Variable phonological phenomena in speech perception: Regressive voicing assimilation and the perception of voicing contrasts in Spanish

Rebeka Campos-Astorkiza (she/her) campos-astorkiza.1@osu.edu

OCP21 Leipzig, Feb 14-16, 2024

GOAL OF THE STUDY

- Examine the role of assimilation in speech perception in cases where the assimilated feature is not contrastive but allophonic:
 - Focus on regressive voicing assimilation of /s/ in Spanish.

SPEECH PERCEPTION & PHONOLOGICAL KNOWLEDGE

- Speech perception as integration of acoustic/auditory cues and language-dependent phonological knowledge (Mitterer et. 2013, Durvasula et al. 2018, Cavirani and Hamann 2022):
 - Phonological processes can (i) resolve ambiguities in the acoustic signal and (ii) determine perception, despite conflicting acoustic cues.

- Role of assimilation in perception:
 - Perceptual compensation for assimilation allows listeners to retrieve underlying form of assimilated target sound.
 - Assimilation can determine perception of a given sound, even if the acoustic signal corresponds to a different one (Meunier 1999, Snoeren et al. 2005, Mitterer et al. 2013, Cavirani and Hamann 2022).

SPEECH PERCEPTION & ASSIMILATION

- Mitterer et al. (2013) examine regressive place assimilation in Korean (labial-to-velar):
 - [ŋ # k] => /m # k/ or /ŋ # k/ BUT [ŋ # s] => /ŋ # s/
 - *RQ*: Is the perception of [**ŋ** # k] & [**ŋ** # s] /m/ or /ŋ/?
 - Methods: Spoken word recognition task in eyetracking paradigm and categorization task
 - Finding: Korean listeners are more likely to perceive velar sound as underlying labial in an assimilationtriggering context ([ŋ # k]) than a non-triggering one ([ŋ # s]).
 - Korean listeners apply knowledge of place assimilation in perception.

SPEECH PERCEPTION & ASSIMILATION D

- Cavirani & Hamann (2022) assess regressive voicing assimilation (RVA) in Gallo-Italic varieties of N. Italy:
 - Obstruents agree in voicing with following obstruent.
 - RQ: Is a non-assimilated obstruent perceived as assimilated?
 - E.g., is bilabial in [apda] perceived as /p/ or /b/ ?
 - *Methods:* forced-choice segment detection task
 - *Finding*: Listeners perceive the obstruent as voiced more than half of the time.
 - RVA influences perception but acoustic cues also play role => integration of auditory cues and phonological knowledge.

- Previous studies focus on:
 - Perception of target sound where assimilated feature is contrastive for that sound
- Less is known about:
 - What happens when assimilation results in allophonic alternations?
 - What is the impact of assimilation on perception of trigger sound?

SPEECH PERCEPTION & ASSIMILATION

- Meunier (1997,1999) explores assimilation of noncontrastive feature for target sound in French:
 - Progressive voicing assimilation in obstruent+liquid:
 - [glas] "ice" vs. [klas] "class"
 - *RQ*: Does liquid voicing affect obstruent perception?
 - *Methods:* segment retrieval and forced-choice identification tasks
 - *Finding*: perception of obstruent as voiced/voiceless is determined by liquid voicing, plus acoustic cues.
 - Listeners apply progressive assimilation in perception.
 - Allophonic variation includes info on surrounding sounds.

REGRESSIVE VOICING ASSIMILATION IN SPANISH

- RVA of /s/ to following consonant in Spanish:
 - i[z]la 'island'de[z]de'from'ra[z]govs.ra[s]ko'feature, I scratch'la[z] gamasvs.la[s] camas'the ranges, the beds'mi[z] manos vs.mi[s] piernas'my hands, my legs'
- Fun facts about RVA of /s/ and Spanish:
 - /s/ is not contrastive for voicing but stops are.
 - RVA is gradient and variable (Schmidt & Willis 2010)
 - Dialectal differences in RVA: less voicing in Basque Country Spanish than other dialects (Campos-Astorkiza 2019, 2017, Sedó et al. 2020).

RESEARCH QUESTIONS

- Does allophonic voicing of Spanish /s/ play a role in the perception of the voicing contrast of a following obstruent (/p, t, k/ vs. /b, d, g/)?
- 2. Are there perceptual differences depending on the place of articulation of the obstruent and on voiced vs. voiceless /s/ allophones?

METHODOLOGY

LISTENING TASK

- Forced-choice Identification Task:
 - Listen to a 2-word sequence with assimilation context, /s/+obstruent, across words:
 - Examples: /las gotas/, /mis parkas/

'the drops, my coats'

- Decide what words they are according to obstruent's voicing:
 - Example: ¿Mis parcas o mis barcas?

'my coats or my boats?'

- 4 versions of a word sequence constituting a minimal pair for voicing – Examples:
 - /las bekas/ ~ /las pekas/
 - /las dunas/ ~ /las tunas/
 - /las kalas/ ~ /las galas/
- 'the scholarhips, the freckles'
 - 'the dunes, the music groups'
 - 'the coves, the galas'
- 2 voicing matching versions:
 - [s] + voiceless obstruent
 - [z] + voiced obstruent
- 2 voicing non-matching versions:
 - [s] + voiced obstruent
 - [z] + voiceless obstruent

- Creating the stimuli:
 - Recordings of a Castilian Spanish speaker reading the word sequences were manipulated in Praat:
 - Voiced and voiceless productions of /s/ were spliced to create the 4 versions mentioned earlier.
- Stimuli examples:

 Matching
 Ia[s] calas
 Ia[z] calas
 Non

 Ia[z] galas
 Ia[s] galas
 Ia[s] galas
 Ia[s] galas

- 40 test items:
 - 10 word sequences x 4 versions
- 40 distractors with other minimal pairs:
 - Example: /mis kanas/ vs. /mis kanas/

'my white hairs, my beds'

PROCEDURE

- Online survey via Qualtrics:
 - Linguistic background questionnaire
 - Perception task:
 - Randomized stimuli and distractors

PARTICIPANTS

- 120 listeners from Madrid and Basque Country, Spain:
 - Dialectal difference in production of RVA (Campos-Astorkiza 2017)
- Age range: 21-73

DATA ANALYSIS

- 2,400 tokens
- Dependent variable:
 - Accuracy rate according to voicing of obstruent
- Independent variables:
 - stimuli structure:
 - [s]+voiceless, [s]+voiced, [z]+voiceless & [z]+voiced
 - place of articulation of obstruent (/b, d, g/)
 - participants' origin (M vs. BC)
 - interaction bt. stimuli structure & other factors
- Logistic regression; pairwise comparisons for interactions in R.

STATISTICAL RESULTS

Table 1. Best-fit regression model

	estimate	std. error	z value	p value
(Intercept)	-2.0748	0.2042	-10.162	< 2e-16
Stimuli structure (ref=[s]+voiced)				
[s]+voiceless	-0.2697	0.3064	-0.880	0.37863
[z]+voiced	-3.4058	1.0208	-3.336	<0.001
[z]+voiceless	0.6034	0.2627	2.297	0.02164
Place of articulation (ref=b/p)				
d/t	-0.8784	0.4659	-1.885	0.05938
g/k	-0.0816	0.2938	-0.278	0.78121
Structure*POA (ref=[z]+voiced:b/p)				
[s]+voiceless:d/t	0.9295	0.6077	1.529	0.12615
[z]+voiced:d/t	3.8377	1.1565	3.318	<0.001
[z]+voiceless:d/t	2.1006	0.5272	3.984	<0.001
[s]+voiceless:g/k	-0.6184	0.4835	-1.279	0.20088
[z]+voiced:g/k	1.1928	1.1934	0.999	0.31758
[z]+voiceless:g/k	1.0178	0.3626	2.807	0.004^{20}

EFFECT OF STIMULI STRUCTURE D

- Lowest accuracy for non-matching stimuli
- Non-matching [z]+vlss => lowest accuracy (p<0.05)</p>
- Matching [z]+vd => highest accuracy (p<0.05)</p>
- Compare: Fillers' accuracy rate is 98%

 Table 2. Accuracy rate by stimuli structure

	Stimuli structure	% Correct
Matching	[s]+voiceless obst.	92.83%
	[z]+voiced obst.	97.83%
Non-matching	[s]+voiced obst.	90.33%
	[z]+voiceless obst.	69.00%

EFFECT OF PLACE OF ARTICULATION

Dental => lowest accuracy rate (p<0.05)</p>

Table 3. Accuracy rate by POA

b/p	d/t	g/k	
90.21%	83.75%	86.67%	

EFFECT OF STRUCTURE*POA

- For b/p and g/k:
 - Non-matching stimuli => lower accuracy than matching ones (p<0.05)
- For d/t:
 - Non-matching [s]+voiced => highest accuracy

	Stimuli structure	b/p	d/t	g/k
matching	[s]+voiceless obst.	91.25%	90.83%	95.42%
	[z]+voiced obst.	99.58%	92.5%	98.75%
non- matching	[s]+voiced obst.	88.75%	95%	89.58%
	[z]+voiceless obst.	81.25%	56.66%	62.92%

Table 4.Accuracy	rate by	stimuli	structure	and POA
------------------	---------	---------	-----------	---------

ROLE OF RVA IN PERCEPTION

- Results show /s/ voicing plays role in the perception of voicing contrast for following obstruent:
 - Higher accuracy for stimuli matching for voicing.
 - For non-matching stimuli, lower accuracy stems from listeners perceiving stop according to /s/ voicing, i.e., use their knowledge of RVA to perceive stop.

ASYMMETRY ACCORDING TO ALLOPHONE

- Asymmetry among non-matching stimuli accuracy is higher for [s]+voiced than [z]+voiceless.
- Pattern might stem from variable nature of RVA in Spanish (Campos-Astorkiza 2019, Sedó et al. 2020):
 - [s]+voiced may occur in production.
 - [z]+voiceless is very rare.
 - Importance of listeners' experience (cf. Mitterer et al. 2013)

POA EFFECT

- Dental POA shows highest accuracy for nonmatching [s]+voiced:
 - Dental production might be different from bilabial and velar => less constriction:
 - /d/ in Spanish tends to show more weakening (Colantoni & Marinescu 2010)
 - More weakening corresponds with higher intensity (ej. Carrasco et al. 2012) => more cues for voicing.
 - Dentals are more frequent in Spanish.

CONCLUSIONS

- New evidence of the role of assimilation on speech perception by focusing on RVA:
 - Variable RVA that results in allophonic alternations can impact perception.
 - RVA can impact the voicing perception of the trigger consonant.
- Findings align with approaches to speech perception as integration of phonological knowledge and acoustic/auditory cues:
 - Emphasizing the relationship between allophonic processes and perception of contrastive features.

NEXT STEPS

- Theoretical formalization of the phenomenon:
 - BiPhon-OT (Boersma 2011, Cavirani and Hamman 2022)
- Broader empirical study with more data:
 - Shadowing task
 - Dialectal variation

References

- Boersma, P. (2011) A programme for bidirectional phonology and phonetics and their acquisition and evolution. In Benz & Mattausch (eds.), *Bidirectional Optimality Theory*. Amsterdam: Benjamins. 33–72
- Campos-Astorkiza, R. (2017) Voicing assimilation and weakening of /s/ in Iberian Spanish: connecting both phenomena in a gestural model. In Marrero Aguiar & Estebas Vilaplana (eds.), Current Trends in Exp. Phonetics.
- Campos-Astorkiza, R. (2019) Modelling assimilation: The case of sibilant voicing in Spanish. In Gil & Gibson (eds.), Contemporary Studies in Romance Phonetics and Phonology. Oxford University Press. 241-275.
- Cavirani, E. & S. Hamman (2022) Formalising phonological perception: The role of voicing assimilation in consonant cluster perception in Emilian dialects. *J. Linguistics*, 1–32.
- Colantoni, L. & I. Marinescu (2010) The scope of stop weakening in Argentine Spanish. In Ortega-Llebaria (ed.), Sel. proceedings of 4th Conference on Laboratory Approaches to Spanish Phonology. Cascadilla Proceedings Project.
- Durvasula, K. et al. (2018) Phonology modulates the illusory vowels in perceptual illusions: Evidence from Mandarin and English. Laboratory Phonology 9.
- Gaskell, M. (2003) Modeling regressive and progressive effects of assimilation in speech perception. *J Phonetics* 31
- Hwang, S.O., P. Mohanan & W. Idsardi (2010) Underspecification and asymmetries in voicing perception. *Phonology* 27.
- Mitterer, H., S. Kim & T. Cho (2013) Compensation for complete assimilation in speech perception: The case of Korean labial-to-velar assimilation. *Journal of Memory and Language* 69.
- Snoeren, N. D., P.A. Hallé & J. Segui. (2006) A voice for the voiceless: Production and perception of assimilated stops in French. *Journal of Phonetics* 34.
- Meunier, C. (1999) Recovering missing phonetic information form allophonic variation. In *ICphS* 1999.
- Meunier, C. (1997) Voicing assimilation as a cue for cluster identification. Proceedings of the Fifth European Conference on Speech Communication and Technology, Rhodes.
- Schmidt, L. & E. Willis (2011) Systematic investigation of voicing assimilation of Spanish /s/ in Mexico City. In Alvord (ed), Sel. Proceedings 5th Conference on Laboratory Approaches to Romance Phonology.
- Sedó, B., L. Schmidt & E. Willis (2020) Rethinking the phonological process of /s/ voicing assimilation in Spanish: An acoustic comparison of three regional varieties. *Studies in Hispanic and Lusophone Linguistics* 13(1).

Eskerrik asko! Thank you! ¡Muchas gracias!

- 1. /las batas/ ~ /las patas/ 'the robes, the legs'
- 2. /las barkas/ ~ /las parkas/ 'the boats, the parkas'
- 3. /las **b**ekas/ ~ /las **p**ekas/
- 4. /los **b**ojos/ ~ /los **p**ojos/
- 5. /las **d**unas/ ~ /las **t**unas/
- 6. /las **d**omas/ ~ /las **t**omas/
- 7. /las komas/ ~ /las gomas/
- 8. /las kotas/ ~ /las gotas/
- 9. /las kalas/ ~ /las galas/
 10./las kasas/ ~ /las gasas/
- 'you eat them, the erasers' 'the levels, the drops'
 - 'the coves, the galas'
 - 'the houses, the gauzes'

'the scholarships, the freckles'

'the dunes, the music groups'

'you tame them, you take them'

'the pastries, the chickens'