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Model selection as a tool for evolutionary inference. 



Research in the Carstens lab 
 
understand diversification . . . 
 
. . . descent with modification from 
a common ancestor 

Introduction 

Our investigations occur at the interface between population 
genetics and systematics, where population-level processes 
produce phylogenetic patterns. 
	
  

Model selection as a tool for evolutionary inference. 



•  developed from systematics (trees) 

•  reliant on mtDNA 

•  early investigations qualitative 

•  inferences are intuitive 

Introduction Model selection as a tool for evolutionary inference. 



Summarize genetic variation in some way 
 
•  FST, Tajima’s D 
•  estimate gene trees from the data 
 
 
Estimate parameters using some available model  

 (assumed to fit data) 
 
•  Nm with Wright’s Island model 
•  migration rates with a coalescent-model 

Background Model selection as a tool for evolutionary inference. 



trees + maps => inference 

Introduction 

“The geographical distribution of distinct clades suggests that a combination of 
topographic barriers and the expansion and contraction of suitable habitat during the past 
2 million years, especially along particular mountain ranges, have played a major role in 
the diversification of N. fuscipes.” (Matocq, 2002) 

Model selection as a tool for evolutionary inference. 
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Background Model selection as a tool for evolutionary inference. 



Summaries and estimates are formally generated, but 
interpreted by researchers in a qualitative manner. 
 
• over-interpretation – more detailed historical scenarios are 

proposed than the data support (Knowles & Maddison 2002) 
with preconceived ideas (Nickerson 1998) 

Background Model selection as a tool for evolutionary inference. 



Summaries and estimates are formally generated, but 
interpreted by researchers in a qualitative manner. 
 
• over-interpretation – more detailed historical scenarios are 

proposed than the data support (Knowles & Maddison 2002) 
  
• confirmation bias – novel information is interpreted in a 

manner consistent with preconceived ideas (Nickerson 1998) 

Background Model selection as a tool for evolutionary inference. 



How should we analyze our data? Goal is to understand how 
genetic diversity is partitioned across the landscape structure 
and identify the forces that led to this pattern. 

 

•  population structure 

•  population size (θ = 4Neµ) 

•  divergence time (τ) 

•  magnitude of population size change (γ) 

•  gene flow (m) 
 

Background Model selection as a tool for evolutionary inference. 



Knowles & Carstens 2007 

Hypothesis testing? Model selection as a tool for evolutionary inference. 
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Assumptions 

• accuracy of θi, other values 

• adequacy of sampling strategy 

• timing of population model 

• topology of population model 

• adequacy of summary statistics 

Knowles & Carstens 2007 

Hypothesis testing? Model selection as a tool for evolutionary inference. 



Hypothesis-testing is not the best way to move beyond  
qualitative data analysis. 

•  Rejecting an unrealistic hypothesis tells us nothing about an 
empirical system, and may promote false confidence 
regarding our understanding of the system. 

•  It is also impossible to differentiate among hypotheses that 
can not be rejected. 

Hypothesis testing? Model selection as a tool for evolutionary inference. 



Phylogeography is a historical discipline . . . 
 
. . . that uses statistical tools developed for experimental research. 
 
 

•  We can not replicate evolutionary history. 

•  We do not have experimental controls. 

Hypothesis testing? Model selection as a tool for evolutionary inference. 



Phylogeography is a historical discipline . . . 
 
. . . that uses statistical tools developed for experimental research. 
 
 

•  We can not replicate evolutionary history. 

•  We do not have experimental controls. 
 

Information theoretic approach. Calculate Prob (modeli|data) for 

multiple models, rank using AIC or other metrics.  

     DR Anderson (2008) Model Based Inference in the Life Sciences 

Hypothesis testing? Model selection as a tool for evolutionary inference. 



Species delimitation using species trees	


	


•  Compare the probability of models where putative lineages are 

separate to the probability of models where they are the same. 

Sarracenia alata Species delimitation. 



Sarracenia alata Species delimitation. 

21,147 permutations of 10 populations! 



Sarracenia alata Species delimitation. 

Zellmer et al. 2012 

Structurama (Huelsenbeck et al. 2011 
 
BPP (Yang and Rannala 2010) 
 
spedeSTEM (Ence & Carstens 2011) 

Jordan Satler 



Modified from TREE1
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Sarracenia alata Species delimitation. 
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Sarracenia alata Species delimitation. 

BP&P	
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Sarracenia alata Species delimitation. 

Limitations of existing methods	


 
•  phylogentic models that do not allow gene flow / population 

expansion 
•  genetic clustering methods do not model temporal divergence 



Myotis lucifugus Species delimitation. 

Ariadna Morales-Garcia 





Salix melanopsis Model-based inference. 



•  Genomic DNA extracted from leaf tissue, sheared with Bioruptor (Diagenode) 
 
•  Sequenced ~400 bp fragments using Roche 454 sequencing 

•  RepeatMasker (Smit 2008) to screen resulting sequencing for low-complexity 
DNA and repetitive elements 

•  MYbaits custom enrichment; probes designed by Jean-Marie Rouilliard 
(Mycroarray, Ann Arbor). 

•  sequenced 39 S. melanopsis and 1 S. alba on Illumina GAiiX (8 samples / 
lane); ~3.76 x 106 high quality (108 bp) reads per sample 

•  reference genome using Populus trichocharpa genome and de novo assembly 
(Velvet; Zerbino and Birney 2008) 

•  Assembly and SNP-calling (100x coverage) using SAMtools (Li et al. 2009)  

Salix melanopsis Model-based inference. 
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Salix melanopsis Model-based inference. 



Brad Nelson, Jordan Satler, Caleb McMahon, Glen Seeholzer, Mike Harvey (back row) 
Rachel Koch, Caroline Duffy, Cathy Newman, Reid Brennan, Vivian Chua, Karine Probsic (front row) 

Salix melanopsis Model-based inference. 



Salix melanopsis Model-based inference. 



Salix melanopsis Model-based inference. 

Migrate-n (Peter Beerli et al.) 



Salix melanopsis Model-based inference. 

Migrate-n (Peter Beerli et al.) 



Salix melanopsis Model-based inference. 
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Salix melanopsis Model-based inference. 



Diffusion Approximate Demographic Inference (dadi) 

•  empirical data are summarized by allele frequency spectra 

•  expected AFS is calculated given demographic model, parameters 
using diffusion approximation 

•  probability of data | model is calculated by composite likelihood 

Salix melanopsis Model-based inference. 



lnL = - 336.939 

Salix melanopsis Model-based inference. 

•  derived from Hudson’s ms, so extremely flexible in terms of the 
demographic models that can be specified.   



Salix melanopsis Model-based inference. 



Salix melanopsis Model-based inference. 

(44,000)	
  

(18,000)	
  

(62,000)	
  

(1800)	
  

•  Identifying a model with a good fit to the data allows us to make inferences 
from estimates of the parameters that are relevant to our data.  

•  A very small ancestral population ~ 18,400 gbp gave rise to extant S. 
melanopsis in a S-N direction. 



Plethodon idahoensis Model choice with ABC. 

(Pelletier & Carstens, in review) 



 
•  simulate a prior distribution under a set of models using MS 

(Hudson 2002) 
•  MSBAYES (Hickerson et al. 2007) to perform rejection step 

Plethodon idahoensis Model choice with ABC. 



Plethodon idahoensis Model choice with ABC. 



Plethodon idahoensis Model choice with ABC. 

How does the composition of the model comparison set 
influence the relative posterior probability? 



Plethodon idahoensis Model choice with ABC. 

average P1000 = 0.44  

Posterior probability of _1000 across replicates. 



Plethodon idahoensis Model choice with ABC. 

P1000 = 0.001  
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Plethodon idahoensis Model choice with ABC. 

•  measured absolute model fit using posterior predictive 
simulation and mean Euclidean distance 

•  selected models for comparison that were measurably better 
than the best score ever observed by chance 

•  compared 8 models in nested (island, isolation) comparison 
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Plethodon idahoensis Model choice with ABC. 

P1023 = 1.0  

•  gene flow from south to north 

•  population expansion in north 
and south, but γN >> γS 

•  vastly different than m_1000 

θ	
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Plethodon idahoensis Model choice with ABC. 

P1023 = 1.0  

•  gene flow from south to north 

•  population expansion in north 
and south, but γN >> γS 

•  vastly different than m_1000 
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P1000 = 1.0 
 
(naïve analysis)  
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Phrapl Model choice with approximate likelihoods. 
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•  model choice is complicated by biases inherent to these 
vectors, to the point that some doubt its consistency 
(Robert et al. 2010) 

•  vector of summary statistics used to summarize the data in 
the prior distribution and empirical data – chosen 
following Tsai & Carstens (2013) 

•  complicates questions with inherent differences in dimensionality 

•  O’Meara (2010) showed that the L (D|M) can be approximated by calculating 
the proportion of times that genealogies observed in the empirical data are 
found in a distribution simulated under some model 



Phrapl Model choice with approximate likelihoods. 
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Phrapl Model choice with approximate likelihoods. 

1Phylogeographic Inference using Approximate Likelihoods. NSF (DEB 1257784)  



Tree probabilities not uniform  
(some trees much more likely than others) 
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Phrapl Model choice with approximate likelihoods. 



Simplification 1: Sample labels within populations arbitrary 

A1	
   A2	
   B1	
   B2	
   B3	
   C1	
   C2	
  

A1	
   A2	
   B1	
   B3	
   B2	
   C1	
   C2	
  Observed	
  

Simulated	
  

Match based on all possible labeling, then correct for this 
i.e., three possible permutations, so if there is a match divide by 3 to get probability 

Phrapl Model choice with approximate likelihoods. 



Simplification 2: Polytomies are soft in gene trees (optional) 

A1	
   A2	
   B1	
   B2	
   B3	
   C1	
   C2	
  

A1	
   A2	
   B1	
   B3	
   B2	
   C1	
   C2	
  Observed	
  

Simulated	
  

Match based on all possible resolutions, then correct 

Phrapl Model choice with approximate likelihoods. 



Phrapl Model choice with approximate likelihoods. 



•  Model selection allows us to 
identify models that are a 
reasonable fit to the data. 

•  Parameter estimates should only 
be used as the basis for inference 
when they are made from 
appropriate models. 

•  Model selection also can provide 
clues that appropriate models are 
not in the model comparison set. 

Model selection as a tool for inference. Conclusions 



•  Model selection allows us to 
identify models that are a 
reasonable fit to the data. 

•  Parameter estimates should only 
be used as the basis for inference 
when they are made from 
appropriate models. 

•  Model selection also can provide 
clues that appropriate models are 
not in the model comparison set. 

Model selection as a tool for inference. Conclusions 



•  ABC (Fagundes et al. 2007; Peter et al. 2009) 

•  BP&P (Yang & Rannala 2010) 

•  dadi (Gutenkunst et al. 2009) 

•  IMa (Hey & Nielsen 2007; Carstens et al. 2009) 

•  Migrate-n (Beerli & Palczewski 2010) 

•  MSBAYES (Hickerson et al. 2007) 

•  STRUCTURE – Evanno’s k (Evanno et al. 2005)  

•  spedeSTEM (Ence & Carstens 2010) 

•  BEAST (spatial diffusion models) Lemey et al. 2010 

•  Phrapl (O’Meara, Carstens et al. in prep) 

•  heuristic search of very complex model space (Carstens lab, under dev.) 

Model selection as a tool for inference. Conclusions 



•  MEDs used as model optimality criteria in a heuristic search of complex 
model space 

•  Matt Demarest is writing the code to heuristically search the models that 
Pelletier & Carstens (in rev.) calculated exhaustively  

•  once performance using small model space is satisfactory, expand model 
space to 3 and 4 diverging lineages 

Future work. Planned projects 

Popula8ons	
   Number	
  of	
  
Models	
  

1	
   3	
  

2	
   240	
  

3	
   70,200	
  

4	
   24,701,040	
  

5	
   9,396,476,180	
  



•  MEDs will be used as model optimality criteria in a heuristic search of 
complex model space 

•  Matt Demarest is writing the code to heuristically search the models that 
Pelletier & Carstens (in rev.) calculated exhaustively 

•  once performance using small model space is satisfactory, expand model 
space to 3 and 4 diverging lineages 

•  novels methods seek to cluster codistributed species into some number of 
groups, each defined as the product of a particular evolution history  

•  goal is to identify evolutionary communities (groups of organisms that 
interact throughout evolutionary time) 

Future work. Planned projects 
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