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Abstract While transit agencies have increasingly adopted systems for col-
lecting data on passengers and vehicles, the ability to derive high-resolution
passenger trajectories and directly associate them with transit vehicles in a
general and transferable manner remains a challenge. In this paper, a system
of integrated methods is presented to reconstruct and track travelers’ usage of
transit at a detailed level by matching location data from smartphones to auto-
matic transit vehicle location (AVL) data and by identifying all out-of-vehicle
and in-vehicle portions of the passengers’ trips. High-resolution travel times
and their relationships with the timetable are then derived. Approaches are
presented for processing relatively sparse smartphone location data in dense
transit networks with many overlapping bus routes, distinguishing waits and
transfers from non-travel related activities, and tracking underground travel
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in a Metro network. The derived information enables a range of analyses and
applications, including the development of user-centric performance measures.
Results are presented from an implementation and deployment of the system
on San Francisco’s Muni network. Based on 103 ground-truth passenger trips,
the detection accuracy is found to be approximately 93%. A set of example
applications and findings presented in this paper underscore the value of the
previously unattainable high-resolution traveler-vehicle coupled movements on
a large-scale basis.

Keywords Transit Passengers · Smartphone Data · AVL Data · Location
Tracking · Travel Time Components · Performance Monitoring

1 Motivation and background

Tracking the trajectories and travel times of transit passengers as they travel
through a transit network can generate valuable data and insights for use
in operational and planning applications. For instance, data on exact board-
ing, transfer, and alighting stops can be used for the generation of origin-
destination (OD) matrices, and disaggregate data on individual access and
egress times, wait times, transfer times, and in-vehicle travel times can support
the derivation of user-based reliability and performance metrics to complement
supply-side metrics that are currently in use. Nonetheless, the complexity of
travel on transit makes the tracking of passengers across segments and the
measurement of the individual travel time components challenging.

So far, the data that have been available for these applications were from
surveys and automatic data collection systems, most notably automatic vehicle
location (AVL), fare collection (AFC) and passenger count (APC) data. In
fully gated systems, where the fare card needs to be tapped both upon entry
and exit from the system, the time spent in the system can be derived, but
typically there is limited to no information on out-of-vehicle trip segments. In
systems that are not fully gated and do not require passengers to tap their
fare cards upon exiting, information on alighting and transfer stops is missing.
In open systems without fare gates, or systems that do not require certain
categories of passengers (e.g., pass holders) to tap their fare cards, even the
information on boarding stops may not be exact. This makes determining
transit OD matrices and deriving travel time distributions challenging, as one
has to rely on inferences and limit oneself to the observed trip components.

In this paper, we present a new approach to tracking the trajectories of
individual transit passengers and measuring the components of passengers’
trips with minimal inferences by combining AVL data with smartphone loca-
tion traces. Individual-level smartphone location data can be collected from
dedicated survey apps or from a variety of commercial apps over long time
periods and with low respondent burden. These data allow a high resolution
view of individual trips as long as the traveler remains above ground, includ-
ing out-of-vehicle segments and exact information on stops. The methodology



presented here takes as input smartphone location data, automatic vehicle lo-
cation (AVL) data and static timetable data from the General Transit Feed
Specification (GTFS). In developing the system, there were several main ob-
jectives. The first was to systematically consider the components of transit
travel time from a passenger’s perspective, to describe them, and to develop
a framework that shows how they can be measured. The second objective was
to develop an automated, robust system that (a) can handle low-frequency lo-
cation data, collected approximately every 30 seconds but sometimes at larger
intervals, and (b) will work in dense transit networks where many routes over-
lap and many vehicles may be in the vicinity of a traveler at any given time.
The third objective was to develop a methodology for tracking underground
travel in a Metro network and combining it with statistics on transit travel
above ground. Furthermore, we present an approach for distinguishing wait
times at the origin stop and transfer times from legitimate activities.

2 Literature

To derive passenger-focused reliability metrics or transit OD matrices, passen-
ger trips have to be assigned to transit routes, stops and, if possible, vehicle
runs. There is a spectrum of methods published in the literature that make use
of AVL, AFC and APC data, in various combinations. As is summarized by
Zhao et al (2007), who uses AFC data with entry tags only, a common assump-
tion that is made when only entry data are available is that the stop where
passengers board on one trip is the stop where they alighted on the previous
trip. In fully gated systems, on the other hand, the exit location is known but
the routing or wait times may be unknown Chan (2007). Approaches to infer-
ring various travel time components on fully gated underground systems are
presented by Sun and Xu (2012), Frumin and Zhao (2012), and Seaborn et al
(2009). For above-ground systems, several authors (e.g., Nassir et al (2011);
Munizaga and Palma (2012); Gordon et al (2013)) have focused on connecting
passenger trips from bus AFC data to vehicle locations observed via AVL data
in an effort to better infer boarding locations and times when the boarding
stop was not recorded by the AFC system.

While these aforementioned contributions have been very valuable, they
have in common that due to the coarse resolution of the data, researchers could
not obtain exact measurements of every travel time component, including out-
of-vehicle travel times. Work that attempted to disaggregate total travel time
into its individual components did so primarily based on distributions of total
travel times.

There has been previous work that utilized passenger smartphone location
data, but it was mainly focused on determining the travel mode from data
collected through location and other sensors (e.g., accelerometer, microphone).
This has been performed by map-matching the location points in GIS (Chung
and Shalaby (2005); Gong et al (2012)), by extracting features from location
and accelerometer data related to velocity, acceleration, distance traveled, or



the proximity of transit stops and vehicles and using those as inputs for mode
classification algorithms (e.g., Gonzalez et al (2008); Stenneth et al (2011);
Parlak et al (2012)) or with a combination of the two methods (Biagioni et al
(2009); Thiagarajan et al (2010).

In summary, research utilizing smartphone and AVL data has so far been
focused on mode detection, and no study has combined high-resolution smart-
phone data to capture the demand side with AVL data to capture the supply
side. That is the purpose of the methodology presented in this paper.

3 Problem description and definitions

For every passenger for whom location data are available, we want to derive
that person’s personal transit travel diary, i.e., exactly when and from where to
where the person traveled on transit, on board which vehicle, and exactly how
much time was spent on board and waiting at the origin stop or at transfer
stops. These data allow us to generate high-resolution transit OD matrices,
and with repeated observations, to derive time distributions at a segment level.
In a second step, we want to be able to compare the observed travel times with
scheduled travel times on a per-segment basis to obtain deviation measures.
For the latter, we are not specifically interested in whether a given transit
vehicle was on time; we are interested in how the overall service received by a
passenger differed from the service that passenger could expect based on the
timetable.

We begin with two sets of raw data, the phone location data Lp and the
AVL data Lv. Each data point includes a time stamp, latitude, longitude and
a phone identifier (in Lp) or a vehicle identifier (in Lv). The timetable and net-
work information were obtained from the General Transit Feed Specification
(GTFS) file published by the agency. The phone location data were obtained
from a survey app.

In step 1, which is not described in the remainder of this paper but in-
cluded here for completeness, the raw AVL data must be matched to route
shape files to generate runs. A run is defined as a single transit vehicle in rev-
enue service on a fixed route traveling one way from one terminal to another
terminal. The vehicle position and stop locations are measured as the distance
from the departure terminal, called the milepost, and each run is described
by a trajectory that includes a set of time-milepost tuples. For stops that fall
between two AVL data points, the times are inferred via linear interpolation.

In step 2, the phone location data are matched to transit runs. For any
given user trip, it must be determined whether or not transit was used, and if
so, which runs the user was on, what the boarding, alighting and transfer stops
and corresponding times were. This happens in several steps. First, the user’s
phone traces are matched to runs and the boarding stop and alighting stop are
inferred. This is done in two separate processes: One that finds nearby runs for
every phone data point (“Initial vehicle matching”), and one that determines
whether any segments of the passenger’s trip were underground. The initial



matching process on the above-ground (surface) data yields so-called candidate
runs. Through further processing, a list of surface trip segments with the
respective access, egress and transfer stops is determined. In parallel, a list
of underground segments is compiled, and at the end, the two are merged.
If the traveler cannot be mapped to any surface or underground trips, this
step returns an empty result. The time between the boarding and alighting
from a single vehicle constitutes a transit segment, and in a next step, all
segments that are associated with the same trip (i.e., a user traveling from
one activity location to another) are assembled to form an uninterrupted,
alternating sequence of transit segments and transfers, plus an origin wait
at the beginning of the trip. The trip ends if the user stops to carry out an
activity somewhere.

In step 3, we then derive the personal schedule deviation metrics by com-
paring the observed wait times and travel times on each segment to what the
traveler could have expected from the timetable. This step takes a passenger-
centric rather than an operations-centric view of travel time variability, and
since no other input is collected from the traveler, it relies on some assumptions
about the desired departure time.

4 Detailed description of the phone-vehicle matching procedure

The procedure described in this paper was developed for analyzing travel
patterns on San Francisco’s bus and rail transit network, commonly called
“Muni”. The bus system operates entirely above ground, but the rail system
operates both above ground and underground. The location of the phones was
sampled every 30 seconds, though gaps of one to two minutes were not un-
common, which complicated the determination of access, egress and transfer
stops. In the following discussion, we assume that processing step 1 has al-
ready been performed and that the individual vehicle runs have been stored in
a database. We first describe the matching of phone points to vehicle location
points (section 4.1) and the inference of the access and egress stop (section
4.2). The inference of transfer stops is more complex and breaks down into
several subcases, which are presented in section 4.3. Following that, we de-
scribe the underground matching problem in section 4.4 and the derivation of
the final transit travel diary in section 4.5.

4.1 Determining above-ground transit trips

We first take a user-centric view: given the starting and end point of a trip,
and the respective series of location points Lp = {(lat0, lon0), (lat1, lon1), ...},
we create a three-dimensional search box defined by min(latn−∆), max(latn+
∆), min(lonn − ∆), max(lonn + ∆), t0, tmax and query the database for all
vehicle trajectories (runs) that traverse that box. We then use Dynamic Time
Warping to calculate the similarity between the phone trajectory and the



Fig. 1 Possible relationships between candidate runs (a-g).

vehicle trajectories, using the phone location time stamps for the time steps.
As a cost function we use the absolute distance between the points (the time
distance being zero) to match a linearly interpolated vehicle trajectory location
to every phone location. We then define a distance threshold and filter the
vehicle trajectories to obtain a set of candidate runs for every phone location
point.

Next, the transit runs where the user was most likely on board need to be
distilled from the candidate list. This can be challenging in dense networks or
corridors with overlapping routes, as the phone might be mapped to multiple
vehicles simultaneously. Due to positioning errors, the shortest distance be-
tween the phone and a vehicle may not necessarily indicate the correct match.
Instead, we switch to a run-centric perspective: Given the set of candidate
vehicles for every point, we group the data by run ID and create a candidate
run list. In practice, this is an associative array with the run ID as key and
a second associative array of run characteristics as value. The run character-
istics include a list of phone location points where the phone and the vehicle
were matched. This is equivalent to projecting the subsets of runs that are
close to the phone location onto the one-dimensional trajectory of the phone,
as is illustrated in figure 1. The gray line is the trajectory of the phone, with
the dots symbolizing location readings. Below, in black, are the sets of points
where the phone location matched a transit vehicle location. As an example,
in case (b), the phone was observed to be near this particular transit vehicle
in the third, fourth and fifth location point recorded by the phone, but in
no others. The base case, where the phone matched the same candidate run



over the entire trajectory, is illustrated at the top. If the phone is matched to
different candidate runs, the following relationships are possible:

1. They can be disjoint, as (a) and (c).
2. They can be identical, as (c) and (d).
3. One can be a subset of the other, as (b) is of (a).
4. They can share one location point, as (e) and (f).
5. They can share multiple location points, as (g) and (f).

First, we eliminate subsets (case 3). If two candidate runs are identically
matched (case 2), the one with the higher average distance between the phone
and the vehicle is eliminated. We have now retained only runs where the points
are either disjoint or overlapping as in 4 and 5. However, this does not allow us
to know whether two runs might overlap in reality, so we query the database
for every combination of candidate runs in categories 4 and 5 and request the
number of possible transfer stops within the overlapping segment. If there is
only one possible transfer stop, that pair is reclassified as being disjoint. With
only the “truly” overlapping candidate runs remaining in categories 4 and 5,
we can now think of the traveler’s trajectory as an undirected graph, repre-
sented by an adjacency matrix, with an arbitrary set of unconnected trees that
each represent a group of overlapping candidate runs.

The groups must now be processed. We traverse the graph in a breadth-
first search to extract overlapping runs and sort them by the time stamp of
the first location point they matched with the phone, then recursively do the
following:

1. Choose r0 and rN , the first and last run in the group.
2. Check whether they are disjoint.
3. If no, discard every run in between.
4. If yes, extract the “inner sequence”, i.e. the sequence of runs in between
r0 and rN , and repeat.

After eliminating subsets as described above, every run overlaps with at most
one other run at the beginning and the end.

4.2 Inferring access and egress stops

To determine the access stop, we use (l1, t1), the phone’s location and time
at the first point where it was matched with the transit run r, and the last
location/time before that, (l0, t0). We query the nearest transit stop served
by r to each of those two locations, s1 and s0, and the departure times, ts1
and ts0 . If s1 and s0 are not identical, one of the two is chosen as follows:

– Define a time window (t0 − ∆, t0 + ∆), and check if ts0 falls within that
window.

– Check that the gap between t1 and t0 does not exceed a certain threshold.

If both conditions are met, we designate s0 as the access stop, otherwise s1.
These conditions guard against gaps that are so large that an unobserved



Fig. 2 Scenarios for transfer stop detection.

activity aside from waiting may have occurred within it. The calculation of
the wait time at the access stop is discussed in section 5.1.

4.3 Inferring transfer stops

If two consecutive transit segments are identified for a user, e.g., run A on route
1 and run B on route 2, we first determine whether the time spent in between
the two segments was purely a transfer or whether the user stopped at that
location to carry out an activity. For that purpose, we check two conditions:

– Whether the user exited a certain perimeter around the transfer location.
– Whether more than a certain number of runs passed on route 2 between

the user alighting and boarding.

If any of these conditions is met, the time spent between alighting and board-
ing is marked as an activity rather than a transfer. If it is determined to
be a transfer, the transfer stop may again not be directly observable in the
data. Figure 2 illustrates three possible scenarios for the determination of the
transfer stop.

In case 1 in figure 2, there are unmatched location points between the
two runs, so the access/egress stops for runs A and B can be determined as



previously described. In case 2, there are no location points in between, so
we query the database for all possible transfer stops between the phone’s last
sighting on run A and its first sighting on run B. We then eliminate stop
combinations that were first served by run B and then by run A. Then, the
first stop served by run B after run A is selected as the transfer stop. In case
3, the phone is matched to both runs for a period of time. The database is
queried for all possible transfer stops within the segment matching both runs,
and again, only the stops are retained that were served by run B after run A.
Then, the first stop is chosen where the phone was closer to the vehicle on run
B than to the vehicle on run A.

4.4 The underground matching problem

4.4.1 Extracting underground travel segments

Phone location data are generally not available for underground segments,
though phones may still generate occasional location readings, either spuri-
ously or in metro stations where a signal is picked up. To identify underground
travel, geofences are created around every subway station and tunnel portal in
the system, and a ground truth set of typical data collection frequencies from
travel above and below ground is collected. The phone location data are then
scanned, and every point falling within a geofence is labeled, producing the se-
quence of geofences traversed. For every pair of geofences, the frequency of the
location data collection between them is calculated, and the time spent by the
user between the two geofences is classified as above-ground or underground
travel based on that frequency. This yields a list of geofence pairs between
which the user traveled underground. Sequential in-tunnel segments are com-
bined (e.g., (A → B,B → C = A → C), again using a frequency criterion to
detect cases where a person exited at a metro station and re-entered it later.

The location points matched to surface runs and those matched to un-
derground segments are not yet guaranteed to be non-overlapping. As a next
step, the relationship between every surface segment and every underground
segment is checked, and if the surface segment and the underground segment
intersect on one or more points, the surface segment is truncated to exclude
the beginning the underground segment. Finally, the routing between the entry
and exit point of every underground segment is inferred with a shortest-path
algorithm. This approach has limitations in complex networks where no one
path between two points is superior, so in other applications, additional infor-
mation on such as the time spent underground may need to be considered.

4.4.2 Merging underground and surface segments

In the Muni network, rail routes run underground in downtown but emerge
to the surface in outer districts. Those tunnel portals were included in the list
of geofences. To detect trips where the access was at a surface and the egress



at an underground stop or vice-versa, the end points of all remaining surface
and underground segments are compared; if an underground segment ends at
the tunnel portal where a surface segment begins, or vice versa, the two are
combined. At the end of this step, two lists are carried forward:

– A list of surface runs matched to the phone location data, including runs
where one of the stations used (access/egress) is underground.

– A list of independent underground segments where both the access and the
egress station are underground.

4.4.3 Inferring runs from underground-only data

For underground-only segments, we have underground AVL data but lack
phone positioning data. In the Muni network, underground travel involves
at most one transfer, and we have only two data points to match the phone to
a run: The last time the phone was “seen” inside the origin station geofence,
torig, and the first time inside the destination station geofence, tdest.

– If there was no underground transfer, we assume that all unobserved wait
time was incurred at the origin station. After defining a minimum egress
time for the given station k, tegress,k, we query the database for the run
between the origin and the destination station that arrived most recently
before tdest − tegress,k, then assign the user to it.

– If there was an underground transfer (e.g., from run A to run B), it is
unknown whether the unobserved wait time was incurred at the origin or
the transfer stop. We arbitrarily assume it was at the transfer stop. Run
B is determined as described above, and run A is determined by adding
an access time, taccess,j , to torig, querying the database for the first run
between the origin and the transfer stop that departed after torig+taccess,j ,
and assigning the user to it.

Given the uncertainties associated with underground segments, and the fact
that phones can sometimes report an old location if they are not able to
acquire a new one, the system should contain checks to ensure that the inferred
underground routing is feasible.

4.5 Deriving the final transit travel diary

After ordering the combined list of above-ground and below-ground transit
segments by time, we obtain a diary of all transit travel by the user. At this
point, the list may still contain segments identified as being on board transit
even though the phone user was inside a car or on a bicycle traveling alongside
a transit vehicle. Identifying these false positives is difficult based on location
data alone and would require additional sensor data, e.g., from the accelerome-
ter or microphone. With no additional sensor data, a simple heuristic approach
was chosen by eliminating transit segments that were either below a minimum
distance or where less than a given fraction of phone location points were



within a minimum distance of the vehicle. This assumes that due to speed dif-
ferentials between cars, bicycles and transit vehicles, the majority of spurious
matches would be short.

In the transit travel diary, a trip is series of transit segments between two
activity locations. At the beginning of the trip is an origin wait, and between
each subsequent segment is a transfer. This terminology is used in the following
sections, where the derivation of reliability measures is described.

5 Comparisons with timetable

With each user’s personal transit travel diary in hand, we compare the travel
times experienced by the user with what that person could have expected
based on the timetable. For that, we first need to calculate the experienced
wait times at origin stops and transfer stops for surface segments.

5.1 Characterization of the origin wait

The at-stop wait time is calculated by observing how long a person dwelled
within a certain radius around the origin stop before boarding. The challenge
is that, especially in dense cities, time spent in the immediate vicinity of the
stop before boarding may belong to an activity and not represent wait time.
Therefore, we query the database for all runs that served the passenger’s access
and egress stops while the passenger was observed to be near the access stop.
Time spent near a stop is only classified as wait time if:

– At most one run passed without being boarded by the passenger.
– A maximum wait time was not exceeded.

In order to compare a passenger’s observed wait time with a wait time
that the passenger could have expected based on the timetable, we need to
infer an intended scheduled departure based on the observed departure time.
Many transit planning sites and apps base their information on GTFS, and
thus on the static timetable, so a traveler who consults these products can be
considered to be cognizant of the timetable. It should be emphasized that this
is not an operational assignment, i.e., an assignment of observed departures
to scheduled departures, but rather, it is an inference about the scheduled
departure the passenger intended to take. Figure 3 illustrates different cases.

In case A, a departure was scheduled at s1, s2 and s3. All three were served
by an observed departure, and since the user arrived at the stop between s1
and s2, we infer that the user was intending to take s2. Due to crowding, the
user was not able to board d2 (which is counted as a “pass-up”) and instead
boarded d3, so the passenger experienced a deviation of d3-s2. Case B is very
similar, except that the passenger boarded d2, which departed slightly before
s2. In this case, the experienced deviation is d2-s2. In case C, neither s1 nor
s2 correspond to an observed departure. The passenger took d2, but we do



Fig. 3 Components of the origin wait time from a passenger’s perspective and inference of
intended departure time.

not know whether the passenger was intending to take s1 and got delayed,
or whether the passenger intended to take s2, but realized after consulting
real-time information that there was no departure at that time. d3 may have
been too late, so the passenger may have hurried to the transit stop to catch
d2. As an approximation, we assign the user’s intended departure to s1 and
s2 with equal probability and calculate the deviation as an average. The same
holds for case D. Lastly, in case E, both s1 and s2 correspond to an observed
departure, so we conclude that the passenger did not intend to take either of
those. We assign a deviation of zero to this case.

Case A in figure 3 also includes the observed headways, h1 through h3.
In addition to pass-ups and the experienced deviation, we track the observed
headways preceding and following the departure taken by the passenger and
compare them to the scheduled headways during that time period. In case A,
the observed headway would be h2 and h3, but since the passenger was unable
to board d2, we can consider the preceding headway to be h1+h2.

5.2 Characterization of the in-vehicle travel time

Once the passenger has boarded a vehicle, the passenger will experience an in-
vehicle travel time (IVTT). To calculate the deviation between the experienced
IVTT and what the passenger could have expected based on the schedule, we
must find a scheduled departure time that is close to the passenger’s observed
departure time. In cases A or B as described above, the assignment to an
intended scheduled departure time has already been made. In the other cases,
we assign it to the nearest scheduled departure based on simple heuristic rules.
This assignment has no behavioral significance; we only use it to query the



scheduled travel time between the passenger’s boarding and alighting stop,
ivttsched.

For the next steps, we need to know when the passenger could have ex-
pected to arrive at the transfer stop or the destination based on the schedule.
This can be calculated in different ways, leading to the following definitions:

– The projected arrival time is the observed departure time, d, plus the sched-
uled travel time.

– The scheduled arrival time is the scheduled departure time, s, plus the
scheduled travel time.

5.3 Characterization of the transfer time

Given a transfer between two runs, we can calculate the observed transfer
time. To compare it to the schedule and calculate any deviations, we use the
definitions of arrival times at the end of the previous section. Suppose the
passenger first used route 1. It was scheduled to depart at s1, but was delayed
and did not depart until d1. It was again delayed while the passenger was
on board, adding IVTT. Following the previous section, the scheduled arrival
time at the transfer stop would have been a1, the projected arrival time would
have been a2 and the observed arrival time was a3, with a1 ¡ a2 ¡ a3. Note
that d1-s1 = a2-a1.

At the transfer stop, the passenger transferred to route 2. There are two
scheduled departures, at s2 and later, s3. Both are delayed, so s2 departs at
d2 and s3 departs at d3. Assume that a1 ¡ a2 ¡ s2 ¡ d2 ¡ a3 ¡ s3 ¡ d3. The
passenger catches the connection at d3. Thus:

– The scheduled transfer time is s2-a1.
– The projected transfer time is d2-a2.
– The observed transfer time is d3-a3.

This assumes that neither the scheduled nor the projected transfer times are
less than the minimum transfer time for that stop.

Based on these definitions, we can calculate two deviation measures for
the observed transfer time: One with respect to the scheduled and one with
respect to the projected transfer time. This information is carried forward to
generate the scheduled and projected arrival times of the following segment,
which is required if a trip involves multiple transfers.

As with the origin wait, we are not only interested in the deviation of the
transfer time, but also in missed departures and pass-ups. Using the definitions
in this section, we get:

– The number of scheduled and observed departures that occurred between
the scheduled arrival time at the transfer stop and the observed arrival
time (a3-a1 ). These are connections that the passengers could have made
if the first segment(s) of the transit trip had departed on schedule and had
not been delayed en route.



– The number of scheduled and observed departures that occurred between
the projected arrival time at the transfer stop and the observed arrival
time (a3-a2 ). These are connections that the passengers could have made
if the first segment(s) of the transit trip had departed as it did, but had
not been delayed en route.

– The number of scheduled and observed departures that occurred during
the passenger’s wait time at the transfer stop (d3-a3 ).

6 Deployment, validation and example analyses

The system was deployed in a real-world, large scale study as part of the San
Francisco Travel Quality Study (SFTQS), which ran from October to Decem-
ber 2013 and is described in Carrel et al (2017). 756 of the study partici-
pants downloaded a survey app and consented to having their phone location
tracked during the study. The system described here identified approximately
7700 transit segments on Muni, of which 675 (8.8%) involved a Muni-to-Muni
transfer according to this paper’s definition.

6.1 Validation

To test the system, ground truth data were collected on a total of 103 transit
passenger trips in spring 2014, consisting of 86 above-ground bus or light rail
trips and 17 underground rail trips. The evaluation showed that 92 (89.3%)
of all runs were correctly identified and, for a further 4 underground trips,
the origin/destination stations and times were correctly identified, but due to
missing AVL data, the passengers were mapped to different trains. We include
those 4 in the list of correctly identified trips since the error was due to the
AVL data, and we conclude that the system identified transit trips with 93%
accuracy. Out of those 96 trips, the boarding and alighting stops were identified
exactly in 83 (86%) cases, and in 95 (98%) cases, the boarding and alighting
stops identified were within one stop of the true boarding and alighting stop.
These numbers describe the true positive rates. A limitation of this validation
procedure is that no ground truth data on non-transit trips was available, so
it was not possible to assess the false positive rates.

6.2 Example analysis: Contribution of origin wait and transfer time to total
travel time

To demonstrate the value of the disaggregate travel time data, we present a
high-level analysis of travel times experienced by passengers in a sample of
322 trips collected as part of the SFTQS. Only trips containing two transit
segments and one transfer are included in this analysis, and thanks to the
methodology presented here, out-of-vehicle wait times could be directly ob-
served. Figure 4 shows the contribution of origin wait time, transfer time and



Fig. 4 Contribution of trip segments to overall travel time.

IVTT to the total travel time - defined as the time between arriving at the
origin stop and alighting at the destination stop - experienced by the traveler.
As total travel time increases, the contribution of the origin wait time remains
between 8% and 14% of total travel time, but the contribution of transfer time
appears to increase, from approximately 17% for the shortest trips to 35% for
travel times between 50 and 60 minutes. For example, passengers who made a
45-minute trip spent, on average, 31 minutes in a vehicle and 14 minutes wait-
ing. Of those 14 minutes, approximately 9.5 were transfer wait time, which
was likely to have caused more disutility to the passenger than origin wait
time.

In a more in-depth analysis of 533 trips, travel time variability experienced
by a passenger between boarding at the origin stop and alighting at the des-
tination stop was attributed to either IVTT variability, variability of transfer
times, or both, according to a methodology described in Carrel et al (2015).
Variability was defined as the deviation of the experienced travel time from
the scheduled travel time, as defined in sections 5.2 and 5.3. It was found
that 26% of the observed deviations from scheduled travel time could be at-
tributed to IVTT variability, whereas 74% could be attributed to transfer time
variability. This finding underscores the importance of capturing and tracking
out-of-vehicle travel times, as they are a major source of unreliability experi-
enced by travelers.

In a separate analysis of origin wait times, we confirmed that the indepen-
dence of observed origin wait times from the trip distance, as shown in figure
4, could also be observed in other contexts. The observed wait times were not
found to differ strongly between different times of day or between infrequent



(headways ¿ 12 minutes) and frequent transit services, suggesting that thanks
to real-time information, passengers tended to time their arrivals at the stop
consistently and largely independently of the time of day or service type.

7 Conclusions

This paper introduced a system to extract the personal transit travel diary of
passengers by matching smartphone location data to AVL data. It described
the various components of a transit passenger’s trip and how they can be mea-
sured, focusing on the problems that can arise when phone location data are
sparse and when the phone is near multiple vehicles. Furthermore, it described
an approach to detect underground travel on metro networks when AVL data
but no phone location data are available. The procedure presented here is of a
general nature and can be applied to a variety of different systems; the steps
described can be understood as a blueprint. Because location data can be
collected from virtually any app, a researcher could use data from third-party
apps such as route planners, and the system described here requires no further
input from participants.

Detecting the origin, destination and transfer stops with phone location
data can support the derivation of OD matrices in systems where only in-
complete information, or none at all, is available from AFC data. The sample
application presented in this paper is intended to demonstrate the potential
value of such data, but there are numerous further applications where the out-
of-vehicle travel times, access and egress routes and times, and observed travel
time reliability derived from this matching procedure could be valuable.

Although the methodology has its limitations, we hope to address those
in future research. Notably, additional sensor data would help reduce false
positive rates caused by a person traveling alongside a transit vehicle and for
better distinguishing activities from wait times at stops, and a methodology is
needed to determine passenger routing in complex underground networks with
multiple possible paths. Overall, however, the approach outlined in this paper
is a promising step toward delivering data that will enhance the planning and
management of transit systems.
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