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Summary
This work is motivated by the need to accurately model a vector of responses
related to pediatric functional status using administrative health data from inpa-
tient rehabilitation visits. The components of the responses have known and
structured interrelationships. To make use of these relationships in modeling,
we develop a two-pronged regularization approach to borrow information across
the responses. The first component of our approach encourages joint selec-
tion of the effects of each variable across possibly overlapping groups of related
responses and the second component encourages shrinkage of effects towards
each other for related responses. As the responses in our motivating study are
not normally-distributed, our approach does not rely on an assumption of multi-
variate normality of the responses. We show that with an adaptive version of our
penalty, our approach results in the same asymptotic distribution of estimates
as if we had known in advance which variables have non-zero effects and which
variables have the same effects across some outcomes. We demonstrate the per-
formance of our method in extensive numerical studies and in an application
in the prediction of functional status of pediatric patients using administrative
health data in a population of children with neurological injury or illness at a
large children’s hospital.
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1 INTRODUCTION

Each year in the United States more than 20,000 children are diagnosed with an acute neurologic injury or illness
that result in debilitating physical and cognitive complications, and reduced quality-of-life.1-4 These events are costly.
As an example, it is estimated that one billion dollars are spent annually on management of pediatric traumatic brain
injury (TBI)-associated hospitalizations.5 Though neurologic illnesses and injuries as a category are a leading cause of
morbidity in children, each individual diagnosis is uncommon. These low disease-specific incidences make the study
of rehabilitation interventions for children with neurologic injuries or illnesses challenging. Further, since many of the
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material effects manifest in the long term and can change with later child development, it is important to be able to track
outcomes over time.

The WeeFIM® is a validated scoring system for appraising functional ability in children and provides valuable infor-
mation about a multitude of components of health in children with neurologic injury or illness. WeeFIM® is administered
and scored by trained assessors and has been demonstrated to have high interrater reliability. WeeFIM® has been shown
to be predictive of longitudinal functional recovery of children with neurological disorders and can be used for discharge
planning, prediction of functional outcomes, and documentation of functional performance of children over time to assess
recovery or decline. Yet, because the WeeFIM® system requires trained assessors, scores for all children are not always
available. WeeFIM® training and subscription is expensive and time-intensive and thus there is significant interest in
being able to assess broadly the functional ability of children across a health system without the need for explicit scoring
by trained assessors. One avenue for doing so is to relate administrative data sources to WeeFIM® scores to facilitate care
management and identify individuals who may require additional care or rehabilitation. Our interest is thus in build-
ing predictive models to understand functional ability of children using administrative health data in scenarios where
WeeFIM® is not used. WeeFIM® scores have particular characteristics and organization. In this work we seek to leverage
these characteristics to facilitate the building of accurate and interpretable WeeFIM® risk models. We now describe these
characteristics and how we aim to utilize them in this paper.

WeeFIM® is comprised of 18 component scores, each of which is measured on a 7 point Likert scale with 7 indicating
complete independence and 1 indicating complete dependence on others to perform various tasks. The WeeFIM® com-
ponent scores are categorized into three main domains: mobility, cognition, and self-care, and represent three distinct
clinical concepts related to functional outcomes. We describe the components of each domain in Section 4. In our dataset,
the correlations of the WeeFIM® component scores align closely with these domains. We computed the distance corre-
lations6 of all pairs of the 18 WeeFIM® components to form an 18 × 18 distance matrix and ran a hierarchical clustering
algorithm on the resulting distance matrix. As can be seen in Figure 1, the scores in the cognition domain are immediately
completely separated from the scores in mobility and self-care; self-care and mobility separate from each other later in
the hierarchical clustering.

In our motivating study, we aim to use information commonly present in administrative health data including Inter-
national Classification of Diseases (ICD)-9 and -10 codes, Current Procedural Terminology (CPT) codes, pharmaceutical
codes, data indicating durable medical equipment use, and basic demographic information to predict and evaluate func-
tional outcomes in children admitted to an inpatient rehabilitation unit with a diagnosis of neurologic injury or illness

F I G U R E 1 Heatmap of the distance correlations of the WeeFIM® scores. The dendrogram from hierarchical clustering of the scores
shows that they group naturally by the three major WeeFIM® domains: self care, mobility, and cognition; thus the pre-defined domains align
well with the natural variation in the components in our motivating study.
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at a large children’s hospital. Our code information is high-dimensional, with well over 500 billing codes as potential
predictors of a child’s functional status.

To deal with high-dimensionality, one could fit lasso-penalized regression models7 for each of the 18 scores sepa-
rately, however this would ignore the inherent relationships and similarities between the components. First, as some
WeeFIM® components are highly related (eg, dressing lower and dressing upper, bowel management and bladder man-
agement, bathing and tub shower), it is plausible that some variables (eg, billing codes) may have the same or similar
effects across some of the WeeFIM® components. Similarly, some variables may not have the same effect size across some
WeeFIM® components, but are likely to be jointly predictive for multiple components, especially for related components,
or even for all components. A complication is that while linearity of effects of covariates on the components may be rea-
sonable, an assumption of normality of the responses or error terms is not, as the WeeFIM® component scores are not
normally-distributed.

There exists some work for building models for multivariate responses using high-dimensional predictors. Rothman,
et al8 introduced a lasso-based estimation procedure that incorporates variable selection and covariance estimation for
multivariate normal responses and developed an iterative estimation procedure that makes use of the covariance struc-
ture among the responses by penalizing the inverse covariance matrix using the methods of Yuan and Lin.9 However,
this approach does not make use of similar predictor-response relationships across related responses and only borrows
information across responses through their covariance structure. Sofer et al10 extended these ideas to incorporate a wider
variety of penalties such as the SCAD penalty11 and the MC+ penalty12 and developed new algorithms for estimation. Li
et al13 incorporated group structure both in responses and among predictors using an overlapping group lasso penalty,14

which allows for borrowing of strength across responses through joint selection of variables across related responses.
In our work, we borrow strength across responses in two ways through two different structured sparsity inducing

penalties. In particular, we first aim to incorporate joint selection and removal of variables across all responses and joint
selection and removal of variables across related responses (ie, responses that are in the same functional domain). In
our application, the group structure is the natural groups formed by the WeeFIM® components displayed in Figure 1.
Thus, we require use of a group lasso15 with overlapping groups14 similar to Li et al.13 Second, we use a fused lasso16

for shrinkage of the effects of a variable across related outcomes to borrow strength more explicitly in estimation by
partially collapsing models across different responses into a single model for individual variables separately. The fused
lasso penalty allows a variable’s effects across related responses to be estimated to be exactly the same. We prove that
with adaptively chosen weights17,18 but for the overlapping group lasso as in Huling et al19 and fused lasso as in Viallon
et al,20 our doubly-structured sparsity inducing estimator has an oracle property. The theoretical results are general in
that they allow for any arbitrary overlapping group structure for the group lasso penalty and any arbitrary fused lasso
penalty. The oracle property we show demonstrates that estimation for the non-zero coefficients has the same asymptotic
distribution as if we had known in advance both (i) which coefficients are non-zero and (ii) which coefficients are equal
to each other and fit models with only the non-zero coefficients and forcing the truly equal coefficients to be equal to each
other. We also show selection consistency for the non-zero coefficients and selection consistency for which coefficients
are equal to each other. Neither our methodology nor our theory requires an assumption of normality or independence of
the responses, as we work under a semiparametric multivariate linear model assumption, where we make no parametric
distributional assumptions about the error terms. Further, our theory, methodology, and computational approach allows
for general use of the overlapping group lasso in combination with the fused lasso beyond our application to multivariate
response regression.

The remainder of our paper is organized as follows. In Section 2.1, we introduce the key definition of our methodology.
In Section 2.5, we develop theory for our methodology using adaptive regularization under semiparametric multivariate
linear models and in Section 3, we investigate the operating characteristics of our method in small samples using sim-
ulation experiments. In Section 4, we demonstrate the use of our methodology on our motivating application involving
pediatric functional outcomes score modeling. Finally, we conclude with discussion.

2 DOUBLY STRUCTURED SPARSITY FOR MULTIVARIATE RESPONSES

2.1 The overlapping group + fused method

We assume that the observed multivariate response yi = (yi1, … , yiK)⊤ follows the semiparametric linear model

yi = 𝜷0⊤xi + 𝝐i for i = 1, … ,N, (1)
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2622 HULING et al.

where xi = (xi1, … , xip)⊤ is a length p vector of predictors, 𝜷0 is a p × K matrix of regression coefficients with kth column
equal to 𝜷0

⋅,k = (𝛽
0
1,k, … , 𝛽

0
p,k)

⊤, and 𝝐i = (𝜖i1, … , 𝜖iK)⊤ is a vector of errors with mean zero and finite, positive definite
variance-covariance matrix 𝚺; no requirement that the response vector be continuous is required, as we do not assume
a particular distribution for 𝝐i. Denote the jth variable’s coefficients across the K response as 𝜷0

j,⋅ = (𝛽
0
j,1, … , 𝛽

0
j,K)

⊤. Let X
denote the N × p matrix of predictors with ith row as x⊤i and jth column as x⋅,j and let Y denote the N × K response matrix
with ith row as y⊤i and denote the kth column of Y as Y⋅,k. The typical least squares estimator is the solution of

argmin
𝜷

(2N)−1tr
[
(Y − X𝜷)(Y − X𝜷)⊤

]
,

which is simply (X⊤X)−1X⊤Y, where for a matrix A, tr(A) indicates its trace.
In our setting, the K outcomes are grouped into M different, possibly overlapping groupings that describe inherent

relationships between the outcomes. In our motivating data, the WeeFIM outcomes are grouped into three pre-defined
domains that represent different categories of functional status. In other settings, these domains may be further subcate-
gorized. In this manner, the groupings generally correspond to hierarchically-organized categorizations of the outcomes.
In this work, we make use of the natural grouping of the outcomes by adding regularizers that induce the coefficients
of each different variable to be selected or removed jointly across an entire group of the responses. The jth grouping
j consists of a set of gj groups Gj,1, … ,Gj,gj such that the union of the groups includes all of the K outcomes. Gener-
ally, since the groupings will be hierarchically defined, gj will be larger than gj+1 and groups in j can be expressed as
unions of groups in j+1. More formally, the groupings are written as 1 = {G1,1, … ,G1,g1}, … ,M = {GM,1, … ,GM,gM},
where Gm,g ∈ {1, … ,K} ≡  and

⋃
G∈m

G =  for m = 1, … ,M. To encourage a variable to be selected jointly across
all responses, we define the trivial group 0 = {}, thus G0,1 =  = {1, … ,K}. To allow variables to be selected or
removed individually, we further include the group M+1 = {{1}, … , {K}}, thus GM+1,k = {k}. The group structure for
a toy example with K = 8 responses and M = 1 groupings is displayed in Figure 2. We note that in this toy example, the
groups are overlapping (eg, G1,1 ⊂ G0,1) because the groups are hierarchically structured. In our motivating application,
the group structure we use involves such overlapping groups.

In our setting the outcome groupings are pre-defined, but in general when such a pre-defined set of groups are
not available a priori, the M groupings can be formed by iteratively refined, hierarchical groupings of the responses, as
illustrated in Figure 1; for example, the M groupings could be formed by clustering the responses at M different levels in
a hierarchical clustering of the responses.

For a particular group G ∈  with size |G|, define the length |G| subvector of 𝜷 j,⋅ limited to the outcomes in group G
as 𝜷 j,G. We propose to add to the above objective function two regularizers that induce sparsity in a structured manner.
Let ̂𝜷 be the solution of the following problem

argmin
𝜷

(2N)−1tr
[
(Y − X𝜷)(Y − X𝜷)⊤

]
+ 𝜆1P1(𝜷) + 𝜆2P2(𝜷) (2)

F I G U R E 2 An illustration of the structure of the two components of the penalization methods used to induce group-wise selection of
covariate effects and fuse them to be more similar. Blue indicates joint selection across all responses via the group 0, red indicates joint
selection by response group M = 1, green indicates individual coefficient selection achieved via the group M+1, and black indicates
shrinkage towards a common effect within response group G1,k.
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HULING et al. 2623

where

P1(𝜷) =
p∑

j=1

M+1∑

m=0

∑

G∈m

𝜆1,j,G||𝜷 j,G||2

and

P2(𝜷) =
p∑

j=1

∑

G∈M

∑

l,o∈G∶l≠o
𝜆2,j,l,o|𝛽j,l − 𝛽j,o|,

where the penalty 𝜆1,j,G||𝜷 j,G||2 is an overlapping group lasso penalty encourages joint selection or removal of the effects
of variable j across the responses in response group G. All possible zero patterns of coefficients can be represented as
unions of groups due to the results of Jenatton et al;14 hence nonzero patterns of coefficients can be thought of as com-
plements of unions of groups. Thus, the grouping 0 encourages joint selection and removal of effects for a variable
across all outcomes simultaneously and grouping M+1 allows for individual selection or removal for each outcome sepa-
rately, while the groupings 1, … ,M allow for selection or removal of effects across related groups. The second penalty
𝜆2,j,l,o|𝛽j,l − 𝛽j,o| is a fused lasso penalty that encourages the effect of variable j on response l and on response o to be
more similar. Thus, P1(𝜷) and P2(𝜷), respectively, help borrow strength across the K responses by (1) leveraging the nat-
ural groupings of the responses and taking advantage of joint significance of predictors across related responses and (2)
encouraging the effect estimates for a particular variable to be similar across the most related responses according to the
response groupings. These two regularizers incorporate structural knowledge about outcomes in two manners by utiliz-
ing two different types of structured sparsity inducing penalties. The overall structure of the regularizers are depicted in
Figure 2 in a toy example with K = 8 responses. In our formulation, we only add a fused lasso penalty within the final
grouping M , reflective of the notion that with an iteratively refined grouping, the final groups are likely to have more
similar outcomes within each group. However, the fused lasso penalty can be added within any grouping and can even
be set so that fused lasso terms are included for every possible pair of responses; our asymptotic results cover any arbi-
trary set of fused pairs. In our application, the multivariate outcomes are measured on the same scale, but our approach
can be adapted to outcomes that have different scales by standardizing the outcomes prior to analysis. Further, as we
list below, our adaptive penalization allows for the fused lasso penalty to adapt to observed differences in effects across
outcomes.

To perform adaptive penalization, we take 𝜆1,j,G = ||̂𝜷
OLS
j,G ||−𝛾1

2 and 𝜆2,j,l,m = | ̂𝛽
OLS
j,l − ̂

𝛽

OLS
j,m |−𝛾2 , where 𝛾1, 𝛾2 > 0 and

̂𝜷
OLS

= (X⊤X)−1X⊤Y is the ordinary least squares estimate of 𝜷. We study this adaptive version of our estimator in
Section 2.5. For non-adaptive penalization, we take 𝜆1,j,G = |G|1∕2, as is used in Jenatton et al14 and Huling et al19 and
𝜆2,j,l,m = 1, however for this choice selection consistency is not guaranteed without an irrepresentable condition.14 In
order to get reliable estimates of out-of-sample performance using cross validation when the group structure is derived
in a data-driven manner, the procedure used to estimate the group structure should be applied in each cross validation
fold instead of being fixed.

2.2 Implementation details

In our implementation, we use a generic ADMM algorithm described in the next section for computation and feed into it
the response vector ̃Y and design matrix ̃X, where the latter is treated as a sparse matrix object that only stores the values
and locations of the non-zero entries of ̃X, which both dramatically saves space, memory used, and reduces computation
time. The sparse matrix object is of the type provided in the Eigen C++ linear algebra library21 with interface to an
R package through RcppEigen,22 allowing for highly efficient sparse-matrix manipulations. Our R package implemen-
tation of our method is groupFusedMulti available in the open source repository https://github.com/jaredhuling/
groupFusedMulti, which uses an interface similar to the interface used in glmnet.

For ease of tuning the tuning parameters, we utlize the following re-parameterization of 𝜆1 and 𝜆2. Instead of using the
penalty 𝜆1P1(𝜷) + 𝜆2P2(𝜷), we use 𝜆(1 − 𝛼)P1(𝜷) + 𝜆𝛼P2(𝜷), where 𝜆 ≥ 0 and 𝛼 ∈ [0, 1] so that 𝛼 controls the proportion
of the total penalty that the fused lasso comprises.
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2624 HULING et al.

2.3 Computation via a multi-block ADMM algorithm

We utilize an alternating direction method of multipliers (ADMM)23-25 algorithm for optimization. The ADMM algorithm
works by decomposing an objective function and solving the decomposed subproblems iteratively, where each subprob-
lem has a simple and computationally tractable form. ADMM solves problems of the form

minimize f (𝜷) + P(𝜸) subject to A𝜷 + B𝜸 = c

where A and B are constraint matrices, both f and P are convex functions, 𝜷 is the parameter vector of interest, and
typically f represents some loss function and P represents a penalty. In the simplest case the constraint is of the form
𝜷 = 𝜸 and the purpose of the constraint is to find a new variable for which the penalty is equivalent, but separable across
loss and penalty in the terms of the new variable. To optimize our objective, we require the following multi-block version
of ADMM

minimize f (𝜷) + P1(𝜸) + P2(𝜼) subject to A𝜷 + B𝜸 + C𝜼 = c,

where C is an additional constraint matrix that allows the second penalty to have a decomposed form with loss
and the two penalties all separable from each other. To solve the above problem, the augmented Lagrangian is
formed as:

L
𝜌
(𝜷, 𝜸, 𝜼, 𝝂) = f (𝜷) + P1(𝜸) + P2(𝜼) + 𝝂⊤(A𝜷 + B𝜸 + C𝜼 − c)

+ (𝜌∕2)||A𝜷 + B𝜸 + C𝜼 − c||22,

where 𝜌 is any strictly positive number. The multi-block ADMM algorithm iterates by alternatingly minimizing with
respect to 𝜷, 𝜸, and 𝜼 and following these minimizations, updating the Lagrangian parameter 𝝂:

𝜷 (t+1) = argmin
𝜷

L
𝜌

(
𝜷, 𝜸(t), 𝜼(t), 𝝂(t)

)
(3)

𝜸(t+1) = argmin
𝜸

L
𝜌

(
𝜷 (t+1)

, 𝜸, 𝜼(t), 𝝂(t)
)

(4)

𝜼(t+1) = argmin
𝜼

L
𝜌

(
𝜷(t+1)

, 𝜸(t+1)
, 𝜼, 𝝂(t)

)

𝝂(t+1) = 𝝂(t) + 𝜌
(

A𝜷(t+1) + B𝜸(t+1) + C𝜼(t+1) − c
)

(5)

where t indexes the iteration number. The standard ADMM has been shown to converge for any 𝜌 > 0 and the multi-block
ADMM algorithm above has been shown to converge under certain conditions on A, B, and C. These conditions, from
Chen et al,26 are met if either A⊤B = 0, B⊤C = 0, or A⊤C = 0.

The following describes the multi-block ADMM algorithm applied to the overlapping group lasso with fused lasso
problem. Let m =

∑
G∈ |G|, g = ||, and suppose  = {G1, … ,Gg}, let F = (F1, … ,Fg) be a matrix of dimension

m × Kp where Fl is a |Gl| × Kp matrix with (i,j)th entry equal to 1 if j is the ith element of group Gl, and 0 otherwise,
∀j = 1, … , g. Then F𝜷 is a vector of length m comprised components of 𝜷 where each element of 𝜷 appears in F𝜷
the total number of times it appears in any group. For example, if p=1, K=3, 𝜷 = (𝛽1, 𝛽2, 𝛽3)⊤ and  = {{1, 2}, {2, 3}},
then

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and F𝜷 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝛽1

𝛽2

𝛽2

𝛽3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

In this example, the penalty P1(𝜸) is = 𝜆1(𝜆1,G1 ||(𝛾1, 𝛾2)||2 + 𝜆1,G2 ||(𝛾3, 𝛾4)||2), which is a standard group lasso penalty on
the variable 𝜸. In general, the overlapping group lasso penalty P1(𝜸) can be written as P1(𝜸) = 𝜆1

∑g
l=1𝜆1,Gl ||𝜸l||2, where

𝜸 = (𝜸1, … , 𝜸g) and 𝜸l is a |Gl|-dimensional vector. Note that for the nonoverlapping group lasso, A = IKp, where IKp is
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HULING et al. 2625

the identity matrix of dimension Kp × Kp. To accommodate the fused lasso penalty, we allow for a more general penalty,
the generalized fused lasso penalty. Denote the matrix D with e rows and Kp columns where each row represents a pair
of effects which have a fused lasso penalty applied. Thus e is the total number of fused lasso terms/pairs. For example,
if the pair of effects 𝛽j,𝓁 and 𝛽j,m are have a fused lasso applied, then the row of D corresponding to this pair will have 𝓁
th position taking the value 1 and the mth position taking the value −1. In the toy example in Figure 2, if 𝛽1 has a fused
lasso penalty with 𝛽2 and 𝛽2 has a fused lasso penalty with 𝛽3, then

D =

(
1 −1 0
0 1 −1

)

, and D𝜷 =

(
𝛽1 − 𝛽2

𝛽2 − 𝛽3

)

.

In this example, the P2(𝜼) = 𝜆2(𝜆2,1|𝜂1| + 𝜆2,2|𝜂2|), which is a standard lasso penalty on the variable 𝜼. In general, the fused
lasso penalty P2(𝜼) can be written as P2(𝛽) = 𝜆2

∑e
l=1𝜆2,l|𝜂l|,where 𝜼 is an e-dimensional vector. The ADMM algorithm for

the overlapping group lasso plus the fused lasso is constructed by taking

A =

(
F
D

)

,B =

(
− Im

0

)

,C =

(
0
− Ie

)

, and c = 0,

which meets the condition that B⊤C = 0, meaning a multi-block ADMM algorithm using this setup is valid and con-
vergent. When f (𝜷) = 1

2
||̃Y − ̃X𝜷||22, step (3) for the overlapping group lasso is simply the solution of (̃X

⊤

̃X + 𝜌(F⊤F +

D⊤D))𝜷 = ̃X
⊤

̃Y + (F⊤,D⊤)𝝂(t) + 𝜌(F⊤𝜸(t) +D⊤𝜼(t)). When f (𝜷) is the negative log-likelihood, step (3) can be carried out
by Newton-Raphson or other standard optimization techniques. As step (4) is group-separable, it can be minimized
by minimizing with respect to each group 𝜸l independently. This is achieved by the block soft-thresholding opera-
tor S

𝜆1𝜆Gl
∕𝜌((F𝜷 (t+1))l − 𝝂(t)l ∕𝜌), where S

𝜆
(u) = u (1 − 𝜆∕||u||2)+ and (F𝜷(t+1))l and 𝝂(t)l are defined in the same way as 𝜸l.

Since (5) is separable and is equivalent to a type of lasso penalization problem, it can be similarly minimized sim-
ply via soft thresholding: S

𝜆2𝜆j∕𝜌((D𝜷
(t+1))j − 𝝂(t)j ∕𝜌), where with some abuse of notation (D𝜷(t+1))j is the jth element of

(D𝜷(t+1)), 𝝂(t)j is the jth element of 𝝂(t), and S
𝜆
(u) = sign(u) (|u| − 𝜆)+, which is the equivalent of the block soft threshold-

ing operator applied to a scalar. Our convergence criterion is the same as suggested in section 3.3.1 of Boyd et al25 with
𝜖

abs = 𝜖rel = 10−5. The parameter 𝜌 for the ADMM algorithm used is the adaptive scheme described in section 3.4.1 of
Boyd et al.25

2.4 Connections with existing literature

The methods of Rothman et al8 and Li et al13 both also address scenarios where high dimensional covariates are used
to predict a set of multivariate outcomes in a penalized regression framework. These two methods in addition to ours
borrow strength in information across outcomes through penalization techniques, albeit in different ways.

If the multivariate outcomes are only correlated due to correlations between the outcomes themselves, then the mul-
tivariate regression with covariance estimation (MRCE) approach8 may be most appropriate as it directly incorporates
the covariance of the responses via a penalized log-likelihood; here, the lasso penalty induces the estimated coefficients
to be a function of the covariance of the responses, unlike the unpenalized maximum likelihood estimator. However,
when many covariates are expected to have effects of similar magnitude across the multivariate outcomes, our addi-
tional fused lasso penalty is designed to make use of this by borrowing information across outcomes for such covariates
at a more granular level. Further, when there is strong group structure of whether or not a given covariate has an effect
across groups of outcomes, but the magnitudes of the effects are unrelated, then both our approach and the multinomial
logistic regression with sparse group lasso (MSGL) approach13 are appropriate options and their performances should
be expected to be similar, despite our additional fused lasso penalty, whereas MRCE is not designed explicitly to make
use of such information. However, if indeed there are many covariates with similar effects across outcomes and a group
structure, our approach may be expected to perform well. If there is no relationship whatsoever across the multivari-
ate outcomes, an approach of simply fitting a lasso-penalized model separately for each outcome may have reasonable
performance.
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2626 HULING et al.

2.5 Asymptotic properties

We now present new asymptotic results for our penalization methods pertaining to semiparametric linear models. We
show results for a more general, encompassing form for the overlapping group lasso penalty P1 and the fused lasso penalty
P2. We allow P1(𝜷) =

∑p
j=1

∑
g∈ 𝜆1,j,G||𝜷 j,G||2 for an arbitrary, potentially overlapping group structure  and we allow

P2(𝜷) =
∑p

j=1
∑
(l,o)∈ 𝜆2,j,l,o|𝛽j,l − 𝛽j,o| for an arbitrary fusing set  that contains pairs of indices of coefficients to be fused,

where the elements of  are of the form (l, o)with l, o ∈ . The penalty form introduced in Section 2.1 is a special case of
the form we study in this section, as our Theorem 1 applies to any group structure, overlapping or not. We also denote the
set of all pairs of coefficients which are equal and non-zero for the jth variable by j,⋅ = {(l,m) ∈  ∶ 𝛽0

j,l = 𝛽
0
j,m ≠ 0}. Sim-

ilarly, define ̂ j,⋅ = {(l,m) ∶ l,m ∈  and ̂
𝛽 j,l = ̂

𝛽 j,m ≠ 0}. Denote the union of these sets over all variables as =
⋃p

j=1j,⋅

and ̂=
⋃p

j=1
̂ j,⋅.

To facilitate our explanation of the asymptotic results, for any vector a⋅,k ∈ Rp associated with response k and a index
set ⋅,k ⊂ {1, … , p} of size |⋅,k| associated with response k, a⋅,k represents a |⋅,k| dimensional sub-vector with ele-
ments in a⋅,k indexed by ⋅,k. Now let ̃X = IK ⊗ X = diag(X, … ,X) be the block diagonal design matrix with K blocks,
one for each outcome, with the kth block as the design matrix X, where ⊗ is the Kronecker product; similarly let
̃𝜷

0
= vec(𝜷0) = (𝜷0

⋅,1
⊤

, … , 𝜷0
⋅,K

⊤)⊤ be the vectorization of the true coefficients for all K responses, let ̃Y
⊤

= (Y⊤

⋅,1, … ,Y⊤

⋅,K).
Using this notation, we can re-express the model (1) as ̃Y = ̃X̃𝜷

0
+ 𝝐̃, where 𝝐̃ is the stacked error vector defined similarly

as ̃Y.
Now let  = (⋅,1, … ,⋅,K) ⊆ {1, … ,Kp}, where ⋅,k = {j + (k − 1)p ∶ j ∈ {1, … , p} and 𝛽

0
j,k ≠ 0}, to be the set of

indices of all non-zero effects in ̃𝜷
0

and let  = Hull( ) =
{
∪G∈,G∩=∅G

}c be the hull of the nonzero pattern  , where
for a set  , c denotes its complement. The hull of the non-zero pattern is essentially the smallest set of groups in 
that contains all elements in  . Similarly, denote ̂ = ( ̂ ⋅,1, … ,

̂ ⋅,K) to be the set of indices of all nonzero variables
in ̂𝜷. Note that by construction of P1(⋅) due to each effect of each variable across the outcomes having its own group in
M+1, Hull( ̂ ) = ̂ , however we present our results in terms of the hull so as to be fully general with respect to the group
structure. We denote ̃XH as the columns in ̃X corresponding to variables in and similarly denote ̃𝜷

0
H as the values in ̃𝜷

0

corresponding to elements in. Then denote ̃X
∗
 constructed by dropping and collapsing columns of ̃X corresponding

to the distinct, non-zero values of ̃𝜷
0
 . Specifically, for each j, let {cj,1, … , cj,L} for L ≤ K denote the unique non-zero values

of {̂𝛽j,1, … ,
̂
𝛽j,k} and denote j,𝓁 = {k ∈  ∶ ̂𝛽j,k = cj,𝓁}. Then for each cj,𝓁 ∈ {cj,1, … , cj,L} all columns j + (k − 1)p of ̃X

such that k ∈ j,𝓁 , j ∈ {1, … , p} are collapsed and added together into a single column, that is,
∑

k∈j,𝓁
̃X⋅,j+(k−1)p . As an

illustration, denote ̃X⋅,j+(k−1)p as the jth column of the design matrix for response k. Then if the coefficient for variable j is
in for responses k,𝓁, and K and 𝛽0

j,k = 𝛽
0
j,𝓁 = 𝛽

0
j,K ≠ 0, this results in the following to the corresponding columns in ̃X in

the formulation of X∗


:

Block k →

Block 𝓁 →

Block K →

̃X⋅,j+(k−1)p

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

x⋅,j
⋮

0
⋮

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

̃X⋅,j+(𝓁−1)p

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

0
⋮

x⋅,j
⋮

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

̃X⋅,j+(K−1)p

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

0
⋮

0
⋮

x⋅,j

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

x⋅,j
⋮

x⋅,j
⋮

x⋅,j

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In other words, the columns in ̃X corresponding to these three variables are collapsed and added together. Note that there
exist matrices H and E such that ̃X

∗
 = ̃XHE, where H is formed by removing all columns of positions in the indices of

 from the identity matrix of dimension pK × pK and E is formed by taking the identity matrix of dimension || × ||
and collapsing and summing columns corresponding to non-zero coefficients that are equal to each other and are in  ,
the fusing set used in P2.
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HULING et al. 2627

We assume the following standard regularity conditions

D.1 limN→∞
1
N

X⊤X → Q where Q is positive definite
D.2 The errors 𝝐i for all samples i = 1 … ,n are i.i.d. random vectors with mean zero and finite, positive definite

variance-covariance matrix 𝚺.

The following result pertains to cases where the group structure has been misspecified. As such, we define 𝜷∗0 to be the
distinct values of𝜷0


(ie, the union of the distinct values in {𝛽0

j,k, 𝛽
0
j,𝓁 ∶ (k,𝓁) ∈  or (𝓁, k) ∈  and (k,𝓁) ∈  or (𝓁, k) ∈

} and all remaining values 𝛽0
j,k ≠ 0) appended with zeros corresponding to the elements of 𝜷0

c . Similarly, we define ̂𝜷
∗

to be the distinct values of ̂𝜷
̂

appended with zeros corresponding to the elements of ̂𝜷
̂

c .

Theorem 1. Assume the data are generated under the model described in (1) and that our estimator is given by
(2). Furthermore, assume conditions (D.1) and (D.2) and let 𝜆1,j,G = ||̂𝜷

OLS
j,G ||−𝛾1

2 and 𝜆2,j,l,m = | ̂𝛽
OLS
j,l − ̂

𝛽

OLS
j,m |−𝛾2 ,

where 𝛾1, 𝛾2 > 0 such that N(𝛾𝓁+1)∕2
𝜆 → ∞ for 𝓁 = 1, 2. If

√
N𝜆 → 0, then we have the following:

P( ̂ ⋅,j = ⋅,j) → 1 as N → ∞, (6)

P( ̂ ⋅,j = ⋅,j) → 1 as N → ∞, (7)

for each j = 1, … , p and

√
N(̂𝜷

∗
− 𝜷∗0)

d
−−−−−→ Z∗, (8)

where Z∗ = (Z∗


⊤

, 0⊤)⊤ and Z∗

∼N|∗|(0,Q∗−1

 V∗
Q∗−1

 ), where V∗

= E⊤H⊤ (𝚺⊗ Q)HE, Q∗


=

E⊤H⊤ (IK ⊗ Q)HE, and |∗| denotes the number of distinct non-zero elements in the true coefficients 𝜷∗0.
The proof of Theorem 1 is provided in the Supplementary Material Appendix A. We reiterate that Theorem 1 applies

to any group structure, including those with overlapping groups. We note that the variance-covariance matrix in the dis-
tribution of Z∗ does not simplify due to the allowance of selection of variables individually by outcome in combination
with the Kronecker-product variance structure of the response vector ̃Y; without either it would simplify considerably.
The terms H and E in the asymptotic variance of the estimates are due to selection of variables and collapsing of effects
of a single variable across outcomes, respectively; without any selection these matrices are removed and the variance
simplifies to the usual asymptotic variance of multivariate response regression via least squares. However, the asymp-
totic variance matches that of the estimator where all and only all truly non-zero variable effects are included in a
model and all variables with equal effects across a subset of outcomes are accordingly collapsed. The result of Theorem 1
does not require that  ⊆  , however, if indeed  ⊆  , that is, if  contains indices corresponding to all pairs of coef-
ficients in 𝜷0


that are equal to each other, then due to (8), when using adaptive terms for the tuning parameters,

our approach yields selection consistency for the hull of the non-zero terms; when the group structure has individ-
ual groups for each of the individual coefficients in the model, the convex hull of the non-zero coefficients is simply
the set of non-zero coefficients. Thus, when such individual groups are included, we have selection consistency for the
non-zero coefficients. Our theory also shows that with probability tending to one, our approach will fuse together the
coefficients that are truly equal to each other. Finally, our theory shows that our estimate will converge to the same
asymptotic distribution as if we had known which coefficients were non-zero and which coefficients were equal to each
other.

3 NUMERICAL EXPERIMENTS

3.1 Estimators used

In this section, we conduct simulation experiments to assess the small sample operating characteristics of our proposed
doubly-structured sparsity inducing estimation approach in comparison with several other state-of-the-art approaches
for multivariate regression in high-dimensions. In our simulations, we vary both the dimensionality of the problem and
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2628 HULING et al.

the sample size. We also consider data-generating mechanisms with varying degrees of sparsity of variable effects that
align with grouping of the outcomes and further consider scenarios where the effects of each variable have either minimal
similarity across outcomes or a varying degree of similarity across outcomes. This allows our studies to explore under what
data-generating mechanisms our two penalties indeed help in estimation. We use adaptive and non adaptive versions
of our method, denoted OGFM(adapt) and OGFM, respectively, where OGFM indicates Overlapping Group + Fused
Multivariate regression. For the adaptive version, we set 𝛾1 = 𝛾2 = 0.5 and for high dimensional settings with p ≥ n, we
used marginal regression estimates for the adaptive weights as in Huang et al.27 We compare our approach with the
approach of Li et al13 (denoted as MSGL), which allows for overlapping group lasso penalties. For MSGL, we use the
MSGLasso R package version 2.1 We further compare with a simple approach of fitting a separate lasso-penalized linear
regression model for each outcome, with the tuning parameter chosen separately for each outcome (denoted as Sep-Lasso)
and do so using the glmnet R package version 4.1-3. We also compare with the approach of Rothman et al8 (denoted
MRCE) implemented in the MRCE R package version 2.1. For all methods, the tuning parameters are chosen by 10-fold
cross validation; MSGL has two tuning parameters (one for a lasso penalty, one for a group lasso penalty), MRCE has
two tuning parameters (one for a lasso penalty for the coefficients for the variable effects on responses, another for a
lasso penalty on the elements of the inverse covariance matrix of the residuals), Sep-Lasso, for separate lasso has a tuning
parameter for each outcome for a lasso penalty on coefficients, and the OGFM approaches have two tuning parameters
(one for the overlapping group lasso penalty and another for the fused lasso penalty). For both the OGFM approaches
and MSGL, the group lasso penalty applied corresponds to the true underlying group structure of the data-generating
mechanism.

3.2 Data generation

For each replication of the simulation, we generate data under model (1), where xi are generated as i.i.d. multi-
variate normal random variables with mean vector 0 and covariance matrix 𝚺X = [𝜎Xjk]pj,k=1, where 𝜎Xjk = 0.5|j−k|, as
was used in the simulations of Yuan and Lin9 and Rothman et al.8 The responses are generated according to model
(1), where the error vectors 𝝐i are generated as i.i.d. multivariate normal random variables with mean vector 0 and
covariance matrix 𝚺𝝐 = [𝜎𝜖jk]Kj,k=1, where 𝜎

𝜖jk = 4
(
0.5|j−k|). In the Supplementary Material Appendix B.2, we explore a

simulation setting with binary covariates and a Likert scale outcome similar to our motivating data. The dimension-
ality of the outcome/error vector is K = 8 and the outcomes form 3 groups, with the first three outcomes forming
group 1, the fourth and fifth forming group 2, and the last three outcomes forming group 3. The variable effects are
generated as

𝜷0 =

G1,1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜉1,1𝜉
G
1,1𝜂1,1 𝜉1,2𝜉

G
1,1𝜂1,2 𝜉1,3𝜉

G
1,1𝜂1,3

⋮

𝜉z,1𝜉
G
z,1𝜂z,1 𝜉z,2𝜉

G
z,1𝜂z,2 𝜉z,3𝜉

G
z,1𝜂z,3

0 · · ·
⋮ ⋱

0 · · ·

G1,2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜉1,4𝜉
G
1,2𝜂1,4 𝜉1,5𝜉

G
1,2𝜂1,5

𝜉z,4𝜉
G
z,2𝜂z,4 𝜉z,5𝜉

G
z,2𝜂z,5

G1,3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜉1,6𝜉
G
1,3𝜂1,6 𝜉1,7𝜉

G
1,3𝜂1,7 𝜉1,8𝜉

G
1,3𝜂1,8

⋮

𝜉z,6𝜉
G
z,3𝜂z,6 𝜉z,7𝜉

G
z,3𝜂z,7 𝜉z,8𝜉

G
z,3𝜂z,8

· · · 0
⋮

· · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the last p − z rows of 𝜷0 have all elements as 0, the terms 𝜉j,k∼ Bernoulli (0.9) induce sparsity at the individual
effect level, the terms 𝜉G

j,1, 𝜉
G
j,2, 𝜉

G
j,3∼ Bernoulli (1 − pHS) induce sparsity at the group level, the variable effect size terms 𝜂j,k

are distributed i.i.d. uniformly from {−1,−0.5,−0.25,−0.125, 0.125, 0.25, 0.5, 1} to create both small and large effects, and
for each variable j separately the terms 𝜂j,k for k in the same group are set to be all equal to each other with probability
pGE∕2 and independently, the terms 𝜂j,k for all outcomes k = 1, … , 8 are set to be all equal to 𝜂j,1 with probability pGE∕2.
The latter process induces effects for some variables within a group to be equal to each other and induces effects for some
variables to be equal for all outcomes.

We explore dimensions of p = 50,100, and 200 and set z = 25, 50, 50 for each dimension setting, respectively. We
explore hierarchical sparsity parameters from pHS = 0, 0.25 and 0.5 and fusing probabilities pGE = 0, 0.5, 0.75 and 0.95;
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HULING et al. 2629

when pHS = 0, there is no group-wise sparsity and thus any group lasso penalty applied is superfluous. For each replication
of the simulation, we additionally generate an independent test set of size 10,000 for use in evaluation of predictive
performance.

3.3 Performance evaluation

We evaluate methods in terms of three metrics: root mean squared error of predictions (RMSE) on a large, independent
test set of size 10,000 generated anew for each simulation replication, model error defined below, and balanced accuracy
which is the average of the true positive rate (TPR) and true negative rate (TNR), described in detail in the Supplementary
Material Appendix B.1 and not to be confused with standard classification accuracy. As our primary interest is perfor-
mance of predictions on validation data, it is our primary focus of evaluation. For the RMSE, we compute the RMSE for
each outcome separately and then average the RMSEs across the outcomes. Model error for a given estimate is defined as
ME (̂𝜷, 𝜷0) = tr

[
(̂𝜷 − 𝜷0)⊤𝚺X(̂𝜷 − 𝜷0)

]
.

3.4 Results

The RMSE results fixing the parameter at pHS = 0 are displayed in Figure 3 and the RMSE results for pHS = 0.25 are dis-
played in Figure 4. When the sample size is small (n = 100) and the hierarchical sparsity probability is 0 (Figure 3), our
proposed approach OGFM results in the smallest validation RMSE on average across the replications across all settings
including moderate dimensions (p = 50,100) and high dimensions (p = 200), with MSGL as second best across the major-
ity of settings and OGFM(adapt) a close third. The separate lasso tends to perform worse than all competing approaches,
except for in some settings (eg, when n = 400) where it performs marginally better than MRCE. We note that the code for

F I G U R E 3 Validation RMSEs for all methods across 100 replications of the simulation experiment holding the parameter pHS = 0 so
that there is no group-level sparsity.
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2630 HULING et al.

F I G U R E 4 Validation RMSEs for all methods across 100 replications of the simulation experiment holding the parameter pHS = 0.25
so that there is moderate group-level sparsity.

MRCE throws an error when p ≥ n, although in principle MRCE can work for high dimensional settings. In the same set-
tings but with n = 200, OGFM still tends to work the best across all settings, however when the probability of coefficients
being equal to each other is zero (pGE = 0), and the dimensionality is moderate, the MRCE approach performs nearly as
well. In the high dimensional setting (p = 200), MSGL performs on par with OGFM and sometimes better, however this
benefit slightly attenuates for the larger sample size setting (n = 400). In general the adaptive version of our approach,
OGFM(adapt) performs worse than OGFM in small sample size settings and performs better with larger sample sizes.
The results with the hierarchical sparsity probability set to 0.25 (Figure 4) roughly mirror the results with no hierarchical
sparsity, however the performance for all methods is slightly better in terms of RMSE as there are fewer overall non-zero
coefficients in the data-generating process. The model error results largely track with the validation RMSE results, albeit
on a different scale, and are thus shown in the Supplementary Material Appendix B.1.

Figure 5 shows the same results as Figures 3 and 4, but is re-organized to focus on the effect of the fused coefficients
probability (pGE) and the hierarchical sparsity probability (pHS). In this figure, we fix the sample size to be 200. In general,
we can see that as the probability of coefficients being equal/fused within groups increases, the performance of OGFM
and OGFM(adapt) relative to the Sep-Lasso, MSGL, and MRCE tends to improve, with the trend being pronounced in
moderate dimensional settings. Only the OGFM methods improve as the probability of coefficients being equal increases,
as they are the only approaches which explictly allow for shrinkage of effect sizes to each other across outcomes. The
relative performance of all methods tends to stay relatively consistent as pHS is varied. However, we note that MRCE tends
to perform best in the setting with the fewest true non-zero coefficients (pHS = 0.25) and smallest amount of truly equal
coefficients (pGE = 0).

In the Supplementary Material Appendix B.1, we show simulation results in terms of the average of the TPR and
TNR. From these results, it can be seen that while OGFM performs best in terms of prediction performance, it tends to
over-select terms, resulting in a high TPR but low TNR and thus lower average TPR and TNR value. On the other hand,
for larger sample sizes OGFM(adapt) performs very well in terms of the average TPR and TNR as it selects fewer variables
with a higher proportion of selected variables being ones with truly non-zero coefficients. Overall, MSGL performs best
in terms of the average TPR and TNR and MRCE worst, the latter trend having been concurrently observed in the original
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HULING et al. 2631

F I G U R E 5 Validation RMSEs for all methods across 100 replications of the simulation experiment holding fixing the sample size
n = 200 and varying all other simulation parameters. The points are the average RMSEs across the 100 replications and error bars are plus
and minus 1 standard deviation of this average.

work of Rothman et al,8 who noted that MRCE tends to result in better model error but with less benefit in terms of TPR
and TNR. In the Supplementary Material Appendix B.1 we also present computation times for all methods. The OGFM
approaches are highly competitive computationally as the sample size increases, however their performance deteriorates
as the dimensionality increases.

4 ANALYSIS OF PEDIATRIC FUNCTIONAL STATUS DATA

Our motivating study consists of 1897 children, adolescents, and young adults who were admitted to an inpatient reha-
bilitation unit with a diagnosis of neurologic injury or illness at a major Midwestern children’s hospital for neurological
injury or illness between the years 2000 and August of 2020. The sample consisted of individuals between the ages of 6
months to 32 years with a median age of 12 years and first and third quartiles of 6 and 16 years, respectively. The covari-
ates used as predictors are (numbering 608 in total) included basic sociodemographic information including age and sex,
and billing codes including CPT codes, ICD-9 and -10 codes, pharmaceutical codes, and data indicating durable medical
equipment (DME) use. The billing codes represent information from a single episode of care involving an admission to
an inpatient rehabilitation unit. The billing code information pertain only to information collected prior to the WeeFIM
assessment. CPT and all ICD-9 and -10 codes were linked together to unique concept unique identifiers (CUIs) using
the UMLS metathesaurus mapping system.28 Concept Unique Identifiers (CUIs) are distinct medical concepts (codes,
diseases, etc.) identified by the UMLS metathesaurus. By linking all billing codes to CUIs, we are able to in many cases
handle the switch-over from ICD-9 to ICD-10 codes. An added benefit of CUIs is that they can be linked to other coding
systems. We utilize all 18 WeeFIM® components as responses; these 18 components are divided into three domains. The
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2632 HULING et al.

T A B L E 1 Mean squared errors (MSEs) on the 18 WeeFIM components in the validation data and average MSE across the 18 components.

Domain Self-care WeeFIM responses

Method Average Ea G B D-U D-L T-g Bl-M Bo-M

OGFM 2.153 2.074 1.816 2.034 1.673 2.099 2.052 3.533 3.492

OGFM(adapt) 2.165 2.070 1.824 2.032 1.663 2.112 2.165 3.573 3.521

MRCE 2.185 2.155 1.864 2.093 1.674 2.117 2.093 3.735 3.638

MSGL 2.222 2.145 1.860 2.149 1.712 2.218 2.190 3.729 3.617

Sep-Lasso 2.213 2.142 1.860 2.189 1.672 2.225 2.148 3.788 3.641

Mobility WeeFIM responses Cognition WeeFIM responses

Domain C-W T T-S W-W S C Ex S-I P-S M

OGFM 1.483 1.770 1.811 1.344 2.169 2.140 2.165 2.159 2.537 2.395

OGFM(adapt) 1.492 1.792 1.808 1.336 2.187 2.155 2.159 2.180 2.495 2.407

MRCE 1.571 1.811 1.889 1.331 2.164 2.126 2.081 2.140 2.446 2.399

MSGL 1.494 1.857 1.790 1.305 2.182 2.156 2.185 2.264 2.685 2.453

Sep-Lasso 1.539 1.809 1.915 1.286 2.186 2.178 2.152 2.174 2.491 2.432

Note: Bold indicates the smallest MSE across the different methods for a particular component.
Abbreviations: B, bathing; Bl-M, bladder management; Bo-M, bowel management; C, comprehension; C-W, chair wheelchair; D-L, dressing lower; D-U,
dressing upper; Ea, eating; Ex, expression; G, grooming; M, memory.; P-S, problem solving; S, stairs; S-I, social interaction; T, toilet; T-g, toileting; T-S, tub
shower; W-W, walk wheelchair.

self-care domain describes how well a child is able to feed themselves, groom, bath, dress, and complete toileting tasks
including the management of their bowel and bladder. The mobility domain describes how well a child is able to trans-
fer on and off a toilet, in and out of a bathtub or shower, and in and out of a chair or wheelchair. The mobility domain
also describes a child’s ability to walk, crawl, or use a wheelchair, and to move up or down stairs. The cognition domain
describes how well a child can express themselves, understand information, interact with peers, solve daily problems,
and recall information. Together, they describe the ability of children to function in routine and important aspects of
daily life.

As our motivating use case of developing a model for the WeeFIM® components is to apply it to future data to assess
functional ability across a health system population, we validate all developed models by splitting data into training and
validation sub-datasets, where the training dataset is from years prior to data from the validation dataset. We use data
prior to 2018 for training and data from 2018 to 2020 as validation data, leaving 1592 observations for training and 305
observations for validation. For validation, we compare methods in terms of the response-specific mean squared error for
each response and the average validated mean squared error across all 18 responses. We also compute the corresponding
validation R-squared values, that is, the proportion of the validation responses explained by the out-of-sample predic-
tions. We exclude any covariates that have no variation in either the training or validation datasets. After this screening,
the combined dimensionality of all the predictors was 608, a high-dimensional scenario given the sample size. We apply
all methods described in Section 3.1 and use the approaches described therein for selection of tuning parameters. For
OGFM(adapt), we use 𝛾1 = 𝛾2 = 0.5, as use of 𝛾1 = 𝛾2 = 1 resulted in some extreme weights given the high dimension-
ality of the data. For both the OGFM approaches and MSGL, the group lasso penalty applied corresponds to the three
pre-defined domains of the WeeFIM® components (self-care, mobility, and cognition).

The validation MSEs and R-squared values are displayed in Tables 1 and 2, respectively. Our OGFM approach has
the best performance on the validation data on average across the 18 responses and also most often performs best for
the individual responses, with the adaptive version of OGFM with the second lowest validation MSE on average. For
responses where OGFM does not perform best, most often its performance does not differ much from the best MSE across
the remaining methods, excluding OGFM(adapt). When OGFM performs best for particular responses, its improvement
in terms of RMSE and R-squared is often large, as is depicted in Figure 6, which shows the difference between OGFM
and competing approaches in terms of MSE on the validation data.

For both OGFM approaches, the fused lasso mixing parameter 𝛼 was chosen by cross-validation to be 1 × 10−5, indi-
cating only a small amount of fused lasso was required by the data. However, this small amount of fused lasso penalty
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HULING et al. 2633

T A B L E 2 R-squared values on the 18 WeeFIM components in the validation data and average R-squared value across the 18 components.

Domain Self-care WeeFIM responses

Method Average Ea G B D-U D-L T-g Bl-M Bo-M

OGFM 0.432 0.526 0.536 0.476 0.446 0.447 0.498 0.449 0.429

OGFM(adapt) 0.429 0.527 0.534 0.477 0.449 0.444 0.470 0.443 0.425

MRCE 0.425 0.507 0.524 0.461 0.446 0.442 0.488 0.418 0.405

MSGL 0.416 0.509 0.525 0.447 0.433 0.416 0.464 0.419 0.409

Sep-Lasso 0.419 0.510 0.525 0.437 0.446 0.414 0.474 0.410 0.405

Mobility WeeFIM responses Cognition WeeFIM responses

Domain C-W T T-S W-W S C Ex S-I P-S M

OGFM 0.433 0.522 0.447 0.287 0.298 0.410 0.405 0.400 0.375 0.384

OGFM(adapt) 0.430 0.516 0.448 0.290 0.292 0.406 0.406 0.394 0.385 0.381

MRCE 0.400 0.510 0.423 0.293 0.299 0.414 0.428 0.405 0.397 0.383

MSGL 0.429 0.498 0.454 0.307 0.294 0.406 0.399 0.371 0.338 0.369

Sep-Lasso 0.412 0.511 0.415 0.317 0.292 0.400 0.408 0.396 0.386 0.374

Note: Bold indicates the larger R-squared across the different methods for a particular components.

F I G U R E 6 Comparisons of the validation MSE for each of the 18 WeeFIM components and on average (left) across the 18 components.
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2634 HULING et al.

F I G U R E 7 Coefficient path plots across all 18 WeeFIM components for six variables from the pediatric functional status data. The
dashed vertical line indicates the value of 𝜆 that minimizes the cross-validation error.

had the effect of shrinking a large number of coefficients either close to each other or exactly to each other. In Figure 7,
we display the coefficient paths versus 𝜆 (described in Section 2.2) for 6 variables, where each plot is the coefficient path
for a particular variable across the 18 outcomes. For each of the coefficient path plots, we fix the mixing tuning parame-
ter 𝛼 at the value that minimizes the cross validation error. The patterns of these coefficient paths demonstrate that our
approach fuses coefficients for a variable to be the same across multiple responses when appropriate, allows effects to dif-
ferentiate when warranted by the data, an allows for joint selection of effects across an entire domain of related responses.
For the ICD code “shock, unspecified”, the fused lasso grouped the effects for all cognition outcomes together along the
entire path, all mobility coefficients together, and grouped the self-care coefficients into two groups. As can be seen for
other variables, different amounts fusing occurred for different groups of outcomes, and for some outcomes effects were
shrunk towards each other but without exact fusing.
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HULING et al. 2635

From the coefficient paths in Figure 7, our approach yields benefit in terms of predictive performance and also results
in clinically sensible estimated coefficients. We chose these 6 variables to demonstrate effects of several classes of billing
codes in the data: ICD codes, DME codes, pharmaceutical codes, and CPT codes. The three figures on the left of Figure 7
represent examples of diagnostic codes from billing data. The top panel represents the functional domains’ coefficients
path plot for children coded with autistic disorder. Children with autism spectrum disorders are diagnosed based on
deficits in areas of social communication and behavior. The degree of impairment in social skills as well as comorbid
neuro developmental disorders often leads to functional deficits in self-care. Mobility is typically unaffected in children
with autism. Another example is the diagnosis code for shock. Shock is a life-threatening condition in which the body is
not getting enough blood flow, resulting in end-organ damage, including damage to the brain. Consistent with this, in the
figure we see from the coefficient path plots that the diagnosis code of shock is most related with the functional domain
of cognition/communication as compared to mobility and self-care skills. Hypothyroidism is a disorder caused when the
thyroid gland does not make enough hormone. In children, it has numerous etiologies including autoimmune reactions,
brain injury, or radiation treatment. Hypothyroidism causes slow growth, decreased strength, and impaired cognition.
The associated plot shows some relationship to the self-care and mobility domains, but a stronger relationship to the
cognition/communication domain. The three figures in the right of the panel represent billing codes for a medication,
a durable good, and a procedure. Methylphenidate Hydrochloride, a stimulant medication used to treat attention deficit
hyperactivity disorder, showed minimal relationships with mobility and self-care. However a pronounced relationship
with cognition/communication is observed, as would be expected in a child with being treated with this medication. An
example of durable medical equipment are enteral feeding supplies. These are ordered for patients who require feeding
through a tube inserted into the stomach. This plot shows a clear relationship between feeding supplies and eating out-
comes, but markedly less strong relationship with other functional outcome domains. Mechanical chest wall oscillation
is used in patients who have an impaired lung function such as in children with cystic fibrosis or other diseases which
lead to general physical debilitation or loss of strength. The plot demonstrates that this procedure code holds associations
with mobility and self-care limitations as would be expected, but does not relate to cognition/communication.

5 DISCUSSION

In this paper, we introduced a doubly structured sparsity regression approach for modeling multivariate outcomes with
known groupings to borrow information across related outcomes. Our approach allows for overlapping groupings of the
responses and borrows strength by joint selection of the effects of variables across groups of related outcomes and encour-
ages shrinkage of the effects of variables to be more similar across related outcomes. We prove an oracle property for an
adaptive version of our penalty, showing that our approach results in estimates with the same asymptotic distribution as
if the true non-zero coefficients and which variable effects are truly equal across related responses were both known in
advance. The results pertaining to our motivating study indicate our approach yields benefit in terms of predictive perfor-
mance and yields estimated coefficients that are clinically sensible, as was demonstrated in our analysis of the pediatric
functional status data. Our work is motivated by modeling functional status scores in a pediatric population however the
methods are applicable more generally. Since our approach does not rely on normality of the multivariate outcomes, it
can be straightforwardly extended to more general models, such as generalized linear models both in theory and compu-
tationally. Incorporation of covariance information in addition to borrowing strength through joint selection and effect
shrinkage may be a promising direction for additionally borrowing strength of information across outcomes. However,
in this work we have not focused on this as it would introduce another tuning parameter and another layer of complexity
to computation, which may limit the applicability of such an approach to large scale and high dimensional settings.
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