

What are plants?

What are plants?

- make their own energy from sunlight & carbon dioxide
- produce oxygen as a byproduct
- sessile (do not move)
- ~287,000 species

Food Chains

- Animals can not make energy from sunlight we have to get energy from food
- Food comes from either plants, fungi, or other animals

producers, consumers, carnivores, detritivores

Ecosystems

• Food chains describe how energy is transferred

Energy

Producer

Herbivore

Carnivore

• Ecosystems are a group of organisms that interact as producers, consumers, and detritivores, plus all of the non-living parts of the environment

Ecosystems contain many plants

• Plants compete for sunlight

• by growing tall

• or by growing in places where other plants can not grow

Pale Pitcher Plant (Sarracenia alata)

- both a producer (sunlight and CO_2 into energy + O_2) and a consumer
- this carnivorous plant eats bugs!
- mostly ants, who are attracted to the plant because it smells good and produces nectar
- There are ~10 species of *Sarracenia*, all in Eastern North America

All are pitcher plants, with a similar shape.

Sarracenia Pitcher Plants

Sarracenia flava (1)

S. oreophila (r)

Sarracenia Pitcher Plants

Sarracenia purpurea

Other Pitcher Plants

Darlingtonia californica

Heliamphora chimantensis

Other Pitcher Plants

Nepenthes spp.

Other Carnivorous Plants

Drosera spp.

Sundews

Other Carnivorous Plants

Dionaea muscipula Venus Fly Trap

Bladderworts

Utricularia macrorhiza

Bladderwort

Bladderworts

Utricularia macrorhiza

Bladderwort

Why eat bugs???

Carnivory allows plants to grow in low nutrient soil.

Plants need nitrogen and phosphorus to grow; digesting bugs seems to provide *Sarracenia alata* and other species with these minerals.

Since all plants compete with other plants for sunlight, this may give *Sarracenia* an advantage that allows it to grow in areas that are difficult for other plant species.

Does carnivory help plants to grow?
How does *Sarracenia* turn bugs into N and P?

Phylogeny

jackal

African wild dog

coyote

wolf

dog

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 2010, p. 1851–1860 0099-2240/10/\$12.00 doi:10.1128/AEM.02440-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved.

The Carnivorous Pale Pitcher Plant Harbors Diverse, Distinct, and Time-Dependent Bacterial Communities[∇]†

Margaret M. Koopman, Danielle M. Fuselier, Sarah Hird, and Bryan C. Carstens*

Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803

Received 8 October 2009/Accepted 12 January 2010

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 2010, p. 1851–1860 0099-2240/10/\$12.00 doi:10.1128/AEM.02440-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved.

The Carnivorous Pale Pitcher Plant Harbors Diverse, Distinct, and Time-Dependent Bacterial Communities[∇]†

Margaret M. Koopman, Danielle M. Fuselier, Sarah Hird, and Bryan C. Carstens*

Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803

Received 8 October 2009/Accepted 12 January 2010

Plant genetic divergence predicts microbial community structure: insights from the $microbial\ phyllogeography$ of carnivorous pitcher plants

Margaret M. Koopman^{1,2} and Bryan C. Carstens^{1,*}

383,660 DNA sequences (16s rRNA gene)

Arthropods associated with S. alata

Key things to remember

- all plants make energy from sunlight and CO2
- plants compete for sunlight with other plants, but require nutrients (N & P) to grow tall
- plants are important parts of food chains (usually because they are food for herbivores)
- some plants live in places with poor nutrient availability and get their nutrients by eating bugs

Key things to remember

- carnivory in plants has evolved at least 5 independent times
- there are several ways to be a carnivorous plant: sticky traps, snaptraps, pitcher traps
- the digestive microbiome in *Sarracenia alata* is very similar to that found in the microbiomes of the ants that *S. alata* eats
- suggests that the plant is evolving carnivory by 'borrowing' the microbiome of its prey species

Thanks & Acknowlegements

- Tara Pelletier, Maxim Kim, Michael Gruenstaeudl
- My S. alata team (Danielle Fusilier, Margaret Koopman, Amanda Zellmer, Jordan Satler)
- The National Science Foundation

