistics for model comparison,

including in particular some crude estimates of admixture rate

defined in Choisy et al. (2004), some of them not selected by the ex-

perts in Lombaert et al. (2011). We stress here that the level of infor-

mation of the summary statistics displayed in Supplementary Figure

S9 is relevant for model choice but not for parameter estimation

issues. In other words, the set of best summaries found with ABC-

RF should not be considered as an optimal set for further parameter

estimations under a given model with standard ABC techniques

(Beaumont et al., 2002).

The evolutionary scenario selected by our RF strategy agrees

with the earlier conclusion of Lombaert et al. (2011), based on ap-

proximations of posterior probabilities with local logistic regression

solely on the LDA axes, i.e. the same scenario displays the highest

ABC posterior probability and the largest number of selection

among the decisions taken by the aggregated trees of RF. Using

Algorithm 3, we got an estimate of the posterior probability of the

selected scenario equal to 0.4624. This estimate is significantly

lower than the one of about 0.6 given in Lombaert et al. (2011)

based on a local logistic regression method. This new value is more

credible because it is based on all the summary statistics and, on a

method adapted to such an high dimensional context and less sensi-

tive to calibration issues. Moreover, this small posterior probability

corresponds better to the intuition of the experimenters and indi-

cates that new experiments are necessary to give a more reliable an-

swer (e.g. the genotyping of a larger number of loci).

3.3 SNP dataset: inference about human population

history
Because the ABC-RF algorithm performs well with a substantially

lower number of simulations compared to standard ABC methods,

it is expected to be of particular interest for the statistical processing

of massive SNP datasets, whose production is on the increase in the

field of population genetics. We analyze here a dataset including

50 000 SNP markers genotyped in four Human populations (The

1000 Genomes Project Consortium, 2012). The four populations in-

clude Yoruba (Africa), Han (East Asia), British (Europe) and

American individuals of African ancestry, respectively. Our inten-

tion is not to bring new insights into Human population history,

which has been and is still studied in greater details in research using

genetic data but to illustrate the potential of ABC-RF in this context.

We compared six scenarios (i.e. models) of evolution of the four

Human populations which differ from each other by one ancient

and one recent historical events: (i) a single out-of-Africa
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Fig. 1. Illustration of the discrepancy between posterior probabilities based

on the whole data and based on a summary. The aim is to choose between

two nested time series models, namely moving averages of order 1 and 2

[denoted MA(1) and MA(2), respectively; see Supplementary Information for

more details]. Each point of the plot gives two posterior probabilities of

MA(2) for a dataset simulated either from the MA(1) (blue) or MA(2) model

(orange), based on the whole data (x-axis) and on only the first two autocor-

relations (y-axis)
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colonization event giving an ancestral out-of-Africa population

which secondarily split into one European and one East Asian popu-

lation lineages, versus two independent out-of-Africa colonization

events, one giving the European lineage and the other one giving the

East Asian lineage; (ii) the possibility of a recent genetic admixture

of Americans of African origin with their African ancestors and indi-

viduals of European or East Asia origins. The SNP dataset and the

compared scenarios are further detailed in the Supplementary

Information. We used all the summary statistics provided by

DIYABC for SNP markers (Cornuet et al., 2014), namely 112 statis-

tics in this setting complemented by the five LDA axes as additional

statistics.

To discriminate between the six scenarios of Supplementary

Figure S12, RF and other classifiers have been trained on three refer

ence tables of different sizes. The estimated prior error rates are re-

ported in Table 2. Unlike the previous example, the information car-

ried here by the 50 000 SNP markers is much higher, because it

induces better separated simulations on the LDA axes (Fig. 2) and

much lower prior error rates (Table 2). RF using both the initial

summaries and the LDA axes provides the best results.

The ABC-RF algorithm selects Scenario 2 as the predicted scen-

ario on the Human dataset, an answer which is not visually obvious

on the LDA projections of Figure 2 in which Scenario 2 corresponds

to the blue color. But considering previous population genetics stud-

ies in the field, it is not surprising that this scenario, which includes

a single out-of-Africa colonization event giving an ancestral out-of-

Africa population with a secondarily split into one European and

one East Asian population lineage and a recent genetic admixture of

Americans of African origin with their African ancestors

and European individuals, was selected. Using Algorithm 3, we

got an estimate of the posterior probability of scenario 2 equal to

0.998, corresponding to a high level of confidence in choosing

scenario 2.

Computation time is a particularly important issue in the present

example. Simulating the 10 000 SNP datasets used to train the clas-

sification methods requires 7 h on a computer with 32 processors

(Intel Xeon(R) CPU 2 GHz). In that context, it is worth stressing

that RF trained on the DIYABC summaries and the LDA axes of a

10 000 reference table has a smaller prior error rate than all other

classifiers, even when they are trained on a 50 000 reference table.

In practice, standard ABC treatments for model choice are based on

reference tables of substantially larger sizes [i.e. 105 to 106 simula-

tions per scenario (Bertorelle et al., 2010; Estoup et al., 2012)]. For

the above setting in which six scenarios are compared, standard

ABC treatments would hence request a minimum computation time

of 17 days (using the same computation resources). According to the

comparative tests that we carried out on various example datasets,

we found that RF globally allowed a minimum computation speed

gain around a factor of 50 in comparison to standard ABC treat-

ments: see also Supplementary Section S4 for other considerations

regarding computation speed gain.

Table 1. Harlequin ladybird data: estimated prior error rates for

various classification methods and sizes of the reference table

Classification method

trained on

Prior error rates (%)

Nref ¼ 10 000 Nref ¼ 20 000 Nref ¼ 50 000

LDA 39.91 39.30 39.04

Standard ABC (k-nn) on

DIYABC summaries

57.46 53.76 51.03

Standard ABC (k-nn) on

LDA axes

39.18 38.46 37.91

Local logistic regression

on LDA axes

41.04 37.08 36.05

RF on DIYABC

summaries

40.18 38.94 37.63

RF on DIYABC summa-

ries and LDA axes

36.86 35.62 34.44

Note. Performances of classifiers used in stage (B) of Algorithm 1. A set of

10 000 prior simulations was used to calibrate the number of neighbors k in

both standard ABC and local logistic regression. Prior error rates are esti-

mated as average misclassification errors on an independent set of 10 000

prior simulations, constant over methods and sizes of the reference tables.

Nref corresponds to the number of simulations included in the reference table.

Table 2. Human SNP data: estimated prior error rates for classifica-

tion methods and three sizes of reference table

Classification method

trained on

Prior error rates (%)

Nref ¼ 10 000 Nref ¼ 20 000 Nref ¼ 50 000

LDA 9.91 9.97 10.03

Standard ABC (k-nn)

using DYIABC

summaries

23.18 20.55 17.76

Standard ABC (k-nn)

using only LDA axes

6.29 5.76 5.70

Local logistic regression

on LDA axes

6.85 6.42 6.07

RF using DYIABC initial

summaries

8.84 7.32 6.34

RF using both DIYABC

summaries and LDA

axes

5.01 4.66 4.18

Note. Same comments as in Table 1.

Fig. 2. Human SNP data: projection of the reference table on the first four

LDA axes. Colors correspond to model indices. The location of the additional

datasets is indicated by a large black star
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3.4 Practical recommendations regarding the

implementation of the algorithms
We develop here several points, formalized as questions, which

should help users seeking to apply our methodology on their dataset

for statistical model choice.

Are my models and/or associated priors compatible with the

observed dataset?

This question is of prime interest and applies to any type of ABC

treatment, including both standard ABC treatments and treatments

based on ABC RF. Basically, if none of the proposed model - prior

combinations produces some simulated datasets in a reasonable

vicinity of the observed dataset, it is a signal of incompatibility and

we consider it is then useless to attempt model choice inference. In

such situations, we strongly advise reformulating the compared

models and/or the associated prior distributions to achieve some

compatibility in the above sense. We propose here a visual way to

address this issue, namely through the simultaneous projection of

the simulated reference table datasets and of the observed dataset on

the first LDA axes. Such a graphical assessment can be achieved

using the R package abcrf associated with this paper. In the LDA

projection, the observed dataset need be located reasonably within

the clouds of simulated datasets (see Fig. 2 as an illustration). Note

that visual representations of a similar type (although based on

PCA) as well as computation for each summary statistics and for

each model of the probabilities of the observed values in the prior

distributions have been proposed by Cornuet et al. (2010) and are

already automatically provided by the DIYABC software.

Did I simulate enough datasets for my reference table?

A rule of thumb is to simulate between 5000 and 10 000 datasets

per model among those compared. For instance, in the example

dealing with Human population history (Section 3.3), we have simu-

lated a total of 50 000 datasets from six models (i.e. about 8300

datasets per model). To evaluate whether or not this number is suffi-

cient for RF analysis, we recommend to compute global prior error

rates from both the entire reference table and a subset of the refer-

ence table (for instance from a subset of 40 000 simulated datasets if

the reference table includes a total of 50 000 simulated datasets). If

the prior error rate value obtained from the subset of the reference

table is similar, or only lightly higher, than the value obtained from

the entire reference table, one can consider that the reference table

contains enough simulated datasets. If a substantial difference is

observed between both values, then we recommend an increase in

the number of datasets in the reference table. For instance, in the

Human population history example, we obtained prior error rate

values of 4.22% and 4.18% when computed from a subset of

40 000 simulated datasets and the entire 50 000 datasets of the ref-

erence table, respectively. In this case, the benefit of producing more

simulated dataset in the reference table seems negligible.

Did my forest grow enough trees?

According to our experience, a forest made of 500 trees usually con-

stitutes an interesting trade-off between computation efficiency and

statistical precision (Breiman, 2001). To evaluate whether or not

this number is sufficient, we recommend to plot the estimated values

of the prior error rate and/or the posterior probability of the best

model as a function of the number of trees in the forest. The shapes

of the curves provide a visual diagnostic of whether such key quanti-

ties stabilize when the number of trees tends to 500. We provide

illustrations of such visual representations in the case of the example

dealing with Human population history in Figure 3. Such a graph-

ical assessment can be achieved using the R package abcrf associated

with this paper

How do I set Nboot and ntry for classification and regression?

For a reference table with up to 100 000 datasets and 250 summary

statistics, we recommend keeping the entire reference table, that is,

Nboot ¼ N when building the trees. For larger reference tables, the

value of Nboot can be calibrated against the prior error rate, starting

with a value of Nboot ¼ 50 000 and doubling it until the estimated

prior error rate is stabilized. For the number ntry of summary statis-

tics sampled at each of the nodes, we see no reason to modify the de-

fault number of covariates ntry which is chosen as
ffiffiffi
d
p

for

classification and d=3 for regression when d is the total number of

predictors (Breiman, 2001). Finally, when the number of summary

statistics is lower than 15, one might reduce Nboot to N=10.

4 Discussion

This article is purposely focused on selecting a statistical model,

which can be rephrased as a classification problem trained on ABC

simulations. We defend here the paradigm shift of assessing the best

fitting model via a RF classification and in evaluating our confidence

in the selected model by a secondary RF procedure, resulting in a

different approach to precisely estimate the posterior probability of

the selected model. We further provide a calibrating principle for

this approach, in that the prior error rate provides a rational way to

select the classifier and the set of summary statistics which leads to

results closer to a true Bayesian analysis.

Compared with past ABC implementations, ABC-RF offers im-

provements at least at four levels: (i) on all experiments we studied,

it has a lower prior error rate; (ii) it is robust to the size and choice

of summary statistics, as RF can handle many superfluous statistics

with no impact on the performance rates (which mostly depend on

the intrinsic dimension of the classification problem (Biau, 2012;

Scornet et al., 2015), a characteristic confirmed by our results); (iii)

the computing effort is considerably reduced as RF requires a much

smaller reference table compared with alternatives (i.e. a few thou-

sands versus hundred thousands to billions of simulations) and (iv)

the method is associated with an embedded and error-free
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Fig. 3. Human SNP data: evolution of the ABC-RF prior error rate when Nref

¼ 50 000 with respect to the number of trees in the forest
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evaluation which assesses the reliability of ABC-RF analysis. As a

consequence, ABC-RF allows for a more robust handling of the de-

gree of uncertainty in the choice between models, possibly in con-

trast with earlier and over-optimistic assessments.

Because of a massive gain in computing and simulation efforts,

ABC-RF will extend the range and complexity of datasets (e.g. num-

ber of markers in population genetics) and models handled by ABC.

In particular, we believe that ABC-RF will be of considerable inter-

est for the statistical processing of massive SNP datasets whose pro-

duction rapidly increases within the field of population genetics for

both model and non-model organisms. Once a given model has been

chosen and confidence evaluated by ABC-RF, it becomes possible to

estimate parameter distribution under this (single) model using

standard ABC techniques (Beaumont et al., 2002) or alternative

methods such as those proposed by Excoffier et al. (2013).
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