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Model selection as a tool for evolutionary inference. Introduction

Research in the Carstens lab
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(from Darwin 1859)

Our investigations occur at the interface between population
genetics and systematics, where population-level processes

produce phylogenetic patterns.



Model selection as a tool for evolutionary inference. Introduction

Ann. Rev. Ecol. Syst. 1987. 18:489-522
i y Reviews Inc. All ri
Evolution, 43(6), 1989, pp. 1192-1208 Copyright © ]987 by Annual Reviews Inc rights reserved

GENE TREES AND ORGANISMAL HISTORIES:
A PHYLOGENETIC APPROACH TO POPULATION BIOLOGY'

Joun C. Avise
Department of Genetics, University of Georgia, Athens, GA 30602

INTRASPECIFIC
PHYLOGEOGRAPHY: The
Mitochondrial DNA Bridge Between
Population Genetics and Systematics

. John C. Avise!, Jonathan Arnold’, R. Martin Ball’, Eldredge
° developed from SystemathS (tl‘eeS) Bermingham'*?, Trip Lamb', Joseph E. Neigel!*, Carol A.
Reeb’, and Nancy C. Saunders'”

!Department of Genetics, University of Georgia, Athens, Georgia 30602; INMFS/

° 1 CZES, Genetics, 2725 Montlake Boulevard East, Seattle, Washington 98112;
rel Iant on mtDNA 3Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29801;
“Department of Microbiology and Immunology, School of Medicine, University of

California, Los Angeles, California 90024; 3School of Veterinary Medicine, Virginia

° early investigations qual itative Tech University, Blacksburg, Virginia 24046

e Inferences are intuitive



Model selection as a tool for evolutionary inference. Background

Summarize genetic variation in some way

 Fst Jajima’s D
e estimate gene trees from the data



Model selection as a tool for evolutionary inference. Introduction
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“The geographical distribution of distinct clades suggests that a combination of
topographic barriers and the expansion and contraction of suitable habitat during the past

2 million years, especially along particular mountain ranges, have played a major role in
the diversification of N. fuscipes.” (Matocq, 2002)




Model selection as a tool for evolutionary inference. Background

Summarize genetic variation in some way
 Fst Tajima’s D

e estimate gene trees from the data

Estimate parameters using some available model
(assumed to fit data)

e Nm with Wright’s Island model
e migration rates with a coalescent-model



Model selection as a tool for evolutionary inference. Background

Dolman & Moritz 2006
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Model selection as a tool for evolutionary inference. Background

Dolman & Moritz 2006
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Model selection as a tool for evolutionary inference. Background
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Model selection as a tool for evolutionary inference.

Background

Dolman & Moritz 2006
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Model selection as a tool for evolutionary inference. Background

Summaries and estimates are formally generated, but
interpreted by researchers in a qualitative manner.

e over-interpretation — more detailed historical scenarios are
proposed than the data support (Knowles & Maddison 2002)



Model selection as a tool for evolutionary inference. Background

Summaries and estimates are formally generated, but
interpreted by researchers in a qualitative manner.

e over-interpretation — more detailed historical scenarios are
proposed than the data support (Knowles & Maddison 2002)

e confirmation bias — novel information is interpreted in a
manner consistent with preconceived ideas (Nickerson 1998)



Model selection as a tool for evolutionary inference. Background

How should we analyze our data? Goal is to understand how
genetic diversity is partitioned across the landscape structure
and identify the forces that led to this pattern.

 population structure

« population size (0 = 4Neu)

» divergence time (T)

* magnitude of population size change (Y)

 gene flow (M)



Model selection as a tool for evolutionary inference. Hypothesis testing?

Single-refugium model Dual-refugia model
Sangamon interglacial begins - - - —

17,000 gen

Sangamon interglacial ends = = -~ ~jll = = = = = = = = = = = = = - - -
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Knowles & Carstens 2007



Model selection as a tool for evolutionary inference.

Hypothesis testing?
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Model selection as a tool for evolutionary inference.

Frequency

Single-refugium model Dual-refugia model

Sangamon interglacial begins - - - —
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Hypothesis testing?



Model selection as a tool for evolutionary inference. Hypothesis testing?

Hypothesis-testing is not the best way to move beyond
qualitative data analysis.

 Rejecting an unrealistic hypothesis tells us nothing about an
empirical system, and may promote false confidence
regarding our understanding of the system.

» Itis also impossible to differentiate among hypotheses that
can not be rejected.



Model selection as a tool for evolutionary inference. Hypothesis testing?

Phylogeography is a historical discipline . . .

.. . that uses statistical tools developed for experimental research.

* We can not replicate evolutionary history.

* We do not have experimental controls.



Model selection as a tool for evolutionary inference. Hypothesis testing?

Information theoretic approach. Calculate Prob (model. | data) for
multiple models, rank using AIC or other metrics.

DR Anderson (2008) Model Based Inference in the Life Sciences




Species delimitation. Sarracenia alata

Species delimitation using species trees

« Compare the probability of models where putative lineages are
separate to the probability of models where they are the same.

S. alata (east)

S. alata (west) { S. alata

S. rubra S. rubra

S. purpurea S. purpurea

Syst. Biol. 56(6):887-895, 2007

Copyright (© Society of Systematic Biologists
ISSN: 1063-5157 print / 1076-836X online
DOI: 10.1080/10635150701701091

Delimiting Species without Monophyletic Gene Trees

L. LACEY KNOWLES AND BRYAN C. CARSTENS

Department of Ecology and Evolutionary Biology, Museum of Zoology, 1109 Geddes Avenue, University of Michigan,
Ann Arbor, MI 48109-1079, USA; E-mail: knowlesl@umich.edu (L.L.K.)



Species delimitation. Sarracenia alata
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21,147 permutations of 10 populations!




Species delimitation. Sarracenia alata

0.00005 subs/site/gen

0.46

0.97

Jordan Satler

0.65

0.79

0.50

0.40

0.59

Structurama (Huelsenbeck et al. 2011
BPP (Yang and Rannala 2010)

E‘ o T ~ ] ‘
D s #5 Y o spedeSTEM (Ence & Carstens 2011)

Mississippi River

Zellmer et al. 2012



Species delimitation. Sarracenia alata

BP&P B P S C K L A T D F

SpedeSTEM |B P S C K L A T D F

Structurama |B P S C K L A T D F

West East




Species delimitation. Sarracenia alata

BP&P B P S C K L A T D F

Structurama ||B P S C K L A T D F
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Biological Journal of the Linnean Society, 2013, 109, 737-746. With 2 figures

The carnivorous plant described as Sarracenia alata
contains two cryptic species

BRYAN C. CARSTENS* and JORDAN D. SATLER

Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH
43210, USA

Received 17 January 2013; revised 19 February 2013; accepted for publication 19 February 2013




Species delimitation. Sarracenia alata

Limitations of existing methods

 phylogentic models that do not allow gene flow / population

expansion

» genetic clustering methods do not model temporal divergence

MOLECULAR ECOLOGY

Molecular Ecology (2013) 22, 43694383 doi: 10.1111/mec.12413

INVITED REVIEWS AND META-ANALYSES
How to fail at species delimitation

BRYAN C. CARSTENS,* TARA A. PELLETIER,* NOAH M. REID} and JORDAN D. SATLER*
*Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus,

OH43210-1293, USA, tDepartment of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA
70803, USA



Species delimitation.

Myotis lucifugus

e. chrysonotus —0.9

. €. Jjonesorum —

volans

. relictus
l. lucifugus
|. alascensis

l. carrisima

thysanodes

keenii

Ariadna Morales-Garcia

0.97

1.0

1.0

1.0

1.0

1C (BP&P)

l. relictus

. alascensis

1D (Migrate-n)

l. lucifugus

I. carrisima

(p = 0.98)
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Species delimitation using Maximum
Likelihood

spedeSTEM is a program that delimits species using maximum likelihood and information theory.
Specifically, the probabilities of multiple permutations of putative evolutionary lineages are calculated using
STEM (Kubatko et al. 2009) and ranked by model probability (see Anderson 2004). spedeSTEM takes as
input ultrametric gene trees from multiple loci and an estimate of theta, and returns a table of models
ranked by model probability. The web-based software here conducts both discovery and validation
analyses, and also generates the set up files and allows the users to subsample alleles from large nexus
files. spedeSTEM does not estimate gene trees; for this, we suggest PAUP or Garli.

See this file for more help

Department of Ecology Evolution and Organismal Biology

OHIO

STATE

b + National Science Foundation
WHERE DISCOVERIES BEGIN

Funded by NSF DEB 0918212

Sign up Login

About us

Research in the Carstens lab
seeks to understand how
biological diversity is generated
using computational approaches.
We investigate empirical systems
by identifying the limits of
evolutionary lineages, in order to
evaluate the relative contributions
of evolutionary processes and
infer the ecological and
environmental forces that have
contributed to the formation of
population genetic structure.




Model-based inference. Salix melanopsis




Model-based inference. Salix melanopsis

Genomic DNA extracted from leaf tissue, sheared with Bioruptor (Diagenode)
Sequenced ~400 bp fragments using Roche 454 sequencing

RepeatMasker (Smit 2008) to screen resulting sequencing for low-complexity
DNA and repetitive elements

MYbaits custom enrichment; probes designed by Jean-Marie Rouilliard
(Mycroarray, Ann Arbor).

sequenced 39 S. melanopsis and 1 S. alba on lllumina GAIiX (8 samples /
lane); ~3.76 x 10° high quality (108 bp) reads per sample

reference genome using Populus trichocharpa genome and de novo assembly
(Velvet; Zerbino and Birney 2008)

Assembly and SNP-calling (100x coverage) using SAMtools (Li et al. 2009)



Model-based inference. Salix melanopsis

304 SNP variability in 414 S. melanopsis loci
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Model-based inference. Salix melanopsis

Brad Nelson, Jordan Satler, Caleb McMahon, Glen Seeholzer, Mike Harvey (back row)
Rachel Koch, Caroline Duffy, Cathy Newman, Reid Brennan, Vivian Chua, Karine Probsic (front row)



Model-based inference. Salix melanopsis

-

MOLECULAR ECOLOGY

Molecular Ecology (2013) 22, 4014-4028 doi: 10.1111 /mec. 12347

Model selection as a tool for phylogeographic inference:
an example from the willow Salix melanopsis

BRYAN C. CARSTENS,* REID S. BRENNAN,{ VIVIEN CHUA,+{ CAROLINE V. DUFFIE,t}
MICHAEL G. HARVEY,t{ RACHEL A. KOCH,{ CALEB D. MCMAHAN,{${ BRADLEY J. NELSON,+
CATHERINE E. NEWMAN,t{ JORDAN D. SATLER,* GLENN SEEHOLZER,t{ KARINE POSBIC,{
DAVID C. TANK§Y and JACK SULLIVANY**

*Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA,
tDepartment of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA,
{Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA, §College of Natuml
Resources, University of Idaho, Room 204D, Natural Resources Building, PO Box 441133, Moscow, ID 83844-1133, USA,
YInstitute for Bioinformatics and Evolutionary Studies, University of Idaho, Room 441, Life Sciences South, PO Box 443051,
Moscow, ID 83844-3051, USA, **Department of Biological Sciences, University of Idaho, Room 274, Life Sciences South, PO
Box 443051, Moscow, ID 83844-3051, USA
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Model-based inference. Salix melanopsis

Coastal
dralnages 4

Migrate-n (Peter Beerli et al.)




Salix melanopsis

Model-based inference.
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Model-based inference. Salix melanopsis

Coastal
dralnages £

No. Description of model Migration pattern Harmanic ImL P

1 Two refugia, with Clearwater as source of Casades and Salmon as Ca<-Cl=->Sa->No —4387235 0.99976
source for northern

2 Two refugia, with Salmon as source of Cascades and Clearwater as Ca<-Sa<->Q->No —43880 67 0.00024
source for northern

3 Single refuge (Clearwater) Sa<->Clk>N; Cl->Ga —43950 .06 0.00000

- Stepping stone (Clearwater) Cl>Ca->N->5% —43966 94 0.00000

5 Single refuge (Salmon) Cl=->8a->N; Sa>Ca —43997 26 0.00000

6 Stepping stone (Salmon), with Clearwater source for Casades Sa->Cl=Ca; =N —44039 82 0.00000

7 Stepping stone (Salmon) Sa->Cl>N->Ca —-412203 0.00000

8 Clearwater and Salmon are sources, sending migrants to Clk>Ca<->N < -Sa —41508 0.00000
Cascades and northemn, respectively, and those exchange migrants

9 Clearwater and Salmon are sources, sending migrants to northermn Ck>N < ->Ca<-Sa —42599 0.00000
and Cascades, respectively, and those exchange migrants




Model-based inference. Salix melanopsis

Es Ca e‘s g‘ ""-,

Parameter 2.50% Mode 97.50% & i

S35 Sndd
6, 0.002 0.00397 000574 | %, SN T
62 0.00247 0.00417 0.0058 Aa 7
6s 0.0022 0.00404 0.0058 Py
0, 0.00067 0.00237 0.00407 e
M,.., 1.18 2.92 4.95 1 Ky
M. 1.03 2.56 4.48
M 1.22 2.96 5.19
Mi.-2 1.27 2.64 4.56
Ma., 1.49 3.06 5.21
M, ., 1.37 2.89 4.92
M3 1.33 2.85 5.22
Ma.3 1.53 3.45 5.80
M3 1.49 3.47 5.77
M. 0.34 1.45 3.18
M., 0.37 1.58 3.41
M4 0.31 1.41 3.03




Model-based inference.

Salix melanopsis

Parameter 2.50% Mode 97.50%
0, 0.002 0.00397 0.00574
6, 0.00247 0.00417 0.0058
0s 0.0022 0.00404 0.0058
0, 0.00067 0.00237 0.00407
M., 1.18 2.92 4.95
M3->1 1 (B 256 448
Menv 122 2% 519
Mo 1.27 2.64 4.56
M, ., 1.49 3.06 5.21
Mg .» 1.37 2.89 4.92
M.z 1.33 2.85 5.2
Mooz 1.53 3.45 5.80
My.3 1.49 3.47 5.77
M. 03 145 318
Moy 0.37 1.58 3.41
Mz .y 0.31 1.41 3.03




Model-based inference. Salix melanopsis

Diffusion Approximate Demographic Inference (dadi)

OPEN @ ACCESS Freely available online PLOS

Inferring the Joint Demographic History of Multiple
Populations from Multidimensional SNP Frequency Data

Ryan N. Gutenkunst'*, Ryan D. Hernandez?, Scott H. Williamson?, Carlos D. Bustamante®

1 Theoretical Biology and Biophysics and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America, 2 Human
Genetics, University of Chicago, Chicago, lllinois, United States of America, 3 Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United
States of America

« empirical data are summarized by allele frequency spectra

 expected AFS is calculated given demographic model, parameters
using diffusion approximation

* probability of data | model is calculated by composite likelihood



Model-based inference. Salix melanopsis

Coastal
dralnages &

time

InL = - 336.939

* derived from Hudson’s ms, so extremely flexible in terms of the
demographic models that can be specified.




Model-based inference.

Salix melanopsis

Coastal
dralnages

SCN - no y, equal 8

Saman

SCN - no y, equal 8, no M

Cearwater ~ Nordem

SCN-no M, equal 6




Model-based inference. Salix melanopsis

Northern

Inland temperate rainforest—three-dimensional AFS Salmon Clearwater Drainages
Model name —~InL k AIC A; w;
SCN—no v 331664 10 683.33 0.00 0.950
SCN—equaJ 0 337202 8 690.40 7.08 0.028
SCN—no v, no M 338687 7 69137 8.05 0.017 =408
SCN-—all 336939 10 69388 1055 0.005 (17,800 gbp)
CSN-—all 342744 10 70549 22.16 0.000 (18,000)
SCN—Brunsfeld model 345453 9  708.91 25.58 0.000
SCN-—no v, equal 0 349778 7 71356 30.23 0.000 (44,000) -
SCN—o v, no M, 354255 5 71851 35.18 0.000

equal 9 GC - 0‘007 2=033
SCN-—Carstens model 371995 11 765.99 82.66 0.000 (62,000) (590 gbp)
NSC—all 409803 10 83961 156.28 0.000

SCN-—Miller model 492.43 9 100286 319.53 0.000
‘ 6A =0.0002

(1800)

* Identifying a model with a good fit to the data allows us to make inferences
from estimates of the parameters that are relevant to our data.

« A very small ancestral population ~ 18,400 gbp gave rise to extant S.
melanopsis in a S-N direction.



Model choice with ABC. Plethodon idahoensis
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Model choice with ABC.

Plethodon idahoensis

isolation
&
3\0\) ¥
W O cC
- & S
isolation < \(\Q’ =
with 0 & o 2
migration (\Q \(\0 a s
O ’b(" n
> < =
OV, & —
isolation o 4
with
migration and
expansion

 simulate a prior distribution under a set of models using MS

(Hudson 2002)

- MSBAVYES (Hickerson et al. 2007) to perform rejection step



Model choice with ABC. Plethodon idahoensis
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Model choice with ABC.

Plethodon idahoensis

For each model: t0my

Divergence time (1) Theta (6) Migration (m) Population expansion ()
0: 1sland model 0:0,=6 =6, 0: no migration 0: no expansion
1: divergence at time (1) 1:6,=6 .6, l:m Ly,
2:0,=6,,6, 2:m, 2:y,
X: pamixia 3:0,,6,=6, 3:m,,m 37,7,
4:6,.,6, .6,
X: na/pamixia
Prior: 0.001-5 Prior: 0.01-10 perlocus | Prior: 0-5 migrants Prior: 0.1-9
(4N generations) per generation (exponential)

How does the composition of the model comparison set

influence the relative posterior probability?




Model choice with ABC.

Plethodon idahoensis

1000
PP=0.70

average Py, = 0.44

1000

Posterior Probaility of model
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0.0

Posterior probability of _1000 across replicates.

Replicates




Model choice with ABC. Plethodon idahoensis

1000
PP=0.70

0.040 Relative posterior probabilities of 144 models.
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Model choice with ABC. Plethodon idahoensis

0 « measured absolute model fit using posterior predictive
: simulation and mean Euclidean distance
o | [o * selected models for comparison that were
than the best score ever observed by chance
1000 . . . . .
PP 070 « compared 8 models in nested (island, isolation) comparison
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Model choice with ABC.

Plethodon idahoensis

0 mg, 6

Ys YN

P93 =1.0

* gene flow from south to north

 population expansion in north
and south, but yy >> v<
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Model choice with ABC.

Plethodon idahoensis

0
T
0 mg,, O
Ys TN
Pios = 1.0

* gene flow from south to north

 population expansion in north
and south, but y >> v«

» vastly different than m 4,

Piooo = 1.0

(naive analysis)



Model choice with approximate likelihoods. Phrapl

0 « model choice is complicated by biases inherent to these
vectors, to the point that some doubt its consistency
T (Robert et al. 2010)
0 mg,, O

lournal of Biogeography (1. Biogeogr.) (2013) 40, 131-141

PP Assessing model fit in phylogeographi-
Y Y il cal investigations: an example from the
S N North American sandbar willow Salix

melanopsis

Yi-Hsin Erica Tsai and Bryan C. Carstens*

* vector of summary statistics used to summarize the data in
the prior distribution and empirical data — chosen
following Tsai & Carstens (2013)

« complicates questions with inherent differences in dimensionality

* O'Meara (2010) showed that the L (D|M) can be approximated by calculating
the proportion of times that genealogies observed in the empirical data are
found in a distribution simulated under some model



Model choice with approximate likelihoods.

Phrapl

qora?

-1

ms (Hudson) < ms call generated by phrapl > simulates gene trees under each model

Phylogeographic Inference using Approximated Likelihoods

- based package < data description > set of all possible models based

((3.(1,7)).((2,8).((4,9).(6,(5,101))));
((7.(5,6)),((2,(10,(9,(4,8))),(1,3)));
((7.(9,10)),(1.((2,8),(6,(5,(3,4))))));
((6.(10,(9,(3,7)))),((2,4),(1,(5,8))));
((1,4).(3,(7.((6,10),(8,(5,(2,9))))));
((9,10),((7,8),((4,5),(2,(6,(1,3))))));

on the number of free parameters

modifiers generated (population size, diver-
gence times, migration regimes, expansion*)

(((2,(4,(7,9))).(3,5)),(8,(1,(6,10))));
((3.(7.(6,9))),(10,((5,8),(2,(1,4)))));
(8,(5,((6,(1,4)).(3,(2,(10,(7.9)0)))));
((7,(9,(6,10))),((8,(1,5)).(2,(3,4))));
((4,(5.(9.(2,6)))).(1,(8,(10,(3,7)))));
((7,(6,(10,(3,8)))),(2,(9,(4,(1,5)))));

for each model, perl script calculates the proportion of simulated trees that match
the empirical gene trees; this value approximates the -InL (data | model;)

model

locus 1 locus 2

locus i -InL

set of models evaluated using

M
M2
M3

10031

0.00023 0.00008 ...
0.00342 0.00542 ...

0 0002R 10

0.00068 -10.90267326
0.00254 -7.327140891

AIC or other approaches

*to be added




Model choice with approximate likelihoods. Phrapl

TE+110 1 A dumb' idea?
TE+100 -

TE4+90 -
T1E+80 -
1E+70 - Number of atoms in the universe
TE+60 -
TE+50 -
TE+40 -
TE+30 -
TE+20 -

TE+10 -

TE+O \ \ \ \ ] ]
0 10 20 30 40 50 60

"Phylogeographic Inference using Approximate Likelihoods. NSF (DEB 1257784)



Model choice with approximate likelihoods. Phrapl

Tree probabilities not uniform
(some trees much more likely than others)

o
™
S
o
> O
2 S
o o
=]
o
9] _
L
o
S -
o
sampled from Trees simulated under a phylogeographic model.
o 1
S unitorm
S I I I I I
0 50 100 150 200 250

Tree



Model choice with approximate likelihoods. Phrapl

Simplification 1: Sample labels within populations arbitrary

Observed Al A2 B1 B3 B2 Cl (2

Simulated Al A2 B1 B2 B3 Cl1 cC2

Match based on all possible labeling, then correct for this
i.e., three possible permutations, so if there is a match divide by 3 to get probability



Model choice with approximate likelihoods. Phrapl

Simplification 2: Polytomies are soft in gene trees (optional)

Observed Al A2 B1 B3 B2 Cl (2

Simulated Al A2 Bl B2 B3 Cl1 cC2

Match based on all possible resolutions, then correct



Model choice with approximate likelihoods. Phrapl

M. |. alascensis

M. L. relictus M. I. carrisma




Model selection as a tool for inference. Conclusions

* Model selection allows us to
identify models that are a
reasonable fit to the data.

* Parameter estimates should only
be used as the basis for inference
when they are made from
appropriate models.

* Model selection also can provide
clues that appropriate models are
not in the model comparison set.



Model selection as a tool for inference.

Conclusions

* Model selection allows us to
identify models that are a
reasonable fit to the data.

* Parameter estimates should only
be used as the basis for inference
when they are made from
appropriate models.

* Model selection also can provide
clues that appropriate models are
not in the model comparison set.

Model k AIC A, w;
AAC0O0 2 8769.0782 0 0471458846
AACDD 3 8769.5574 0.4792 0291964382
ABCO0 3 87709324 1.8542 0.073820156
ABCOD 4 8771.3364 22582 0.049285593
AACDE 4 87713892 2311 0.046750821
ABCDD 4 87715317 24535 0.04054173
ABCD0 4 8772386 33084 0017243441
FULL 5 8773332 42538 0.006699493
ABBO0 1 87758409 67627 0.000545055
ABAO0 2 87760193 69411 0.000455997
ABBDD 2 8776.0647 69865 0.000435758
AAAQ0 3 87764832 7405 0.000286743
ABADD 3 877675  7.6718 0.000219595
AAADD 2 8777.3167 82385 0.000124597
ABBDE 3 8777589 85108 949E-05

ABADE 3 8778.0647 89865 590E-05

AAADE 4 8779.5084 10.4302 139E-05




Model selection as a tool for inference. Conclusions

« ABC (Fagundes et al. 2007; Peter et al. 2009)
« BP&P (Yang & Rannala 2010)
e dadi (Gutenkunst et al. 2009)
* IMa (Hey & Nielsen 2007; Carstens et al. 2009)
* Migrate-n (Beerli & Palczewski 2010)
« MSBAYES (Hickerson et al. 2007)
STRUCTURE — Evanno’s k (Evanno et al. 2005)
* spedeSTEM (Ence & Carstens 2010)
« BEAST (spatial diffusion models) Lemey et al. 2010

* Phrapl (O’'Meara, Carstens et al. in prep)

* heuristic search of very complex model space (Carstens lab, under dev.)



Future work. Planned projects

heuristic search of very complex model space

* MEDs used as model optimality criteria in a heuristic search of complex
model space

« Matt Demarest is writing the code to heuristically search the models that
Pelletier & Carstens (in rev.) calculated exhaustively

 once performance using small model space is satisfactory, expand model
space to 3 and 4 diverging lineages

Populations Number of
Models

3
240
70,200
24,701,040
9,396,476,180

oau A W N -



Future work. Planned projects

heuristic search of very complex model space

*  MEDs will be used as model optimality criteria in a heuristic search of
complex model space

« Matt Demarest is writing the code to heuristically search the models that
Pelletier & Carstens (in rev.) calculated exhaustively

 once performance using small model space is satisfactory, expand model
space to 3 and 4 diverging lineages

new methods for comparative phylogeography
* novels methods seek to cluster codistributed species into some number of
groups, each defined as the product of a particular evolution history

 goal is to identify evolutionary communities (groups of organisms that
interact throughout evolutionary time)
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