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MULTI-OMICS IS A REALLY EXCITING 
METHODOLOGY. TRAPPED IN THE 
MONO-OMIC VIEWPOINT HAS 
PREVENTED US FROM TRULY EXPLORING 
THE INTRICATELY COMPLEX NATURE 
OF BIOLOGY. HOWEVER, WHILE MULTI-
OMICS CAN PROVIDE MULTI-INSIGHTS IT 
ALSO PRESENTS MULTI-CHALLENGES. 

Principal of which, it is uniquely challenging to keep track 
of because of the broad range of advancements that 
can be grouped under the multi-omics umbrella. This 
range extends from efforts to standardise classical multi-
omics pairings such as proteomics and transcriptomics, 
to expanding multi-omics to include microbiomes, 
metabolomics, exposomes and so on. 

This playbook is a unique resource to keep track of this 
breadth. 

Within these pages, you will find an up-to-date overview 
of the integration landscape, in depth summaries of 
transcriptomic and proteomic methods and transcriptomic 
and epigenomic methods. Plus, an introduction to 
metabolomics and coverage of the various applications of 
multi-modal data in a clinical and pharmaceutical capacity. 

While we cannot claim to have covered every nook and 
cranny, this playbook provides an up-to-date overview of 
multi-omics for 2024, specifically focusing on the advances 
in single-cell and spatial methodologies. 

Furthermore, by interviewing a series of experts in the field, 
we have gained unique insights and guidance, which have 
shaped this playbook. Excerpts from our discussions with 
these experts are found throughout the chapters. Within 
them, you will find advice on how to get the most out of 
specific tools, hard fought wisdom gained from working 
with these technologies and designing new tools, as well as 
perspectives and views on current topics in multi-omics. 

We would like to take this opportunity to thank all of our 
contributors for their time and insights when writing this 
playbook. 

We would also like to thank the sponsors of this report, 10x 
Genomics and biomodal.

 We hope you find this playbook a helpful resource.

Thank you for reading.

FOREWORD
Matt Higgs

Science Writer 
Front Line Genomics

Team Acknowledgements:
Lyndsey Fletcher and Rich Lumb from 

Front Line Genomics, for their support with 
editing and proofreading.
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CHAPTER 1

INTO THE MULTI-OMICS-VERSE 
THIS CHAPTER PRESENTS A GENERAL INTRODUCTION TO MULTI-OMICS; 

WHAT IS IT, AND WHY PERFORM IT? WE BRIEFLY INTRODUCE SINGLE-
CELL AND SPATIAL MULTI-OMICS, BEFORE ADDRESSING EACH ‘OMIC’ IN 
TURN, AND DISCUSSING THE INHERENT VALUE OF LOOKING AT OMICS 
TOGETHER IN THE SAME EXPERIMENT. WHAT CAN WE LEARN ABOUT 

THE SECRET LIFE OF CELLS FROM THE PURSUIT OF MULTIMODAL DATA? 

What is multi-omics?
It is important to begin with a definition of multi-omics. Multi-omics is the acquisition, integration and analysis of 
‘omics’ data from different molecular levels. Although, traditionally, this may have referred to taking information 
from different levels of the DNA-RNA-Protein genetic dogma, it can now also refer to additional layers such as the 
epigenome and metabolome. It can even include layers from outside the genomics paradigm, such as the microbiome, 
exposome and phenome (see Figure 1.1). 

In the world of big omics data, capturing all the information at a particular level of the molecular processes of the 
organism is the goal.

Multi-omics experiments tend to take two forms. One form involves integrating data from different molecular layers 
that has been acquired from separate experiments. While the data was not gathered in the same experiment, 
sophisticated computational tools enable this data to be merged and insights about two molecular layers can be 
drawn on a broad level.2,3

FIGURE 1.1. A SELECTION OF THE MULTI-OMICS APPROACHES THAT ARE CURRENTLY AVAILABLE TO 
RESEARCHERS.
Image credit: Roychowdhury, et al.1
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The second and ‘pure’ form of multi-omics involves integrating data from different molecular layers captured from the 
same sample/single cell. New tools and techniques are frequently being announced that can profile two or more ‘omics’ 
from one sample or one cell in the same experiment. These methods allow you to explore the interplay between two 
molecular layers within the confines of the same cell, a more refined approach for uncovering intracellular biology.

Why perform multi-omics?
Why go to the bother of integrating genomic, transcriptomic and proteomic information when one is transcribed/
translated into the next? Furthermore, multi-omics methods are more costly and require a higher expertise to perform 
correctly. So, why do scientists continue to use them?

Ultimately, the biological processes that occur within each organism, each tissue and each cell are the result of complex 
networks. While each omic presents a valid and insightful partial picture of the inner workings of a cell or tissue, when used 
alone, one omic cannot capture the true intricacies. Not all open and accessible DNA regions will be transcribed into RNA, 
and not all RNA will be translated into protein. The puzzle can only be completely solved with all the pieces (see Figure 1.2).

From a pragmatic perspective, the adoption of multi-omics methods is part of the attempt to find more robust classifiers 
of biological samples (e.g., cancer subtypes) and improve patient stratification, but the biological implications are vast. 
For instance, how does genotype link to phenotype? Profile the genome alongside RNA and other omics to find out. 

This enhanced view of biology is more than valuable enough for researchers to invest the time, money and expertise 
into designing multi-omics approaches. 

FIGURE 1.2. MULTI-OMICS AND CELL IDENTITY.
(A) The molecular cell identity can only be understood through the profiling an interaction between these many molecular layers. Multi-omics 
methods to achieve this are highlighted in (B-D). Image Credit: Ogbeide, et al.4
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Single-cell multi-omics
While initial methods to integrate multi-omics data began at the bulk level, it has been in the single-cell and spatial 
landscape that multi-omics has taken off in the last few years. Hence, single-cell and spatial multi-omics will be the 
focal point for this report. 

As a reflection of this advancement, the Nature Method of the Year in 2019 was single-cell multimodal omics5. To map 
the convoluted landscape of DNA, RNA, protein and epigenomics, we need methods that can treat cells as individual 
entities rather than a homogenised cluster, and single-cell methodologies have delivered. 

Single-cell RNA-sequencing has revealed much about cell types and cell states, but RNA by itself is not enough to fully 
resolve cell types6. The combination of transcriptomics and, for example, cell surface proteomics, allows better resolution 
of cell types with subtle transcriptomics profiles. Furthermore, scRNA-seq tells us little of a cell’s lineage or trajectory, 
which can be crucial to track for cancer research. Incorporating epigenomics is necessary to broaden this picture.

Even though these technologies give us the power to visualise the genetic interplay within individual cells, new 
challenges originate from taking multi-omics measurements in single cells at scale. For instance, new integration 
strategies are needed, batch-effects must be carefully considered and data size has gotten incredibly large7. 

Spatial multi-omics
The latest developing area of multi-omics is spatial. Here, we have seen the development of a series of new tools that 
visualise omics data from two distinct modalities with spatial context8-10. This adds a whole new dimension to the 
data. RNA and cell surface proteins can now be visualised in cells. Spatial RNA and epigenomics based gene regulatory 
networks can be visualised for complex tissues within spatial context to each other. Furthermore, the multi-omics 
basis of cell-cell communication can now be exposed. 

Chapter 3 will highlight some of the latest spatial multi-omics technologies to be released in the last few years 
including Spatial CITE-seq11, DBiT-seq12, SM-OMICS13, DNA-MERFISH14 and Spatial-CUT&TAG/ATAC-RNAseq15.

Given the importance of spatial context for biology and disease, a pivotal example of which is the tumour 
microenvironment, it is hard to underestimate the importance that spatial multi-omics will have for personalised and 
precision medicine16,17. 

What is being profiled? – The Big Five Omics
Before covering the bulk, single-cell and spatial methodologies that attempt to profile multiple omics together, we will 
first cover each of the major ‘omics’ individually to highlight the nature of each omic and the value it provides when 
profiled individually. 

First, we’ll cover the big five – genomics, epigenomics, transcriptomics, proteomics and metabolomics (See Figure 1.3).

GENOME
By studying the genome, you are ultimately trying to make sense of the 3.2 billion base pairs of information encoded 
there (and that’s just for humans!)18. Our DNA is the most immutable genomic layer to be interrogated with multi-
omics approaches. It remains largely unaltered through life and is not going to adapt based on environmental 
exposure. When analysing the genome, we are looking for anomalous features such as single nucleotide variations 
(SNVs), indels, insertions, deletions, copy number variations (CNVs), duplications and inversions. Essentially, any 
feature on the genome that could be associated with disease or other outcome. Genome-wide association studies 
(GWAS), arrays and next generation whole genome sequencing all allow this information to be gathered19.

INTO THE MULTI-OMICS-VERSE
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EPIGENOME
Epigenomics is the study of the set of chemical changes to the DNA or histone proteins. These changes ultimately 
shape how available sections of DNA are to transcription machinery. Without accessible DNA, the associated gene 
cannot be expressed or influence the phenotype of a cell. Naturally, the epigenome is represented by several 
different data types:

• We can measure the methylation status of the DNA, a repressive regulator of expression caused by 
the addition of methyl groups on genomic regions called CpG islands, through methods such as bisulphite 
sequencing20-22. 

• We can measure the modifications directly on histone proteins that change how accessible sections of 
DNA are. This is mostly popularly performed with either ChIP-seq23 or CUT&Tag24

• We can directly measure how exposed a section of DNA is for transcription. This is referred to as open-
chromatin profiling and is most commonly performed using ATAC-seq25.

• Finally, we can measure the three-dimensional profile of the DNA within a cell, ultimately exposing the 
sections of DNA that are in close contact and the sections that might be inaccessible in a 3D landscape. This is 
most popularly performed with Hi-C methodology26.

The epigenomic profile of a cell or a tissue is distinct and useful for identification, just like transcriptomics (see next 
section). The epigenome is also malleable and can be changed upon exposure to the environment and as the result of 
disease, meaning it can be used to profile disease-related effects.

TRANSCRIPTOME
The omic workhorse of the past 20 years, micro-array and RNA-sequencing has seen RNA become a key marker for cell 
state, disease biomarkers and everything in between27. Ultimately, transcriptomics is the profiling of RNA transcripts 
that are produced from the genome. It is a measure of potential; an RNA could be on its way to translation, regulation 
or degradation. In any case, it’s presence in your sample implies that the gene is needed in some way.

NGS and single-cell approaches have resulted in a state-of-play in which whole transcriptomes are being analysed 
from millions of cells at once. Because of the maturity of the field, and the depth of transcriptomics data, RNA tends 
to be found in most multi-omics approaches as the ‘rock’. However, RNA is not without its limitations. It is a temporary 
construct in the cell and its link to phenotype is complex at best28 (see this recent paper on the incongruence between 
RNA and cell perturbation in the heart29). 

PROTEOME
The phenotype of an organism, tissue or cell is ultimately dependent on the proteins that are active within a cell. 
These proteins are transcribed from RNA. One would think that where you find RNA transcripts, you will find the 
resulting protein. However, this is not always the case, and RNA and protein levels do display discrepancies30,31. 
Proteomics is an important measure to truly assess phenotype. Recorded through mass spectrometry or targeted, 
antibody-based approaches, proteomics represents a different dimensionality datatype to transcriptomics and has 
its own challenges. Single-cell and spatial proteomics is a burgeoning field of study with exciting advances, see this 
review32 and this review33 for more.

METABOLOME 
Then we get to the metabolome. The broadest of the major omics, it represents the profiling of every small molecule 
within tissues and cells, often referred to as metabolites. This includes sugars, fatty acids, lipids and amino acids - the 
building blocks of cell structures and the output of the metabolism. By profiling these molecules, we get the closest 
insight possible into what is actually happening within a cell, because we see the direct remnants of the processes. 

Metabolites are short-lived, so we are truly seeing what has just happened in the cell. This makes metabolomics 
particularly valuable for healthcare and pharmaceutical uses, since it can inform the direct consequences of 
perturbations. Metabolites are profiled most commonly by mass spectrometry or NMR, and spatial and single-cell 
applications are becoming increasingly available34-36. Several excellent reviews have been released on the topic34-36, and 
Chapter 6 of this report will cover this in detail. 

INTO THE MULTI-OMICS-VERSE

https://www.nature.com/articles/s41592-023-01791-5
https://www.sciencedirect.com/science/article/pii/S1097276522004890
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Lipidomics is often considered its own ‘omic’ 
despite ultimately existing under the umbrella of 
metabolomics. Lipidomics is the specific study of 
the lipid profile of a cell or tissue. Measured by 
mass spectrometry, there is remarkable diversity in 
the lipidome, and it has also recently begun to be 
measured at the single-cell level37. Glycomics is in a 
similar boat. It is the specific study of the glycans, such 
as the cell surface glycoproteins and glycolipids, which 
are crucial for cell-cell recognition and are important 
disease markers. Glycomics is also assessed via 
metabolomics tools, namely mass spectrometry and 
high-performance liquid chromatography (HPLC)38.

What is being profiled? – Extra-Omic Inclusions
Multi-omics, in its purest definition, could be restricted to the five modalities covered above. These are the modalities 
representing each component of the genomic processes within cells. DNA is the blueprint. The epigenome represents 
the long-term, mostly modifiable elements that co-ordinate genome expression. RNA is the first stage of gene 
expression and a modifying agent in its own right. Proteins are the biological machinery of the cell, the major output of 
the genome. Finally, metabolites are the output of all these processes, 

However, there are other elements that we can measure in a multimodal approach that still add valuable information 
to the tale. Examples of these are below.

MICROBIOME
The human body is comprised of an impressive diversity of cell types. Even more impressive is the diversity of micro-
organisms hosted within. It is now well known that these microbes are not hitchhikers catching a ride; they are integral 
parts of the human ecosystem, synthesising molecules that can enter our bloodstream and even our brain, ultimately 
modulating many processes within our body (check out parts 1 and 2 of the our coverage of the topic). Ultimately, 
this cluster of organisms represents a second genome to interrogate, meaning metagenomics, meta-transcriptomics, 
meta-proteomics and meta-metabolomics are all currently utilised to understand microbial diversity, function and 
activity in the same way that multi-omics is deployed for our own cells40.

EXPOSOME 
While perhaps not an ‘omic’, the exposome relates to all exposures an individual has had in their life that could 
influence their biology and lead them to this cellular phenotype41,42. This is particularly relevant for disease-
based studies and ultimately is about incorporating patient data into multi-omics studies as an additional layer of 
information. The exposome could refer to exposure to air pollution, cigarette smoke, alcohol, stress, green spaces, 
exercise, phenols, phthalates, minerals, pesticides, for example.

INTO THE MULTI-OMICS-VERSE

FIGURE 1.3. THE PRINCIPLE MULTI-OMICS LAYERS 
WHEN CONSIDERING HUMAN HEALTH AND 
BIOMEDICAL SCIENCE.
Image credit: Sun and Hu39

https://frontlinegenomics.com/the-magnificent-microbiome-where-have-we-been-and-where-are-we-going-part-1/
https://frontlinegenomics.com/magnificent-microbiome-part-2/
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PHENOME
Phenomics is the study of the phenotype of an individual. At first, this may seem a waste to define, since phenotype 
is at the core of every study. For example, does the individual have the disease or not? However, detailed phenotypic 
data is not necessarily abundantly available and given the wealth of omics data coming from the pipeline, there is now 
a need to produce the phenotypic data to match. This is the heart of phenomics43.

A preview of what’s to come
Before we dive deep into the multi-omics-verse, we would like to end this first chapter with a collection of responses from 
our contributors to the question – What are some of the latest/most exciting things happening in multi-omics? 

While the responses below are varied, highlighting how wide-ranging and exciting this field currently is, there are some 
consistent trends, such as the power of machine learning, the emergence of single-cell and spatial metabolomics and 
the proliferation of new methods for multi-omic pairings. For all of these topics and more, you will find coverage within 
this playbook. 

NIMA AGHAEEPOUR 
Associate Professor, Anaesthesiology, Perioperative and Pain Medicine & Paediatrics - Neonatal and 
Developmental Medicine, Stanford University

FLG: What are some of the latest and exciting things happening in multi-omics?

Nima: I think foundational models are becoming more and more popular these days. The promise that they offer is that you 
don't have to be limited to the cohort that you paid for. You can start learning from public datasets and building large models 
that understand relationships between various omics datasets. So, when you have your own question, your machine learning 
algorithm doesn't have to start from scratch. It can bring all the knowledge that it has gained from public datasets to your multi-
omics assay that increases the predictive power and reduces the number of patients that you're going to need to measure from.

INTO THE MULTI-OMICS-VERSE

MIRJANA EFREMOVA 
Group Leader 
Barts Cancer Institute

FLG: What are some of the latest/exciting things happening in the multi-omics field?

Mirjana: Single-cell multi-omics methods, by providing a holistic view of cells in health and disease, are revolutionising 
molecular cell biology research. I am excited about using transcriptomics in combination with chromatin accessibility, 
histone modifications and nucleosome organization to elucidate epigenetic processes involved in cancer progression. Spatial 
data, in addition, will be crucial for interrogating cell-cell communication networks and identifying the signals from the 
microenvironment that mediate or sustain specific cancer cell states.
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RICARD ARGELAGUET 
Senior Research Scientist 
Altos Labs

FLG: What are some of the latest and exciting things that you've seen happening in multi omics?

Ricard: There are two or three things that I think are pushing quite hard now. One of them is mosaic data integration for 
gene regulatory networks, which is this idea that there are these gene regulatory network models that you can train and apply 
on one data set, and you get an answer. But they don't leverage any of the knowledge that is out there. So, models that are 
able to integrate all of this data across multiple resources to refine the prediction in a specific data set, these are going to be 
very powerful methods. And they're starting to come up now. 

Then along the same lines, there have been these foundational models all inspired by the GPT models etc. This is really 
pushing from the deep learning community, where they are trying to build these models on single-cell RNA-seq data, 
by training and leveraging millions of cells from many different data sources. And the same is being done right now for 
chromatin accessibility. When it comes to building models that bridge across different omics, I've not seen any, but I'm sure 
that people are actively working on these.

MATHEW CHAMBERLAIN 
Principal Scientist 
Johnson & Johnson Innovative Medicine

FLG: Are there any single-cell multi omics topics that really interest you? Maybe a technology or application that has caught 
your eye?

Mathew: A lot of the data integration methods for CITE-seq catch my eye because, essentially, you can build machine 
learning models from these CITE-seq atlases that you're integrating that can predict protein levels from any single-cell RNA-
seq dataset during integration. You can get CITE-seq data pretty much for free. I think a really clever way to utilise that is to 
run CITE-seq for a handful of proteins, and then just use the models to generate predictions. From that you get values for 
hundreds of proteins for free. That's something that I believe will be very useful.

Then I remember the first time I looked at single-cell data. You'll have cell types in diseased patients that just do not exist in the 
healthy patients. They're not there. That to me was like – ‘Oh, my God, we were way off on that assumption.’ And then with multi-
omics data, you’re looking at larger datasets and you will see things, perhaps cell types, where you’ll think ‘this is weird. There's a 20 
year or a 30 or a 40-year-old biological literature on this pathway, and it's expressed in the cell type that nobody knew about,’ and 
that will happen all the time. So, you'll be surprised at how quickly and how fast you learn, and that you don't know the whole.
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QIN MA 
Professor, Department of Biomedical Informatics 
The Ohio State University

FLG: When you're looking at the multi-omics field and the way things are progressing, what are some of the latest and 
exciting things that you're seeing in the field?

Qin: I think the most exciting part is how close we are to real translational and clinical impact. In the early stage of my 
bioinformatics career, many people were focusing on gene finding, protein structure identification and gene regulatory 
network inference at the bulk level. Now, using single-cell data, we can mimic the real biological system, and that has to be 
done at the single-cell level. Whether that is the gene activity, protein activity or gene regulatory network activity, we have to 
consider them at the single-cell level, because that's the real case, that's not simulation. Having the real case and having the 
computational techniques derived to make sense from the big single-cell data… I think we are very close to the to the endpoint 
of clinical and translational applications.

ZONGMING MA 
Professor, Department of Statistics and Data Science 
Yale University

FLG: What exciting things are happening in multi-omics?

Zongming: What is very exciting to me is, if you just browse journals that cover multi-omics, you see new technologies 
measuring new modalities coming out on, say, a weekly basis. The landscape of this multi-omics world is changing rapidly 
and in a good way; you have simultaneous measurements of many different types of biomarkers available now. Using 
bimodal measurement technologies to understand the connection of new modality with older ones, and then, based on 
that understanding, creating new tools to eventually perform the aggregation and integration of many different modalities 
together, would be something remarkable. I personally think this is a very exciting direction to work on.

INTO THE MULTI-OMICS-VERSE

JUDITH ZAUGG 
Group Leader 
European Molecular Biology Laboratory (EMBL)

FLG: Is there anything that's caught your eye in this field over the past year?

Judith: What I find interesting is the increasing number of deep learning networks and machine learning models that are now 
producing very interpretable results and very strong predictions. Interpretable models, where you can actually interpret what 
drives the predictions. And I think this is going to be very powerful when applied to multi-omics datasets that are increasingly 
getting published. I think these models will become very powerful in understanding fundamental biological mechanisms, and 
potentially disease mechanisms. 
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PAU BADIA I MOMPEL 
PhD Candidate, Saez-Rodriguez Group 
Heidelberg University

FLG: What are the exciting things happening in multi-omics right now?

Pau: For starters, the whole explosion of methods that combined chromatin accessibility and transcriptomics for GRN 
inference, which we believe is going to provide a better representation of GRNs. It will trim down a lot of these false positives. 
The other thing would be the technologies that are starting to appear. I saw one from Satija et al.44, where they combine 
phosphoproteomics with chromatin accessibility, although for now it's still antibody based targeted phosphoproteomics - it's 
not mass spectrometry. It would be really cool to combine transcriptomics, chromatin accessibility plus the functional state of 
your transcription factors based on phosphoproteomics for better GRN reconstruction.

SUSHMITA ROY 
Professor, Department of Biostatistics and Medical Informatics, University of Wisconsin-
Madison, Faculty, Wisconsin Institute of Discovery

FLG: What have you seen in your field over the last six to nine months that excites you?

Sushmita: There are several things. Going beyond single-cell to spatial is an interesting direction, and not only spatial 
transcriptomics, but spatial epigenomics, and also spatial proteomics and metabolomics. Those would be other types of 
modalities to incorporate, and I would really like to move in that direction. Single-cell proteomics is becoming more widely used, 
but it's not at the same production scale as single-cell RNA-seq. Hopefully, we will get there. I know a lot of people are excited 
about it. On the data side, getting better datasets from multimodal single-cell, and also spatial datasets, is very exciting. 

On the methodology side of things, really getting into models that tell us something about perturbations. How will a system 
actually behave when we perturb it in a particular way? How well can we predict that from just very minimalistic data? Can 
we build models that enable us to figure out what the minimum things we need to measure in order to make high level and 
accurate predictions? When we go to patient samples, we can't really measure so much data, so what can we do based on 
what can we predict, and so on? Those are some of the exciting directions where you get into causal models and causal 
representation learning, but it’s very new.



The Multi-omics Playbook 14

INTO THE MULTI-OMICS-VERSE

SUHAS VASAIKAR 
Principal Scientist, Clinical Biomarker and Diagnostics 
Seattle Genetics (Seagen)

FLG: From your experience, what are some of the latest/exciting things happening in the multi-omics field? 

Suhas: There are several exciting developments happening in the field of multi-omics that have the potential to transform our 
understanding of complex biological systems. Here are some examples:

Integration of single-cell data: Single-cell omics technologies are rapidly advancing, and researchers are now able to generate 
multi-omics data from individual cells. This has the potential to provide unprecedented insights into cellular heterogeneity, 
cell-to-cell communication and disease mechanisms.

Multi-omics data visualization: As the amount of multi-omics data being generated continues to increase, there is a growing 
need for effective data visualization tools. New visualization methods, such as interactive network-based visualization 
platforms, are now being developed to help researchers gain insights from complex multi-omics data sets.

Multi-omics biomarker discovery: Integrating data from multiple omics technologies can help identify biomarkers that 
are more accurate and reliable than those identified using a single technology. These biomarkers can be used for disease 
diagnosis, prognosis and treatment.

Deep learning approaches: Deep learning approaches, such as deep neural networks and convolutional neural networks, are 
now being applied to multi-omics data sets to identify complex patterns and relationships between different omics data types. 
These methods have the potential to reveal new insights into disease mechanisms and identify novel therapeutic targets.

Overall, the integration of multiple omics data types, along with advances in single-cell omics, data visualization, biomarker 
discovery and deep learning, are driving exciting developments in the field of multi-omics research.

BINGJIE ZHANG 
Postdoctoral Research Fellow, Satija Lab 
New York Genome Center

FLG: What's really exciting right now in the multi-omics space? 

Bingjie: I'm really excited about the metabolomics profiling methods. It’s an essential missing part in our current field. 
Although still in its early stages, I have seen some work from Andrew Fraser’s group, where they are using structure-switching 
aptamers to capture metabolites45. Currently, they only tested this at the bulk level with a few targets, but I am very excited 
about the potential for this to be used in single-cell experiments and to simultaneously profile hundreds of metabolites. 
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CHAPTER 2

BRINGING OMICS TOGETHER. 
INTEGRATING MULTI-OMICS DATA 

THE PRINCIPAL CHALLENGE IN MULTI-OMICS IS INTEGRATING THE DATA 
FROM DIFFERENT OMES IN A BIOLOGICALLY MEANINGFUL WAY. IN THIS 
CHAPTER, WE WILL LOOK AT DIFFERENT COMPUTATIONAL TOOLS AND 

SERVICES TO INTEGRATE MATCHED AND UNMATCHED MULTI-OMICS DATA.

Intro to integration
While each omic provides valuable data alone, in 
concert, new and valuable insights can be gained. 
Integrating multi-omics data can reveal new cell 
subtypes, cell interactions and interactions between the different omic layers leading to gene regulatory and 
phenotypic outcomes. Since each omic layer is causally tied to the next, multi-omics integration serves to disentangle 
this relationship to properly capture cell phenotype (Figure 2.1). 

We are now in the era of acquiring data from millions of cells. The integration of this large, complex, multimodal 
data has the potential to reveal much about biological mechanisms and pathways, but this represents a 
considerable challenge to researchers2. Ultimately, sophisticated computational tools and methodologies are at 
hand to solve this issue. 

But which ones to use? The principle focus of this chapter will be to outline the selection of methodologies that are 
available to the reader as of the writing of this report (November 2023). We will cover the different types of integration 
and the options available. We will also hear from several developers of these tools as they describe their innovations 
and, fundamentally, why multi-omics integration is a technique you have to get right for a successful trip into the Multi-
omics-verse.

FIGURE 2.1. INTEGRATION OF MULTI-OMICS ACROSS 
THE MAJOR OMICS LAYERS. 
Image Credit: Hossain, et al.1
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BRINGING OMICS TOGETHER. INTEGRATING MULTI-OMICS DATA

BINGJIE ZHANG 
Postdoctoral Research Fellow, Satija Lab 
New York Genome Center

FLG: Why do you think multi-omics integration is still such a 
challenge? And are there any approaches to integration that 
you particularly like (I know your lab recently released bridge 
integration)?

Bingjie: Integration is challenging simply because we are measuring 
two different modalities, and our understanding of how they correlate 
with each other is not very clear. Mapping RNA-seq to open chromatin 
accessibility might be relatively easier because of the underlying 
assumption that actively transcribed genes should have greater 
open chromatin accessibility, which is a correlation we can model. 
However, for other modalities, such as RNA-seq and protein data, the 
most abundant protein may not correlate with high gene expression. 
This disconnect makes integration very difficult. Moreover, sensitivity 
remains an issue. A gene detected at the RNA level may simply be 
missing in the ATAC dataset. 

In terms of the scale, while scRNA-seq can profile thousands of genes, 
current proteomic methods may only measure a limited spectrum, 
often restricted to hundreds of proteins. Our solution is bridge 
integration3, a method developed by Yuhan Hao in the Satija Lab, which 
utilizes a bridge dataset as a 'dictionary.' This dataset is a multimodal 
dataset that measures the two modalities we wish to integrate within 
the same cell, allowing us to use it as a biological "translator" to 
establish connections between those two modalities. 

As for other methods, I would recommend GLUE from Ge Gao's 
group4. They employ an entirely different method from ours, 
incorporating graph-based methods to integrate prior knowledge into 
the model, thereby inferring a connection between the two modalities. 

Why is integration still a challenge?
Ultimately, integration of multi-omics data is a moving target for which a one-size-fits-all approach will not work. 
Drawing insights from two specific omics requires unique strategies, since each omic has a unique data scale, noise 
ratio and, hence, its own preprocessing steps. Furthermore, these omics are not captured with the same breadth, 
meaning there is inevitably missing data. Specific tools are required for specific challenges, hence the variety of tools 
available. We asked some of experts in the field to explain why multi-omics integration is still such a challenge and 
whether there were any tools they recommend.
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ZONGMING MA 
Professor, Department of Statistics and Data Science 
Yale University

FLG: Can you briefly outline multi-omics integration and why it's still a problem to this day?

Zongming: When we talk about multi-omics data integration, there are at least two different scenarios. One scenario is, 
when you can take multi-omics measurements directly at a single-cell level or close to single-cell resolution. Here the question 
is how you make sense of two different collections of features, which are, in many senses, not directly comparable. So, that is 
one type of multi-omics data integration, oftentimes called “vertical integration”. 

The other scenario is when, for each cell, you can only measure one modality, say only RNA (gene expression levels) or only some 
proteins, or only epigenome information. The question then is, how can you combine different modalities from different cells? 
The aim here is to perform “diagonal integration” so that you can augment the set of measured features for each cell to the 
union of all modalities to be integrated. Personally, I think this is a more challenging multi-omics data integration scenario.

FLG: And is the integration challenge different for different omics? For instance, for RNA with protein or RNA with any 
combination of omics, is the challenge different?

Zongming: There are some shared challenges and there are also unique ones, depending on the kinds of features one is 
measuring. If you want to integrate ATAC, or epigenome, information, with the whole transcriptome, it is relatively easy. In this 
setting, you can predict the expression levels of many genes simultaneously based on epigenome information. The prediction 
of each individual gene may not be super-accurate, but collectively, the cumulative information across many genes in such a 
prediction is usually sufficiently high for warranting a decent integration outcome.

However, the challenge becomes quite different when you have a small, targeted panel of proteins together with the whole 
transcriptome. Even if you can predict the level of each protein relatively accurately, the limited number of features in 
the protein dataset means the cross-modality cell-cell similarity is more difficult to measure now, because the cumulative 
information across all features in at least one of the involved datasets is limited. 

In both examples, it is of importance to improve the prediction accuracy of individual features. However, in the second one, 
the key is to improve the overall signal-to-noise ratio when measuring cross-modality cell-cell similarity.

FLG: What are some of the tools for multi-omics data integration that people should be paying attention to, perhaps 
looking at different types of integration?

Zongming: I’d like to mention something for horizontal integration, that is the integration of multiple datasets with the 
same feature set. It could be multi-omics or just a single data modality. In this setting, if you have samples that are collected 
under similar scenarios, let's say it's all healthy samples and there's homogeneity among them, then methods like Seurat5, 
Harmony6, and LIGER7 are very capable. 

However, it has become increasingly common in lab experiments and clinical trials that you have some healthy or control 
sample and you also have samples at different disease stages or under different treatments. If you need to perform horizontal 
integration, or sometimes also known as batch integration, on samples collected under such heterogeneous scenarios, 
these tools can be a bit too heavy-handed and can remove biologically meaningful signals. It is not the fault of these tools 
themselves, as they were not designed to leverage the distinction between control and treatment sample. So, Nancy Zhang 
at Penn and I have done some recent work trying to recover the biological signal while retaining a good integration result for 
batch correction, and we developed a new tool called CellANOVA8.

BRINGING OMICS TOGETHER. INTEGRATING MULTI-OMICS DATA
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SUHAS VASAIKAR 
Principal Scientist, Clinical Biomarker and Diagnostics 
Seattle Genetics (Seagen)

FLG: For our readers, can you briefly outline the challenge of multi-omics data integration, and, in your opinion, what are 
some of the tools/approaches for multi-omics data integration that people should be paying attention to? 

Suhas: Multi-omics data integration refers to the process of combining and analysing data from different types of omics 
technologies, such as genomics, transcriptomics, proteomics and metabolomics. The challenge of multi-omics data integration 
is that each omics data type provides a different perspective on the biological system being studied, and integrating these 
different types of data can be difficult due to differences in data structure, resolution and complexity.

The challenge of multi-omics data integration lies in the complexity of the data, as well as the need to develop methods for 
integrating data across different omics platforms. There are several tools and approaches for multi-omics data integration 
that people should be paying attention to. Some popular tools for multi-omics data integration include:

• Data normalization and preprocessing tools, such as limma, DESeq2 and edgeR, that can standardize different types of 
omics data and make them comparable.

• Network-based analysis tools, such as Cytoscape, that can visualize and analyse complex relationships between different 
types of omics data. It involves constructing molecular interaction networks from the different omics data sets and using 
these networks to identify key regulatory pathways and biological processes.

• Machine learning and statistical modelling tools, such as Random Forest, Gradient Boosting and Bayesian networks, 
which involve training algorithms to identify patterns in the multi-omics data and make predictions about biological 
outcomes that can identify patterns and predict outcomes based on multi-omics data.

• Pathway and enrichment analysis tools, such as GSEA and GOseq, that can identify enriched pathways and functional 
categories based on multi-omics data.

• Some specific tools for multi-omics data integration include Multi-Omics Factor Analysis (MOFA), Integrative Multi-Omics 
Analysis (IMOA) and Multi-Omics Correlation Analysis (MOCA).

Overall, the field of multi-omics data integration is rapidly evolving, and researchers should pay attention to new 
computational tools and approaches that can help them extract meaningful insights from their data.

BRINGING OMICS TOGETHER. INTEGRATING MULTI-OMICS DATA
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Types of Integration
When trying to divide up the 
computational tools for integration 
meaningfully, one principle distinction 
between strategies is whether the tool 
is designed for multi-omics data that is 
matched (recorded from the same cell) or 
unmatched (recorded from different cells). 
While modern methods are frequently 
able to create the more desirable, 
matched multi-omics data, much of the 
previous work in this area has worked on 
integrating unmatched data. Furthermore, 
not only can unmatched data refer to 
different cells from the same sample, but it can also involve integrating different cells from different samples of the 
same tissue taken at different times in different experiments (see Figure 2.2A). 

Integration can also be seen as operating at the horizontal, vertical and diagonal level9. Horizontal integration is the 
merging of the same omic across multiple datasets. Several tools exist for this purpose and while it is technically a 
form of integration, it is not true multi-omics integration and so won’t be considered further in this chapter.

Vertical integration merges data from different omics within the same set of samples, essentially equivalent to 
matched integration. The cell is leveraged as the anchor to bring these omics together. 

Diagonal integration is the final, and technically most challenging, form of integration. Here, different omics from 
different cells/different studies are brought together. The anchor can no longer be the cell and has to be some co-
embedded space in which commonality between cells is found. This is essentially ‘unmatched’ integration.

We spoke to Ricard Argelaguet, lead author of the paper defining the terms horizontal, vertical and diagonal 
integration, about his perspective on multi-omics integration9.

FIGURE 2.2. COMPUTATIONAL STRATEGIES FOR SINGLE-CELL 
MULTI-OMICS INTEGRATION
(A) Levels of input data – paired, partially paired and unpaired. (B) Techniques 
deployed in integration. Image Credit: Flynn, et al.10
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FLG: Could you briefly introduce yourself, some of your 
research background, and then a summary of your 
current role.

Ricard: I'm curarently working as a Senior Research 
Scientist in the machine learning group at Altos labs. 
I initially did my PhD in the European Bioinformatics 
Institute in Cambridge, UK, where I was working on 
the development and the application of multi-omics 
data integration methods. That's where I developed 
some of the models that are used currently, like 
MOFA, MEPHISTO and so on. I'm a biologist by training 
and I worked a lot on applying those methods into 
biological scenarios, more specifically, in the context 
of single-cell multi-omics datasets. For example, in the 
context of embryonic development, gastrulation. Now, 
interestingly, we're trying to shift all this knowledge 
that we've gathered working on this process and are 
applying it in the context of reprogramming, ageing 
and longevity, etc.

FLG: For our readers, can you just briefly outline the 
challenge of multi-omics integration and why it's still 
a challenge to this day?

Ricard: I think that multi-omics data integration is a 
diverse set of challenges, and that's what makes it 
a unique problem. There are challenges first on the 
biological side; if you want to develop methods for 
multi-omics integration, what question do you want 
to answer? What useful biology can you learn from 
those methods? Doing methods for the sake of doing 
methods… I don't find this particularly useful. You need 
to have some biological question in mind.

Second, there is the statistical complexity. Each one of 
those data modalities is fairly heterogeneous, and they 
have different statistical properties. Some datasets are 
binary, some datasets are continuous, and you have to 
model them under different data distributions, statistical 
assumptions, etc. Over the years we have developed 
methods to analyse each one of them separately, but 
when it comes to the integration, you need to make sure 
that your model is able to accurately model the different 
statistical principles for each of the datasets.

Finally, there is the computational challenge, because 
integrating this data is complex. First, you need all these 
different datasets stored in a meaningful way with the 
right metadata. You also want to make sure that your 
model is easy to use, runnable and useful. I think that's 
something we did quite well with MOFA. There were 
quite a few methods already back then, but they were 
not scalable, and they were hard to use. In the end, as a 
user, you want to have an API interface that is usable.

“WHAT USEFUL BIOLOGY 
CAN YOU LEARN FROM 

THOSE METHODS? DOING 
METHODS FOR THE SAKE OF 
DOING METHODS… I DON'T 

FIND THIS PARTICULARLY 
USEFUL. YOU NEED TO 

HAVE SOME BIOLOGICAL 
QUESTION IN MIND."
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FLG: Can you also describe the terms that you set out 
in your 2021 paper for multi-omics integration, namely 
horizontal, vertical and diagonal integration and 
perhaps how your tools fit within that framework?

Ricard: So, multi-omics integration doesn't refer to 
just one problem. It actually refers to different types of 
problems, and it depends on the experimental design 
that you have. I'll give you an example: If you have an 
experiment where you profile different omics from 
the same group of cells or the same group of samples, 
you know that this data is paired. You can match that 
dataset even though the features that you're measuring 
are completely different because the samples are 
exactly the same. This is really powerful because it gives 
you an anchor, it gives you something to anchor the 
different data modalities. It makes the modelling much 
easier and what you can learn from the data much more 
meaningful. We call this vertical integration, and this 
is the case for MOFA. The samples are assumed to be 
matching across the different assays. 

Now we have other cases known as horizontal integration, 
which is almost the reverse problem. The features are 
exactly the same, but the samples are different. This could 
be an example where you're just measuring one data 
modality, like RNA-seq, in ten groups of samples in hospital 
one, and ten groups of samples in hospital two. Here, 
the genes are the same and you're going to anchor the 
different data matrices by using this gene space. 

And finally, the more complex problem, which are the 
ones that people are more actively trying to address 
now, is what we call diagonal integration, or even mosaic 
integration. In this case, you don't have this pairedness 
anymore. In the case of diagonal, your samples are 
different, your features are different, and this makes it 
very, very challenging. It limits the amount of knowledge 
you can extract from this case. So, technically, you want to 
avoid this type of experimental design. Sometimes it's not 
avoidable, and that's why we have to develop methods 
for this. The last case is mosaic integration, where you 

really have a combination of matrices where some 
samples are paired, some features are paired, and you 
have to explore these anchors to try and learn as much as 
you can from the data.

FLG: Are there tools and approaches for diagonal or 
mosaic integration that you think are particularly good?

Ricard: For diagonal integration, specifically for single-
cell data, one of the ones I really like is called GLUE. 
In this approach, they have RNA-seq on one side and 
chromatin accessibility on the other side, which are 
provided from different cells. Then they develop a 
unifying matrix from which they infer a unifying model, 
where they assume relationships between the genes 
and the chromatin accessibility site. They use this extra 
matrix to anchor the original two matrices. It’s a very 
powerful method with a very sensible application, 
which is easy to use. So, it's one of my favourite 
methods for diagonal integration.

In the case of mosaic integration, two methods come to 
my mind, specifically for single-cell data. One is called a 
StabMap that was developed by Shila Ghazanfar in the 
group of John Marioni. And then there’s another one, 
which was called dictionary learning by Rahul Satija’s 
lab in the context of the Seurat method that they have. 
Here again, the key is always to exploit all of these 
anchors that you have across the different datasets.

FLG: Could you describe your SingleCellMultiModal 
package the you published in the PLOS Computational 
paper?

Ricard: One of the challenges for the multi-omics data 
field is getting the data in an easy to use format in a 
self-contained object where you can just query all the 
different modalities and the different samples. Some 
resources already do a good job at this. For example, 
TCGA has thousands of samples with different data 
modalities, and they have an API that makes it quite the 
easy to extract the different data that you need. 

In the case of single-cell multi-omics data, it wasn’t 
really the case. Instead, you have to download the 
data, you have to reprocess it from scratch, and there 
was no easy way of querying and fetching useful data 
to train your models. So, we tried to do a consistent 
reprocessing of the data, bringing everything into 
a self-contained object using the Bioconductor 
standards, such that any user could just quickly 
download this data. If they want to reprocess things by 
themselves, they can always go from the raw data, but 
at least this provides a processed data object with all 
the metadata that they can just run their models on.
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Below you will find a table detailing many of the available multi-omics integration tools and whether they are for 
matched or unmatched integration. The following sections of this report will address each of these in turn, before 
concluding with a look at transfer-learning and spatial integration strategies.

BRINGING OMICS TOGETHER. INTEGRATING MULTI-OMICS DATA

Year Name Methodology Integration capacity Ref.

MATCHED INTEGRATION TOOLS 
(From same single cell)

2019 SCHEMA Metric learning-based method Chromatin accessibility, mRNA, proteins, immunoprofiling, spatial coordinates 12

2020 Seurat v4 Weighted nearest-neighbour mRNA, spatial coordinates, protein, accessible chromatin, microRNA 13

2021 DCCA Variational autoencoders mRNA, chromatin accessibility 14

2021 DeepMAPS Autoencoder-like neural networks mRNA, chromatin accessibility, protein 15

2019 citeFUSE Network-based method mRNA, protein 16

2020 MOFA+ Factor analysis mRNA, DNA methylation, chromatin accessibility 17

2020 scMVAE Variational autoencoder mRNA, chromatin accessibility 18

2020 totalVI Deep generative mRNA, protein 19

2020 BREM-SC Bayesian mixture model mRNA, protein 20

2022 SCENIC+ Unsupervised identification model mRNA, chromatin accessibility 21

2022 FigR Constrained optimal cell mapping mRNA, chromatin accessibility 22

2021 MIRA Probabilistic topic modelling mRNA, chromatin accessibility 23

2023 CellOracle Modelling gene regulatory networks mRNA, CRISPR screening, chromatin accessibility 24

2022 MultiVelo Probabilistic latent variable model mRNA, chromatin accessibility 25

UNMATCHED INTEGRATION TOOLS 
(From different single cells)

2019 Spectrum Weighted nearest-neighbour microRNA, mRNA, protein 26

2020 BindSC Canonical correlation mRNA, chromatin accessibility 27

2019 MMD-MA Manifold alignment mRNA, chromatin accessibility, DNA methylation, imaging 28

2019 MuSiC Unsupervised topic modelling mRNA, CRISPR screening 29

2019 Seurat v3 Canonical correlation analysis mRNA, chromatin accessibility, protein, spatial 5

2020 UnionCom Manifold alignment mRNA, DNA methylation, chromatin accessibility 30

2019 CloneAlign Statistical method mRNA, DNA 31

2021 Pamona Manifold alignment mRNA, chromatin accessibility 32

2022 GLUE Variational autoencoders Chromatin accessibility, DNA methylation, mRNA 4

2019 LIGER Integrative non-negative matrix factorization mRNA, DNA methylation 7

2022 StabMap Mosaic data integration mRNA, chromatin accessibility 33

2021 Cobolt Multimodal variational autoencoder mRNA, chromatin accessibility 34

2021 MultiVI Probabilistic modelling mRNA, chromatin accessibility 35

2022 Seurat v5 Bridge integration mRNA, chromatin accessibility, DNA methylation, protein 3

TABLE 2.1. MULTI-OMICS INTEGRATION TOOLS SEPARATED BY MATCHED VS. UNMATCHED INTEGRATION CAPACITY
For each computational tool, the name, year of release, methodology of integration and the omics capacity are noted. This table was adapted 
from Baysoy, et al.11
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Matched (Vertical) Integration
Vertical integration methods rely on technologies that profile omics data from two or more distinct modalities from 
within a single cell. From this position, the cell itself can be used as an anchor by which to integrate varying modalities. 

Given that the majority of multi-omics tools either measure RNA and protein concurrently or RNA and epigenomic 
information (mainly via ATAC-seq) concurrently, the majority of tools for vertical integration focus on these pairs of 
modalities, as can be seen in Table 2.1.

Of the various approaches, there are matrix factorization methods (e.g., MOFA+17), neural network-based (e.g., 
scMVAE18, DCCA14, DeepMAPS15) and network-based methods (e.g. cite-Fuse, Seurat v4)36. See Figures 2.2B and 2.3 for 
an overview of the techniques. We will look at a few popular examples.

MOFA+17 is a well-known approach for matched integration, using Bayesian Group Factor Analysis framework to jointly 
model variation across covariates. 

Seurat has several integration methods including canonical correlation analysis, mutual nearest neighbours and 
weighted nearest neighbours (WNN)13. The latter of these was employed to integrate single-cell RNA and ATAC data 
and also to integrate RNA and proteomic data from CITE-seq. Due to the low number of proteins captured in multi-
omics technology, specific tools 
such as totalVI19 and sciPENN37 are 
used to correct for these protein 
profiles.

Several tools to integrate 
chromatin accessibility and mRNA 
are designed with gene regulatory 
network analysis in mind (e.g., 
SCENIC+21, FigR22, CellOracle24). 
These tools will be covered in 
Chapter 5. 

Machine learning approaches 
are proving incredibly useful for 
looking at integration patterns 
in the complex multi-omics data. 
MarsGT38 and DeepMAPS15 are 
two recent examples, based on 
the successful scGNN39 deep 
learning model. DeepMAPS 
uses a graph transformer 
neural network architecture. 
The attention mechanism in 
this architecture learns relevant 
omic-omic interaction networks 
and cell-cell similarities from 
integrating multi-omics data. We 
spoke to the senior author of the 
DeepMAPS publication, Professor 
Qin Ma about multi-omics 
integration and his group’s latest 
computational tools.

BRINGING OMICS TOGETHER. INTEGRATING MULTI-OMICS DATA
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FLG: Can you just briefly introduce yourself? Give some 
of your research background and some of your current 
research interests?

Qin: I was trained in theoretical mathematics and 
during my PhD. I fell in love with applied mathematics, 
specifically in biology and the biomedical field. I did a 
bioinformatics postdoc and started a lab in 2015, focusing 
on bioinformatics and mathematical biosciences. 
Now, I'm a professor in the Department of Biomedical 
Informatics at The Ohio State University, in the College 
of Medicine. We are doing computational modelling and 
data analysis, and we are eager to have a strong clinical 
and translational impact. We have a single-cell emphasis 
in our research, using AI and machine learning. 

FLG: Can you describe some of the computational 
challenges in multi-omics data analysis that your 
group is looking at?

Qin: The challenges for single-cell are, first of all, the large 
scale. At bulk level, it's hard to accumulate hundreds 
or thousands of samples by an individual lab, that's 
too expensive. But at single-cell level, you easily get 
thousands of cells, even millions of cells, which means the 
sample size is pretty high and the raw data is huge.

Second is the data heterogeneity. At the bulk level, 
we take the average. For one cancer patient, you get 
the tumour tissue and with bulk RNA-seq you get one 
expression profile for one sample. In single-cell, we 
take a tissue, and we extract every single cell, then 
sequence them individually, and you see heterogeneity 
there. This matters for the mathematical and data 
analysis and interpretation of the results. 

The last one is noise. At the single-cell level you get 
the 'dropout' issue. This means you will lose a lot of 

activities of genes just because of technology cannot 
capture the weak signals because we are only focusing 
on one cell at a time. When you gather data that is very 
sparse, e.g., in one cell, you can only capture hundreds 
of genes, and usually on the bulk level you can capture 
10,000 - this is the noise issue. 

These challenges together are what we encounter in 
one single modality. For single-cell multi-omics, if you are 
sequencing RNA in some cells and you are also sequencing 
epigenomics, like ATAC-seq, the modalities have different 
levels of noise. When you try to combine them to make 
a story by leveraging different modalities on a single-cell 
level, that's a challenge squared. I think that's why single-
cell multi-omics attracts a lot of computational researchers. 
One very strong rationale for doing this is that all complex 
tissue, and all complex diseases, including cancer, need 
these single-cell approaches. They involve a system with 
multiple placeholders - immune cells with 10s of subtypes, 
tumour cells with 10s of subtypes, and they talk with each 
other. Just taking an average in a complex system would 
lose a lot of information. While single-cell multi-omics is 
expensive and has a lot of challenges, people still have no 
hesitation going there.

FLG: Let’s cover the computation tools that you've 
published that are targeted towards multi-omics data. 
Can we start with DeepMAPS?

Qin: We started with a paper scGNN to show how we 
apply AI and deep learning in biomedical informatics. That 
was the first single-cell level graph neural network model 
for modelling cellular and molecular level heterogeneity. 
Our second work developed a tool named scDEAL. This 
tool integrates bulk and single-cell RNA-seq data and uses 
a deep transfer learning model to predict cancer drug 
responses at the single-cell level, holding strong clinical 
impacts for drug selection and repurposing. 
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Based on scGNN, we developed DeepMAPS. DeepMAPS 
is a deep learning model for single-cell multi-omics, and 
compared to the entire computational field, it is one of 
the field's first models. Right after publishing DeepMAPS, 
it was elected by the Nature Portfolio as one of the 50 
best papers in cancer research. 

If we take a step back, you may ask, why scGNN and 
why DeepMAPS? If you remember, the challenges - huge 
data size, heterogeneity, dropout - these all result in a 
very high noise-to-signal ratio. Everything we mentioned 
here is a perfect fit for deep learning. Deep learning 
models need a lot of data to train themselves, and deep 
learning is well known to remove noise and increase the 
signal-noise ratio in a lot of fields, not only in biology. So, 
organically, this is a good solution for single-cell multi-
omics. We first got started with a simple scenario with 
single-cell RNA-seq. There’s a lot of data, let's try to see 
whether deep learning can analyse the data a get it into 
a better shape. That's the scGNN we published, and it 
demonstrates the value of leveraging AI/machine learning 
with single cell RNA-seq. This was the foundational 
evidence showing AI could potentially shape single-cell 
data analysis for the better. 

In DeepMAPS, we are not targeting only one modality. We 
are targeting multiple RNA-seq datasets, RNA and ATAC, 
RNA and protein, various different combinations of the 
modalities as input. As an output, we address the cellular 
heterogeneity, it can find out how many cell clusters, cell 
types or subtypes can be identified. What's the underlying 
modality network, for example, you input RNA and ATAC, 
and then you can see the regulatory network for the 
specific cell population. If you input protein and RNA, you 
can get other networks. So, eventually, DeepMAPS can 
deliver cell-type specific gene networks. 

So, how do you interpret the output? The interpretation 
is, what's the heterogeneity of your biological system, 
and how many clusters are there. For each of the 
clusters, what kind of marker and what kind of network 
is defining it and defining the cell type or cell state. 
This is DeepMAPS and this works as an end-to-end 
model, which means it is not a pipeline; we model 
everything together in one deep learning model. It’s 
a heterogenous graph transformer, which is a robust 
solution for single-cell multi-omics. 

FLG: Do you have any situations where it’s been used 
by people since you released the paper to draw clinical 
insights or biological insights?

Qin: In our DeepMAPS paper, we apply DeepMAPS to 
lymphoma, which is a very aggressive cancer type. We 
used it to identify a specific lymphoma cell subtype, 

which has not been identified by other computational 
frameworks. This is a potential mechanism of cancer 
progression, but if we want to show the clinical 
implementation and real translation impact, we should 
have a direct lab or physician partnership established 
so that we can apply those mechanisms derived at a 
single-cell level, to the population level. If at the patient-
level, we had hundreds of lymphoma cancer patients, 
we could check whether the mechanism does indeed 
have differences or commonalities in the cohort, and 
then we are on target to design some treatments, or 
pretreatments. That's from the integrated efforts from 
both the computational and the wet lab groups. 

FLG: I will jump straight to another one of your tools. 
Can you explain MarsGT?

Qin: Well, scGNN, DeepMAPS and MarsGT have a 
similar research theme. In DeepMAPS, we focus on 
the major cell types - can we distinguish the major cell 
types, e.g., the cancer cells and the immune cells? We 
can then define their molecular mechanism and find 
out what is underlying these types. This is DeepMAPS, 
but one limitation of this and other similar tools is 
when we try to identify some rare population, which 
means the number of cells could be less than 3%, or 
only 1% of the entire population. For example, if you 
have 1,000 cells, a rare cell population may be less than 
10. That means, if you want to target rare populations, 
cell numbers need to be high. 

We know that there are times when a rare population 
will have a critical role in disease progression. For 
example, if you have cancer, take a drug, but then the 
cancer comes back, it's likely not related to the major 
cell types, but a very rare population who have drug 
resistance, which people called it the minimal residue 
disease. Rare populations are important, but from the 
computational point of view it's very hard, because 
there are very few data points in the whole population. 
If you want to identify your population, you need a 
specific strategy, otherwise you can easily find false 
positives. Sometimes, the rare population will have 
heterogeneity, which means that if you want to define 
a rare population, this will not usually be down to one 
gene or two. Instead, it should be a very complicated 
network to define the cell type. 

After DeepMAPS, we quickly released the next version 
focusing on rare populations and we called it MarsGT. 
Once the biological network for that rare population 
can be identified we can drive exciting insights. There 
are a couple of case studies, specifically in immune 
oncology, but the manuscript is still under review so 
I'm not providing too many details.
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Unmatched (Diagonal) Integration
Unmatched integration highlights 
a different and more substantial 
challenge. Unmatched experiments 
are technically easier to perform 
because each cell can be treated 
optimally for the omic that is due to be 
analysed. Yet, because the omics data 
from different modalities are drawn 
from distinct populations/cells, the cell 
or tissue cannot be used as an anchor. 
An anchor has to be derived by some 
other means. 

A general solution to this problem is 
to project cells into a co-embedded 
space/non-linear manifold to find 
commonality between cells in the 
omics space. Due to the learning-
based nature of this task, this space is 
popularised by a number of machine 
learning and statistical methods 
designed to find the most appropriate 
anchor to align cells. 

A popular tool for unmatched 
integration recently introduced is GLUE4, which stands for Graph-Linked Unified Embedding, and it can achieve triple-
omic integration. Using graph variational autoencoder, GLUE can learn how to anchor features using prior biological 
knowledge, which it uses to link omic data. 

scJoint40 is another new method showing promise in this area. It uses transfer-learning to integrate atlas-scale heterogenous 
data, outperforming classical methods such as LIGER7 and Seurat v35. MultiDGD41, a recent tool released in preprint 
in August 2023 from the Teichmann lab, looks to be the superior option here. Employing a Gaussian Mixture Model 
rather than an autoencoder, it has several advantages over previous methods such as more flexible and high quality 
representations of the data and shows high performance on the atlas-scale multi-omics data that is now widely available.

Mosaic Integration
Mosaic integration is an alternative to diagonal integration. This can be used when you have an experimental design in 
which each experiment has various combinations of omics that create sufficient overlap. 

For example, if one sample was assessed for transcriptomics and proteomics, another for transcriptomics and epigenomics 
and a third for proteomics and epigenomics, there is enough in common between these samples to integrate the data. 

Tools such as COBOLT34 and MultiVI35 present modern methods to integrate mRNA and chromatin accessibility in a 
mosaic fashion. They create a single representation of the cells across datasets to be used in downstream analysis.

A final tool here is MultiMAP42. It is a graph-based method that assumes a uniform distribution of cells across a latent 
manifold structure to integrate datasets with unique and shared features. We caught up with Dr. Mirjana Efremova, 
one of the senior authors of MultiMAP, to ask her about multi-omics integration.

BRINGING OMICS TOGETHER. INTEGRATING MULTI-OMICS DATA

FIGURE 2.3. SINGLE-CELL MULTI-OMICS DATA INTEGRATION METHODS. 
The easiest way to integrate multi-omics is to concatenate the original feature matrix of various 
omics data, but the noise and distinct meaning of values confuse the results of the integration. 
Machine learning methods extract features from the original matrix and then combine the 
features across multi-modalities. Deep learning algorithms have also been applied based on 
various types of networks; e.g., linear, convolution and self-attention. Image Credit: Wang, et al.36
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FLG: Can you introduce yourself, give some of your 
research background and your current research interests

Mirjana: I am a computational biologist by training. 
During my PhD at the Medical University of Innsbruck, 
Austria, I investigated how the immune system shapes 
colorectal cancer evolution. For my postdoctoral research, 
I joined the Teichmann Lab (Wellcome Sanger Institute) 
where I co-led the development of the first human 
atlas of the maternal-fetal interface in early pregnancy 
using single-cell transcriptomics. I became interested 
in understanding how cells communicate and how 
signals from the environment mediate distinct cellular 
phenotypes, particularly in cancer, and I developed 
the cell-cell communication statistical framework 

CellPhoneDB for inference of cellular communication 
networks. I started my lab at the Barts Cancer Institute 
where we are focused on studying cancer cell plasticity 
and the intrinsic and extrinsic mechanisms that drive 
plasticity in metastasis and therapy resistance.

FLG: For our readers, can you briefly outline the 
challenge of multi-omics data integration and why it is 
still a challenge to this day?

Mirjana: A major challenge in integrating data from 
different modalities is the distinct feature spaces of 
different modalities (for example, gene expression in 
scRNA-seq vs. accessible chromatin regions in scATAC-
seq). Typically, different omics methods are measured 
independently and measure distinct unpaired features 
with different underlying distributions and properties. 
They can also have different noise and batch 
characteristics, which are challenging to identify and 
correct.

FLG: Can you describe the multi-omics tools you 
have been involved with, MultiMAP, the approach to 
multimodal data the tool adopts and how it fits into 
the landscape of multi-omics data integration?

Mirjana: MultiMAP is an algorithm for dimensionality 
reduction and integration of multiple modalities. 
It basically generalises the UMAP algorithm to the 
setting of multiple datasets with different dimensions. 
Specifically, MultiMAP integrates data by constructing a 
nonlinear manifold on which diverse high dimensional 
data reside and then projecting the manifold and data 
into a shared low dimensional embedding space.

“MULTIMAP INTEGRATES 
DATA BY CONSTRUCTING 
A NONLINEAR MANIFOLD 
ON WHICH DIVERSE HIGH 

DIMENSIONAL DATA RESIDE 
AND THEN PROJECTING 

THE MANIFOLD AND DATA 
INTO A SHARED LOW 

DIMENSIONAL EMBEDDING 
SPACE"
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Finally for mosaic integration, we 
would like to pay close attention 
to two very recent tools that were 
highlighted in Nature.43 Both methods 
address the issue of having a low 
number of overlapping features 
between the datasets you want to 
integrate.

The first of these tools is StabMap33 
(Figure 2.4), which was demonstrated 
to integrate proteomics with an 
mRNA and chromatin accessibility 
dataset without the need for directly 
overlapping features. It implements a 
‘multi-hop’ strategy by querying one 
dataset with intermediary datasets in 
a chain until the second dataset is queried. All query datasets are then projected onto the reference space.

The other tool is Bridge Integration, as part of Seurat v53. This method is similar to StabMap but uses an intermediary 
dictionary dataset to unify the features of the query and reference datasets. This method achieves the computational 
efficiency necessary to run large-scale multi-omics integration on a personal computer.

Spatial Integration
With the increasing development of spatial multi-omics methods (see Chapter 3), new integration strategies are 
needed for this data. Principally, we are looking at vertical spatial integration as these spatial modalities naturally 
capture the omics within the confines of a cell or ‘spot’, which works as the anchor. 

Existing spatial methods, such as ArchR44, have been successfully deployed for spatial integration. The example here 
used the RNA modality to indirectly spatially map other modalities, specifically spatial transcriptome and epigenome 
integration45. Another example is Cell2location46, which was successfully used to integrate spatial RNA and ATAC data 
in the human heart using a shared nearest neighbours (SNN) strategy47.

Given the popularity of GLUE for diagonal integration of single-cell data, Dr. Jinmiao Chen has recently released 
SpatialGlue48, a spatial version that allows the integration of omics on spatial sections. 

Existing tools are also being modified to allow spatial analysis. For example, the developers of MOFA+ have recently 
released MEFISTO49, which uses the same factor analysis approach with a new capability to handle both temporal and 
spatial components within the model 

Ultimately, the development of paired and unpaired spatial integration methods is a space to watch for future 
developments, as more paired multi-omics methods are released.

BRINGING OMICS TOGETHER. INTEGRATING MULTI-OMICS DATA

FIGURE 2.4. SINGLE-CELL MULTI-OMICS DATA INTEGRATION METHODS. 
(A) Data that StabMap is specialised for, multiple non-overlapping matrices, (B) Method for 
StabMap, cells are projected on the intermediate reference. (C) The process is repeated for the 
selected reference datasets to reach the final integration. Image Credit: Ghazanfar, et al. 33
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CHAPTER 3

MEET THE MACHINERY. THE LATEST 
MULTI-OMICS TECHNOLOGIES 

THE MULTI-OMICS REVOLUTION HAS BEEN LARGELY ENABLED BY 
TECHNOLOGICAL DEVELOPMENT. THIS HAS PROGRESSED ON TWO 
FRONTS; (1) IN THE LABS AND RESEARCH INSTITUTIONS, PROVIDING 

NOVEL WAYS OF PROFILING MULTIPLE OMICS, AND (2) ON THE 
COMMERCIAL FRONT, PROVIDING KITS AND INSTRUMENTS CAPABLE 
OF PRODUCING MULTI-OMICS DATA IN A SCALABLE, REPLICABLE AND 

ACCESSIBLE WAY. THIS CHAPTER WILL GIVE AN UPDATE ON THE LATEST 
AVAILABLE TECHNOLOGIES, SPECIFICALLY THE COMMERCIAL OFFERINGS, 
AND ALSO FOCUS ON THE LATEST SPATIAL MULTI-OMICS INSTRUMENTS. 

In the previous chapter, we looked at the computational challenge of integrating two types of omics data together. We 
saw that for many applications of multi-omics, profiling data from the same cell in the same experiment is extremely 
valuable. The cell can be used as an anchor, and the dynamics between two omics can be compared directly.

However, omics data from the same cell is not easily acquired, and calls for specialised methodologies and 
commercialised technologies to achieve data of sufficient quality. Here, we will first review single-cell multi-omics 
methods, both in-house and commercial, before concentrating on the new wave of spatial multi-omics methodologies, 
principally for transcriptomics and proteomics. Finally, we will hear from two multi-omics group/core leaders about 
their work and experiences with these methodologies.

Single-cell Multi-omics Methods
We begin with a brief overview of the single-cell multi-omics methods that have been released, as well as a summary 
of the commercially available multi-omics solutions. For a full in-depth review of mutli-omics methods, please refer to 
the excellent reviews referenced here1-5.

GENOMICS-BASED
Methods to profile the single-cell genome alongside the transcriptome were some of the earliest multi-omics 
techniques. Examples include G&T-seq6, DR-seq7, SIDR8, Target-seq9 & DNTR-seq10. G&T-seq is the only method that 
offers CNV, SNV and fusion genomic data with full length transcriptomics, while DR-seq does the same with 3’ or 5’ 
transcriptomics. These methods are all plate-based but vary in throughput, with DNTR-seq allowing the highest cell 
throughput. Very recently, we have seen the release of scONE-seq11, following a seq-spilt approach specialised for 
long-term stored frozen samples. 

TRANSCRIPTOMICS & PROTEOMICS
Multi-omics approaches using proteomics currently rely on targeted, antibody-based profiling alongside single-cell 
RNA sequencing. Typically, these approaches profile extracellular proteins on a cell using antibodies, although some 
approaches exist for intra-cellular and intranuclear tagging. Early approaches used qPCR alongside proteomics such as 
PEA-STA12 and PLAYR. 

The field was revolutionised with the introduction of CITE-seq13 and REAP-seq14, which profiled surface proteomics 
alongside whole transcriptome (3’/5’). These methods work with high throughput using microfluidics and have been 
widely used since their inception. Cite-seq allows over 100 surface proteins to be profiled alongside the transcriptome. 
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RAID-seq15 is a similar plate-based methodology and allows 
intracellular protein tagging of six targets. QuRIE-seq16 represents 
an advanced version of this protocol, using microfluidics based 
transcriptomics and expanding the protein repertoire to 80 intra- or 
extracellular proteins. 

Recent tools SPARC17 and SCITO-seq18 couple protein expression with 
full-length RNA expression; the former is also targeted for intracellular 
proteins, while the latter works at very high throughput via combinatorial 
indexing. Perturbation-based methods, e.g., ECCITE-seq19 and Perturb-
CITE-seq20, and nuclear proteomics based methods, e.g., inCITE-seq21 
using single nuclei, have also recently been introduced recently, increasing 
the available options for multi-omics using proteomics. 

TRANSCRIPTOMICS & EPIGENOMICS
Epigenomics has most often been coupled with transcriptomics. 
For example, DNA methylation can be co-profiled with RNA using 
scMT-seq22 and scM&T-seq23. Profiling histone modifications with 
scCUT&Tag24 has been paired with several other omics measurements 
such as transcriptome (CoTECH25 & Paired-tag26) and surface proteins 
(scCUT&Tag-Pro).27 We spoke to Dr. Bingjie Zhang, one of the lead 
developers of scCUT&Tag-pro, to get more insights into multi-omics 
tool development. 
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FIGURES 3.1. SINGLE-CELL MULTI-OMICS METHODS LISTED BY OMICS THEY PROFILE, CELL THROUGHPUT AND 
SINGLE-CELL METHODOLOGY. 
Image credit: Ogbeide, et al. 3
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FLG: Can you just briefly introduce yourself, give 
some of your research background, and some of your 
current research interests and projects?

Bingjie: I have always been very interested in 
epigenetics. I completed my PhD at Tsinghua University 
in China, where I started working on epigenome 
reprogramming during mouse embryo development. 
I then moved to the US for my postdoctoral research, 
where I have been focusing on developing single-cell 
profiling methods for histone modifications, and also 
single-cell multi-omics methods. In the future, I would 
like to apply these methods to explore the epigenetic 
gene regulation during lineage differentiation in the 
immune system, and the related disease. 

FLG: I wanted to ask you about your recently released 
multi-omics method - scCUT&Tag-pro - a method 
for histone modifications and cell surface protein 
measurement. Could you just describe why you created 
this method and a little bit about how it works?

Bingjie: In my Ph.D. study, I realized how dynamic the 
epigenetic landscape can be, so it was very natural for 
me to anticipate future explorations of the epigenome 
at a single-cell resolution. In my postdoctoral research, 
I joined Rahul Satija’s lab, focusing on investigating 
the dynamics of histone modification within a cell. 
Initially, I did not even intend to develop a multi-omics 
method. The CUT&Tag method from Henikoff's lab 
is very mature; I only wanted to adapt his method to 
the 10x platform. But things did not go as well as I 
expected. The data I got were simply too sparse to yield 
meaningful biological conclusions. 

I wasn't satisfied with just developing novel techniques 
that didn't further biological insights. Besides, with 
more data, we began to realize that, due to the nature 
of histone modification itself, there is no guarantee that 
we could achieve consistent cell type annotation, which 
is essential for the downstream integrated analysis. 
So, as an alternative solution, inspired by the ASAP-seq 
from NYGC Innovation Lab, we decided to introduce 
cell surface proteins to assist with data integration and 
eventually developed the single-cell CUT&Tag-pro. We 
performed the cell surface protein staining first and 
then conducted the CUT&Tag. Because we were using 
the same panel of antibodies, we could easily annotate 
the cell types by reference mapping and integrate all 
the different experiments together.

"I DID NOT EVEN INTEND TO 
DEVELOP A MULTI-OMICS 
METHOD.THE CUT&TAG 

METHOD FROM HENIKOFF'S 
LAB IS VERY MATURE; I 

ONLY WANTED TO ADAPT 
HIS METHOD TO THE 10X 
PLATFORM. BUT THINGS 

DID NOT GO AS WELL AS I 
EXPECTED. THE DATA I GOT 
WERE SIMPLY TOO SPARSE 

TO YIELD MEANINGFUL 
BIOLOGICAL CONCLUSIONS."



FLG: Could you describe the integration 
strategy between those two modalities, 
and a little bit maybe about the 
downstream analysis strategy – the 
scChromHMM platform?

Bingjie: In this project, we profiled six 
different histone modifications. As we 
aimed to explore all these modifications 
within the same cell type, integration was 
crucial. We utilized a computational workflow called 
reference mapping. The reference is a well-annotated 
human PBMC CITE-seq dataset containing more than 
100,000 cells and also about 200 antibodies. Because 
the antibody panel used in our CUT&Tag-pro largely 
overlaps with that in the reference dataset, we can use 
the protein information from CUT&Tag-pro to project 
them onto the reference and transfer a consistent 
set of cell type annotations. With this method, we can 
project any query dataset into a space defined by the 
reference. Eventually, we have a single harmonized 
atlas that contains all the different modalities: RNA, 
protein, chromatin accessibility and six histone 
modifications.

To assign the chromatin states at single-cell resolution, 
we first need to generate single-cell profiles with 
measurements of six histone marks. Previously, Satija 
Lab described an anchoring workflow to 'transfer' 
modalities across experiments. Since we can integrate 
all different modalities together into a common 
space, we should be able to impute all modalities 
into the same set of cells. Thus, we applied a similar 
procedure to interpolate 20,000 single-cell profiles, 
each consisting of six histone modifications. My 

collaborator, Avi Srivastava, developed scChromHMM 
to annotate the chromatin state within a cell, which can 
be seen as an extension of ChromHMM. To run this, 
there are basically two steps: The first step is to run 
ChromHMM using the pseudobulk profiles from the 
CUT&Tag-pro to learn parameter estimates and obtain 
a list of possible chromatin states. Secondly, we run the 
forward-backward algorithm on the interpolated single-
cell profiles. So eventually, for each cell, we would get 
a probability of each chromatin state for each 200bp 
window. 

FLG: What applications do you have in mind for this 
technology?

Bingjie: I think it's particularly useful for immune 
cells, as we have very good knowledge about their 
cell surface protein markers. Although in our paper 
we used 173 antibodies, if you aren't concerned with 
very rare cell populations and are aware of the protein 
markers for your cell type of interest, then just a dozen 
or so protein markers can give good clustering results. 
So, if you're working on the immune system and would 
like to investigate epigenetic gene regulation, I do 
believe our method would be very useful.
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Chromatin accessibility (ATAC-seq) can also be profiled with RNA, with methods such as SNARE-seq28, Paired-seq29, 
SHARE-seq30 and, most recently and most sensitively, ISSAAC-seq31. New methods such as ICICLE-seq32 and Phospho-
seq33 pair ATAC-seq with surface proteomics and intracellular proteomics, respectively. 

Epigenomic methods have also been paired together in multi-omics form to create a more holistic epigenomic profile 
of individual cells. For example, scCool-Seq34 is a method that profiles DNA methylation and chromatin accessibility 
with a medium throughput and high coverage. The updated version, iscCOOL-seq35, improves that throughput further. 

The transcriptome has been paired with two forms of epigenetic measurements in one tool in ScNMT-seq36 and, more 
recently, scNOMeRe-seq37, snmCAT-seq and scChaRM-seq38. These methods profile the transcriptome with methylation 
levels and chromatic accessibility.

Nuclear organisation (HiC) has been paired with methylome profiling using methods such as scMethyl-Hic39 and snm3C-seq40.

TRIO-OMICS AND MORE 
Three or more omics in one assay has been the limit of current methodologies, but a variety of methods have been 
created with this purpose in mind. 

The original amongst the list is ScTrio-seq41, a method for genomics (CNV, SNV, somatic mutations), transcriptomics 
and epigenomics (methylation levels). Genomics and epigenomics have been paired with the proteome in recent tools, 
PHAGE-ATAC42 and ASAP-seq43. Both methods profile mitochondrial DNA alongside chromatin accessibility and intra- 
or extracellular proteins in a high throughput manner. TEA-seq32 and NEAT-seq44 represent recent tools linking the 
transcriptome, proteome and chromatin accessibility. TEA-seq works with 46 surface proteins while NEAT-seq works with 
intracellular proteins with a focus on transcription factor binding motif accessibility. DOGMA-seq43 represents the merge 
of these methods, profiling mtDNA, RNA and >200 intra- and extracellular proteins alongside chromatin accessibility.

COMMERCIALISED SINGLE-CELL & BULK MULTI-OMICS
There is a selection of commercialised kits available for single-cell multi-omics that provide all the support to profile 
two or more omics in one experiment. Examples of these include:

• The 10x Genomics Multiome kit allows the simultaneous profiling of gene expression and ATAC-based chromatin 
accessibility using the 10x Chromium controller. This kit means that, for each cell, you get two readouts.

• Mission Bio recently released the third version of their Tapestri® platform. With DNA as its primary analyte, it 
allows the analysis of the genotype of a cell such as CNVs, SNVs, plus proteins. The new version allows up to four 
times more cells captured per sample, which increases the ability to detect rare cells.

• BioSkryb Genomics’ ResolveOME™ kit allows the near-complete survey of the genome and mRNA transcriptome 
at single-cell resolution. With their associated BaseJumper™ data analysis software, this setup creates a unified 
workflow for DNA and RNA interrogation at single-cell level.

• Singleron’s PromoScope™ kit allows the simultaneous quantification of the whole transcriptome, as well as 
protein glycosylation at the single-cell level. Relying on their SCOPE-chip® technology, this is the first kit to quantify 
protein modifications alongside transcriptomics.

• BD Biosciences offers a different solution. Their single-cell AbSeq kit allows whole transcriptome and protein 
detection in single cells used with their BD Rhapsody™ Single-Cell Analysis Systems.

• Isoplexis also allow transcriptomics and functional proteomics through their Duomic kit. Duomic is a single chip 
and allows these measures to be connected from single cells including their in vivo proteomic methods. 

• Biolegend produce a TotalSeq™ kit that also allows proteomics alongside transcriptomics (performed by another 
kit such as 10x Genomics Chromium), allowing 100s of proteins to be detected

• Qiagen offer a DNA and RNA - QIAseq multimodal kit necessary to analyse both analytes in 12 samples: SNVs, 
CNVs and inDels from the genome and gene expression transcriptomics from each sample.

• A genomic and epigenomic kit is offered by biomodal called the duet multi-omics solution +modC. This kit 
allows full genome alongside methylation screening.

We spoke to Dr. Iain Macaulay, the first of our multi-omics group leaders about his experience with these tools. 
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FLG: Can you briefly introduce yourself and give some 
of your research background in multi-omics.

Iain: I'm Iain Macaulay, I'm a Group Leader at the 
Earlham Institute in Norwich. Our group works 
almost entirely on single-cell technology methods 
developments and applications. We've done lots of work 
with multi-omics -  starting nearly 10 years ago, when 
we started developing  methods for parallel DNA and 
RNA sequencing from the same cell which became the 
G&T-seq protocol. And we've adapted and developed 
that in lots of different ways to enable some epigenetic 
measurements as well as transcriptional measurements. 
As a group, we work with almost every biological 
system you can imagine. Our main focus, and my main 
research interest, is in blood cell development, but our 
group works within our institute to apply multi-omics 
technology to anything from plants, microbes to human, 
mouse and chicken developmental biology.

FLG: Do you have to adapt your multi-omics protocols 
for those different biological systems?

Iain: Not so much actually. It's quite interesting. For 
single-cell DNA and RNA sequencing, in general, we 
haven't had to adapt anything particularly significant. 
If you can get the DNA and RNA out of the cell, you can 
read it out and sequence it. So, in any vertebrate system, 
things usually work very well between organisms. When 
we move to plants, there's a little bit of a challenge in 
getting the cell wall off. But once you've done that, then 
it also works fairly easily. Bacteria are a little bit different, 
and we haven't done so much multi-omics work on 
bacteria, just single omics stuff, but that can work really 

well for bacteria In general, it's quite nice that once we 
set the methods up, we can take on projects in really 
different areas with the same method.

FLG: You were part of the team that made some of the 
earliest methods to sequence two omics in parallel. 
Could I get your perspective on how this field has 
developed from those early methods to now. What's 
been your experience of it?

Iain: So, the main thing shifting the whole single-cell 
field, since the early days, is scale. Scale has become 
the thing that people want. Early on, there was a 
lot of emphasis on getting as much information as 
possible from every single cell, and the nature of the 
microfluidics platforms etc. drove the field towards 
scale, over completeness of information per cell. The 
objective is to get as many cells as possible and then 
you’ll understand a very big system. The same is true 
for almost all of the multi-omics approaches that are 
coming in. So, 10x’s Multiome, and others, are still 
based on many 1,000s of cells, and that's really cool. 

Where it falls down a little bit is that you're not getting 
all of that information from every cell. When you do an 
ATAC-seq library from a single cell by 10x, you're just 
doing 50,000 reads per cell. So, the genome coverage is 
quite low. It still enables you to do a lot, but if you really 
think about why we are doing multi-omics, there's 
something missing in terms of really understanding 
how one cell or a small number of cells are using their 
genomes to produce a transcriptome. In this way, high 
throughput single-cell can enable you to see patterns, 
but maybe not completely understand the biology.



Another thing people have struggled with a bit is analysis. 
Making sense of multi-omics data is a challenge, because 
you have a lot of information from each cell, even if it's 
not a high throughput experiment. People might want 
to link epigenetic measurements with transcriptional 
measurements, which is a really complex process in the 
cell. Hence, there's no simple formula like ‘you've got 
open chromatin, you must have an expressed gene.’ 
That’s sometimes the case, but it's not exactly the case for 
every gene - there'll be some variation. People look for 
high level patterns in the data, but understanding how 
individual genes are regulated is maybe less of a concern 
for people, but it probably will be in the future. 

Once you've generated all that data, visualising it and 
sharing with people is still quite a problem. There’s 
standard processes for clustering, and that's great, 
but sharing the connections between the different 
omes, or, if in a G&T-seq experiment, we see a single 
nucleotide variant or an extra copy of a chromosome, 
how do we explain to people what that does to that cell’s 
transcriptome? If you gain a copy of the chromosome, 
you'll have extra expression of the genes on that 
chromosome. But there are also off-chromosome effects 
on what those genes are regulating. You end up with 
quite complex data that you immediately have to start 
waving your hands around to explain. I think some of the 
visualisation tools are not there. A lot of cool tools have 
emerged, but I think a lot of the biological interpretation 
and visualisation tools still have some work to do. 

FLG: There are a lot of multi-omics methods, how 
would you go about choosing a method? What 
questions are you asking to help researchers sift 
through the different methods?

Iain: Some criteria are defined by really basic things 
such as accessibility of resources, how much money 
they have and whether we have a 10x instrument on 
site. At the moment we have a project where they have 
used 10x Multiome and they want to focus in on fewer 
cells and get better coverage. So, we're actually looking 
at developing an approach - which has probably 
already been done - where you can try and figure out a 
bespoke method for the biological problem. 

In the middle ground, if they want RNA and open 
chromatin, typically we talk people through the 
coverage issue. Some people have assumed they'll get 
their promoter region, that their 20 promoter regions 
will be detectable in every cell. So, we go through that 
expectation management. And then we get people with 
a specific type of question, usually a developmental 

biology question, where there are large changes 
happening, and differentiation programmes being 
measured. Doing 10x Multiome on developing chicken 
or mouse embryos, you start to see patterns emerging. 
Those are the projects that have gone forward, where 
there's a real strong motivation to look at organisation 
of gene expression. 

For picking the best method, I think it really comes 
down to accessibility of platforms and resources. I 
run a research group, but we also run a facility or 
a platform that is accessible to people. Within the 
research group, we can do whatever work we get 
funding to support. But for services for other people, 
you don't want to a) set up new methods for people 
or b) invest a lot of time in something that you have 
to validate before you can offer it to someone. A lot 
of what drives our decision making is – ‘we've got the 
10x instrument, it will do this, does that work for your 
experimental plans?’ Which is maybe less exciting than 
– ‘wow, this new method has come out, we have to try 
it.’ Because often we look at the list of methods, and we 
think – ‘well, do we really need to try all of them?’

FLG: What would you like to see in multi-omics over 
the coming years?

Iain: I would like to see spatial methylation, but I don't 
think we will for a long time. If you think about the end 
users of spatial technologies, where it will really benefit 
humanity will be in histopathology and clinical activity, 
and understanding somatic mutations and their impact 
on tissue architecture and tumour architecture. The 
other thing that would be really interesting is the 
lineage tracing cell barcoding studies that are able to 
read out which cell made which cell, cell lineage on top 
of spatial information. I think that's going to be really 
cool. I think that will be something that will transform 
a lot of developmental biology. If you think about the 
end users, I think a lot of people will be happy with 
spatial transcriptomics and proteomics, proteomics 
integrating with spatial would be quite useful too.
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Spatial Multi-omics Methods
Spatial multi-omics methods were first developed and released in 2018 with seqFISH45, profiling the transcriptome 
and proteome in a probe-based manner using in-situ hybridisation, achieving subcellular resolution. 
Transcriptomics and proteomics have been spatially profiled using several more technologies since then, 
including with another probe-based method, MERFISH46. 

DBiT-seq48 was a minor revolution 
in this area, using barcode capture 
based transcriptomics with NGS 
antibody spatial proteomics (for 22 
surface proteins) and boasting a 
10-20 micrometer resolution. Spatial 
RNA and proteomics is also available 
through commercial offerings from 
10x in the Visium and Xenium and 
Nanostring in the GeoMx and CosMx, 
which will be explored in the next 
section.

The latest offerings for spatial 
proteomics and transcriptomics 
include SPOTS49, SM-OMICS50 and 
Spatial-CITE-seq51, the latter of which 
allows the profiling of almost 200 
surface proteins at 20 micrometer 
resolution. Spatial multi-omics with 
proteomics has historically been 
limited to a handful of surface 
protein markers, but these recent 
technologies have allowed the 
inclusion of substantially more 
proteins.

Epigenomics has also been 
incorporated spatially, initially 
through probe-based methods 
such as DNA-MERFISH52 and 
spatial DNAseqFISH+53, which 
achieve subcellular resolution, and 
through OligoFISSEQ54, which links 
epigenomics to proteomics through 
fluorescence in situ sequencing. 

Most recently, the emergence of 
spatial ATAC-RNA-seq55 and spatial 
CUT&Tag-RNA-seq55 using the DBiT-
seq methodology have allowed 
barcode based profiling of the two 
epigenomic measurements alongside 
RNA in a spatially resolved manner. 
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FIGURE 3.2. 
DEPICTION OF THE 
USES OF SPATIAL 
MULTI-OMICS.
Visualising multiple omics 
types in one spatial image 
allows advanced profiling 
of spatial architecture, 
TME structure, spatial 
cell-cell communication 
and, ultimately, improved 
clinical outcomes. Image 
Credit: Wu, et al. 47

FIGURE 3.3. THE EXPLOSION OF MULTI-OMICS SPATIAL 
TECHNOLOGIES OVER THE LAST 5 YEARS. 
Representative spatial technologies for the different multi-omics assessments. In the centre is 
a bar chart of the number of publications reporting spatial multi-omics methods in different 
categories. Image Credit Li 56
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COMMERCIALISED SPATIAL MULTI-OMICS
There are a range of commercialised kits available for spatial multi-omics, allowing you to profile two or more omics in 
one experiment with spatial resolution. Examples of these include:

• 10x Genomics provide both the Visium + Cyt Assist™ for whole transcriptome and 31-plex protein assays at a ~50 
micron resolution and the Xenium™, which enables the profiling of 1000s of RNAs using a probe-based strategy 
alongside proteins at subcellular resolution.

• Nanostring provide both the CosMx™ SMI - the highest plex in situ imager with 1000-plex RNAs and 64-plex 
proteins analysed in the same tissue at subcellular resolution - and the GeoMx™, which has broader protein and 
RNA capability with lower resolution.

• Vizgen MERSCOPE™, the commercial realisation of MERFISH, launched a protein co-detection kit that allows users 
to take full advantage of the subcellular hi-plex nature of the instrument while detecting up to five proteins. 

• Akoya Bioscience’s Phenocycler-Fusion was released in January 2022 and offers a high throughput workflow 
at sub-cellular resolution for 100+ markers, either RNA or protein biomarkers. It is the fastest single-cell spatial 
biology solution, able to map a million cells in 10 minutes.

• Companies are also beginning to work in combination to create multi-omics possibilities. An example of this is ACD 
Biotechne and Standard Biotools, who have created a workflow to combine the 12-plex RNAscope™ assay with 
the 40-plus protein Imaging Mass Cytometry™ assay, to create RNA and protein multi-omics results.

• Outside of transcriptomics and proteomics, AtlasXOmics is the commercialised spin-off from DBiT-seq and 
currently allows users to incorporate epigenomic information in a spatial context alongside proteomics and 
transcriptomics, like the original technology.

We spoke to Dr. Andrea Corsinotti, our second Multi-omics core leader about his experience with these tools.
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FLG: Let’s jump straight in with a question about your 
current role. What multi-omics capacity does your 
facility have?

Andrea: Most of the work that we do at the moment is 
with reagents and workflows from 10x Genomics, which 
is the main player in the market for single-cell analysis. 
They have a plethora of reagents and kits and workflows 
for measuring different things, which ranges from 
just gene expression, ATAC-seq, CITE-seq for surface 
proteins, CRISPR screens, PCR profiling and many other 
applications. We also use reagents and workflows from 
Parse Biosciences, a different company offering similar 
solutions. For spatial biology, we use 10x Visium and BGI 
stereo-seq. We just bought a NanoString CosMx, and we 
will soon get the 10x Xenium.

FLG: As a core facility, what kind of questions do you 
get a lot of?

Andrea: On our website we have a question and answer 
section. You’ll find questions there such as – ‘How many 
samples? How many genes/how many cells am I going 
to get?’ Another very typical question we get is – ‘How do 
I prepare my samples?’ This is a tricky question, because 
if you work on barley flowers, or if you work on human 
brain, you are the experts in preparing cells from barley 
flowers or from human brain. I have a background in 
stem cell biology, so I can only help you prepare stem 
cells, in vitro cultures. The second very common question 
is - How much is this going to cost?’ I wish there was a way 
to simply answer both questions, but there isn't.

FLG: Is sample prep something that people 
consistently have problems with even now?

Andrea: It depends on the sample. For new 
experiments, most of the work that we do goes into 
the optimization of the sample prep. For all these 
technologies, what you put in is the main determinant 
of the quality of the data that you produce. There 
are very few things that we can change during the 
workflow. So, most of our expertise goes into helping 
people find the best ways to prepare their cells. The 
easiest way to do it is to have a goal, e.g., we need a 
single-cell suspension with these characteristics or a 
single-nuclei suspension with these characteristics. 
Then we can guide them to choose from the protocols 
or tools that are available through the various 
alternatives, until we get to a sample that is of good 
enough quality for us to process in our experiments.

FLG: Would you say that most of the multi-omics kits 
do what they say on the tin, or have you had any 
troubles with them?

Andrea: When we work with commercially available 
products, they tend to deliver what they promise. 
There tends to be two obstacles. One: if you want to 
do an experiment in which, on top of gene expression, 
you want to screen a lot of surface proteins, there are 
very robust workflows for this type of experiment. The 
success depends on whether you have good antibodies 
to detect all the proteins that you want to detect. The 
kit will deliver, but there are other limitations that are 
not strictly related to the kit that can interfere with the 
results. Two: is it's not always that easy to make sense 
of the data that you're getting. The classical example in 
terms of multi-omics is a combination of single-cell RNA-
seq with single-cell ATAC-seq from the same sample. 
Although the workflow works fine and we get what we 



are promised, people that I know that have been using 
this workflow often struggle making sense of the data 
because of the complexity that is associated with it.

FLG: Are there new challenges that emerge from 
specific multi-omics protocols as opposed to the 
mono-omics alternatives?

Andrea: One of the things that we still cannot do 
very well, at the single-cell level, relates to proteins. If 
you want an unbiased approach that doesn't require 
antibodies, the tools that are available are still in an 
early phase of development compared to RNA-seq. 
This is mostly because of the sequencing versus other 
technologies that are needed to reveal RNA vs proteins. 
One thing that people have asked me in terms of 
multi-omics is whether it is possible to perform gene 
expression analysis from a cell while also looking at 
intracellular proteins. This is very difficult or almost 
impossible to do at the moment. My background is 
gene regulation, so looking at how transcription factors 
interfere with a gene expression programme of a cell 
is a very interesting question. The fact that there are 
no well-established tools to do both things at once, at 
single-cell level, is a little bit frustrating. You can look for 
papers in which they use a home-made method to do 
something similar, but as a facility, we need to provide 
a service that is scalable and reliable. We need to work 
with something that is benchmarked, rather than 
something that has worked in one lab in one place.

FLG: What multi-omics combinations are people 
approaching you asking to do?

Andrea: It really depends. Sometimes people have a 
specific question, and they want to do an experiment 
in which you are combining two measurements. In that 
case, the answer can be yes or no, depending on the 
tools that are available. In other cases, people don't know 
about the existence of multi-omics tools. In that case, we 
try to suggest – ‘Why don't you do this? Or why don't you 
also do that?’ Sometimes people think that they will gain 
some information by adding measurements, and then 
we do the reality check – ‘If you do these things in the 
easy way, you're going to get some data and probably 
some answers to both your questions. If you try to over 
complicate it too much, you may have more problems 
with the execution of the experiment and with the 
analysis of the data’. So, we try to deter them. 

Unfortunately, it has to do with what is doable and 
what is not doable. With the current technologies, we 
know that single-cell RNA-seq is something that we 
can do very easily and generate such a large amount 
of data that people struggle to analyse. To add in 

additional measurements and combinations with other 
omic types really needs to be carefully thought out to 
avoid these kinds of situations in which the experiment 
is technically challenging, very expensive, and then you 
get data that is difficult to analyse and to understand.

FLG: There are tools now that allow you to profile two 
omics from the same cell or same nucleus. Another option 
is to split your cells and profile each omic from separate 
populations. Is it cheaper to do both on the same cell and 
is there a disadvantage to the split method?

Andrea: The main advantage of doing both in the same 
cell is that you can properly match the information in 
exactly the same style. One thing that we have noticed, 
for example, when we do single-cell RNA-seq and single-
cell ATAC-seq, is that the starting material for the two 
assays is different. RNA-seq requires good quality RNA 
and ATAC-seq requires good quality chromatin. It is 
often difficult to have a sample preparation method that 
is gentle enough to maintain both types of materials. 

Here, you can do the experiment together or you 
can do the experiment separately. If your interest is 
knowing exactly what happens in one cell, looking at 
the two bits of information together is the way to do 
it. If your aim is to have datasets that are meaningful 
individually, and that can be integrated, doing it 
separately is more successful. You will use a method 
to prepare cells for single-cell RNA-seq, which looks 
at RNA, and the method for single-cell ATAC-seq that 
looks at the chromatin. What happens to the other 
component in either method doesn't matter, because 
you're not going to use it. You can sacrifice the RNA 
to preserve the chromatin and you can sacrifice the 
chromatin to preserve the RNA. I think the costs are 
quite similar if you do them together or if you do them 
separately. It always goes back to the type of question 
that one has, rather than the cost. 
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“WHAT HAPPENS TO THE 
OTHER COMPONENT IN 

EITHER METHOD DOESN'T 
MATTER, BECAUSE YOU'RE 

NOT GOING TO USE 
IT. YOU CAN SACRIFICE 
THE RNA TO PRESERVE 
THE CHROMATIN AND 

YOU CAN SACRIFICE THE 
CHROMATIN TO PRESERVE 

THE RNA."
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Some of the first multi-omics tools were methods to co-profile DNA and RNA. Consequently, this has become a widely 
relied upon multi-omics method, with distinct insights. 

As briefly covered in Chapter 3, transcriptomics and proteomics is a newer area of development, and new tools 
are consistently being released. Uniting protein data with RNA is also not straightforward, with several specific 
tools for RNA/protein integration already mentioned in Chapter 2. On a base level, incorporating proteomics with 
transcriptomics allows for more robust cell typing than can be gained from transcriptomics alone, because the 
proteome reflects ongoing cellular processes rather than ‘primed’ processes (see Figure 4.1). However, as this chapter 
will show, there is more utility to this multi-omic method than first meets the eye.

Linking Genotype to Phenotype
We’ll begin with a brief overview of the advantages 
of looking at DNA information alongside RNA signals. 
This can be performed with methods described in 
Chapter 3, such as G&T-seq2, scONE-seq3 and Mission 
Bio’s Tapestri v3 platform for single-cell.

The direct benefit of combining DNA and RNA 
measurements in a single cell is the ability to link 
DNA-based functional genetic variants to specific 
cell-type variation in gene expression4. This means 
that the downstream effects of disease-associated 
genetic loci can be linked to cellular consequences, to 
ultimately provide deeper insights into the molecular 
and cellular mechanisms involved with disease risk5. 

For diseases in which somatic genetic variation 
plays a role, such as cancer6, Alzheimer’s7 and 
Parkinson’s disease8, these methods are important for 
understanding disease pathogenesis. Findings from 
these studies have shown phenomena such as distinct 
transcriptional consequences to acquired DNA copy 
number aberrations, showing that genotype does not 
carry directly into transcriptional phenotype9.

CHAPTER 4

DECONVOLUTING DOGMA. DNA, RNA 
AND PROTEIN MULTI-OMICS 

DNA IS TRANSCRIBED TO RNA, WHICH IS TRANSLATED TO PROTEIN. 
THIS IS THE GENOMIC DOGMA. IN THIS CHAPTER, WE WILL OUTLINE 

THE APPLICATIONS OF, AND METHODS TO, SEQUENCE THE 
GENOME, TRANSCRIPTOME AND/OR PROTEOME CONCURRENTLY. 
WE WILL SPECIFICALLY FOCUS ON THE EMERGING TECHNOLOGIES 

AND COMPUTATIONAL TOOLS FOR SINGLE-CELL AND SPATIAL 
TRANSCRIPTOMICS, AND PROTEOMICS. 

FIGURE 4.1. DNA IS THE CODE, TRANSCRIPTOMICS 
SHOWS US WHAT IS PRIMED, PROTEOMICS TELLS US 
WHAT IS ONGOING, AND METABOLOMICS TELLS US 
WHAT HAS HAPPENED.
Image Credit: Fangma, et al. 1
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These tools are also valuable for studying the efficacy and safety of genome editing in the germline. They can assess 
the on-target and off-target genome edits from CRISPR-Cas9 alongside the phenotypic consequences of both10. 

Linking Transcriptomics to Proteomics
The focus for the rest of this chapter will be on the technologies and applications that link transcriptomics to 
proteomic information. All cellular process and functions revolve around proteins. For example, they make up the 
structure of cells, they perform biochemical process via their role as enzymes, and they are the receptors and ligands 
of cellular communications5,11. 

As previously stated, proteomics ensures more robust cell typing than is produced from transcriptomics. Capturing 
transcriptomics and proteomics can also provide functional information that cannot be captured by genomics alone12. 
Proteomics has revealed the effects of genetic variants in conditions otherwise undetectable from RNA analysis13. We 
direct readers to this specific review from 2023 on the latest transcriptomic and proteomic methods14. 

Transcriptomics and proteomics has proved a popular multi-omics combination at the single-cell level, with tools such 
as CITE-seq15 (see Figure 4.2) and REAP-seq16 proving very popular. This is also an exciting combination at the spatial 
level, with commercial offerings such as 10x’s Visium and Xenium and NanoString’s GeoMx and CosMx, alongside the 
latest in-house tools such as SPOTS17, SM-Omics18 and Spatial-CITE-seq19.

One of the issues with proteomic data is the difficulty in profiling the whole ‘proteome’. Most methods can only profile 
a number of pre-selected protein targets. These methods also tend to only target extracellular proteins, since these 
are easily isolated alongside the transcriptome. By profiling these proteins, these techniques provide additional 
information about cell identity and cell state depending on which proteins are present on the surface of the cell. These 
methods are a long shot from an un-biased profiling of all intra and extracellular proteins.

The first transcriptomic/proteomics methods used fluorescent antibodies to label proteins. CITE-seq and REAP-seq 
changed the game by introducing oligonucleotide-conjugated antibodies (see Figure 4.2A), which contained a PCR 
handle making the protein measurements compatible with sequencing technologies. This is now the most widely used 
method. A very recent method, PHAGE-ATAC21, uses a unique protein tagging method. The protein recognition is based 
on nanobody-displaying phages instead, which allows the reliable detection of cell-surface proteins across thousands 
of cells. 

DECONVOLUTING DOGMA. DNA, RNA AND PROTEIN MULTI-OMICS 

FIGURE 4.2. OVERVIEW OF THE CITE-SEQ WORKFLOW. 
(A) oligonucleotide-conjugated antibody. (B) RNA-seq and antibody tagging workflow. Image Credit: Timp and Timp 20

https://onlinelibrary.wiley.com/doi/full/10.1002/VIW.20230040
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Another distinction between the current single-cell methods for RNA/protein measurements is the type of protein 
targeted. Most methods target extracellular proteins but some target intranuclear proteins such as inCITE-seq22 and 
NEAT-seq23, and intracellular proteins SPARC24 and RAID-seq25. InCITE-seq and NEAT-seq are performed on nuclei in 
which nuclear membranes are made permeable with a light formaldehyde treatment to access the proteins. Methods 
such as SPARC profile intracellular proteins by removing a protein-containing supernatant from the cell to profile. 

In April 2023, a new method was released called TRAPS-seq26. This method capture proteins in a novel manner. 
Proteins that are secreted by a cell (i.e., the proteins a cell releases to influence other cells) can be captured on the 
cell surface as they are released. These are then probed by oligonucleotide-barcoded antibodies and are sequenced 
alongside the transcriptome of the cell in a time-resolved manner. This method was used to measure cytokine 
secretion and presents a new tool for seamless integration of secretomics and transcriptomics27. 

Imaging the spatial transcriptome and proteome
Recent advances in spatial transcriptomics and proteomics means that imaging either or both at subcellular resolution 
and/or at hi-plex is now possible28.

Subcellular profiling has been achieved with non-proteomic spatial multi-omics technologies such as seqFISH29 and 
MERFISH30,31 and DNAseqFISH+32. Recently, Stereo-CITE-seq33 was published, which is a brand new method based on 
the Stereo-seq nanoball technology34 that allows very high spatial resolution profiling of 10s of proteins alongside 
whole transcriptomics. This brings proteotranscriptomics to subcellular resolution.

When looking at hi-plex, SPOTS17 is a new tool which supplements the 10x Visium process by recording a panel of >30 
intra- and extra-cellular proteins for simultaneous proteomics. SM-Omics18 is a similar new tool based on the same 
DNA-barcoded antibodies but allows up to 64 extracellular protein targets.

The marriage of number of markers and high resolution is currently found with Spatial-CITE-seq35, published in early 
2023. This is a very high-plex protein and whole transcriptome co-mapping method (see Figure 4.3) since this method 
allows the profiling of 200-300 extracellular proteins at 20 micron resolution. The technology behind NanoString’s 
CosMx Spatial Molecular Imager (SMI)36 also allows ~ 100 of extracellular proteins to be profiled and at subcellular 
resolution. There a comparatively fewer targets but it achieves a better spatial resolution.

DECONVOLUTING DOGMA. DNA, RNA AND PROTEIN MULTI-OMICS 

FIGURE 4.3. OVERVIEW OF SPATIAL-CITE-SEQ METHODOLOGY. 
Image Credit: Liu, et al. 35



It is still the case that current spatial transcriptomic and proteomic methods are limited in several regards, either in 
resolution, in number of protein targets, or the fact they are based on serial characterisation of the two modalities 
rather than parallel profiling. However, 2023 has seen improvements in both resolution and target number, suggesting 
these limitations will still be improved come 2024. 

Computational Tools for integrated transcriptomic and proteomic insights
Some methods that we have already covered for integration, such as DeepMAPS37, work across different modalities, 
but there are tools specifically addressing the challenge of integrating RNA and protein. Early tools such as citeFUSE38 

and BREM-SC39 work via network-based and Bayesian mixture models respectively. 

Slightly more recent tools, such as totalVI40 and sciPENN41, rely on AI models. totalVI is a deep generative model and 
addresses specific problems with each data type, such as the differences in noise levels and the elevated background 
of protein antibody-based methods. It is fast becoming 
a relied upon methods for CITE-seq data. sciPENN is 
a more recent tool, also using deep learning, but is 
specialised for handling the batch effects and issues 
with minimal overlap that come from integrating 
multiple CITE-seq datasets.

A promising and recent method specifically designed 
for the problem of integrating protein and RNA data 
is MARIO, and its follow-up MaxFuse. These tools are 
designed for the situation that current transcriptomic 
and proteomic methods end up with weak linkage. 
This refers to the situation in which there are very few 
matching points between two datasets, i.e., the situation 
in which a handful of RNAs have had proteins profiled 
too, and hence operate as the weak linkage.

We spoke to Professor Zongming Ma, one of the senior 
authors of both MARIO and MaxFuse, to learn more 
about how his computational tools work. 
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DECONVOLUTING DOGMA. DNA, RNA AND PROTEIN MULTI-OMICS 

“A PROMISING AND RECENT 
METHOD SPECIFICALLY 
DESIGNED FOR THE PROBLEM 

OF INTEGRATING PROTEIN AND RNA 
DATA IS MARIO, AND ITS FOLLOW-UP 
MAXFUSE. "



ZONGMING MA 
PROFESSOR, DEPARTMENT 

OF STATISTICS AND DATA 
SCIENCE 

YALE UNIVERSITY

INTERVIEW: 
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FLG: Could you describe your research journey and 
current research interests?

Zongming: Sure. I come from a statistics and machine 
learning background. Earlier in my career, my research 
focused on the theory side of data analysis. About five 
years ago I started to also work on real data motivated 
method development. In the last three years, I have spent 
a lot of time and energy working on data integration, 
especially data integration related to multi-omics, from 
both algorithm and theory perspectives. This is my path 
from statistics to multi-omics data analysis.

FLG: Next I wanted to talk about some of the tools 
you've been involved with, MARIO42 and MaxFuse43. 
From my understanding, Mario comes before MaxFuse, 
so could you maybe start with Mario and the approach 
it takes for multi-omics data integration, and why you 
chose to produce this tool?

Zongming: In a sense, MARIO is the predecessor 
of MaxFuse, but each tool is addressing a different 
challenge. For Mario, in collaboration with Garry 
Nolan’s lab at Stanford and Sizun Jiang at Harvard, we 
considered the setting where one has measurements 
of proteins in targeted panels on different cells or 
from different datasets, and the number of proteins 
measured by both datasets is small. 

Suppose you only have 10 or 15 proteins that are 
measured in both datasets, potentially by different 
technologies. For example, if you have CITE-seq 
data from sequencing and if you have a spatial 
proteomics dataset from immune-fluorescence 
imaging, then you’re measuring the same features, 

but the measurement technologies are different. 
So, the challenge is, how do you align the different 
measurements of the same features and then try 
to match cells based on this alignment? The major 
difficulty is this – if you have the same biomarker but 
measured differently, and the number of biomarkers 
that you measure at the same time is limited… how can 
you perform integration in such a setting? This is the 
challenge addressed by MARIO.

FLG: And then where does MaxFuse go from there?

Zongming: Once you have MARIO, then as long as 
you have single-cell CITE-seq data on a certain tissue 
sample, you can try to link cells in the CITE-seq dataset 
with those in a related spatial protein dataset collected 
from a comparable tissue sample. After you use the 
protein part of the CITE-seq data and completed this 
integration, you could then map the RNA information 
of each cell to its match in the spatial dataset, and thus 
create a spatial transcriptomic dataset in silico. 

“THE MAJOR DIFFICULTY IS 
THIS – IF YOU HAVE THE 
SAME BIOMARKER BUT 

MEASURED DIFFERENTLY, 
AND THE NUMBER OF 

BIOMARKERS THAT YOU 
MEASURE AT THE SAME 
TIME IS LIMITED… HOW 

CAN YOU PERFORM 
INTEGRATION IN SUCH A 

SETTING?"
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However, single-cell CITE-seq is not as widely adopted 
as single-cell RNA-seq. So, in order to make this kind 
of tool really suitable for the most common type of 
single-cell dataset, the natural question to ask is, can 
you do this without having protein measurements 
in the sequencing domain? Can you directly map 
RNA-seq information onto a spatial protein dataset? 
So, this is the motivating question we tried to answer 
when developing MaxFuse with Garry and Nancy 
Zhang at Penn. 

FLG: Can you briefly explain how MaxFuse works?

Zongming: Sure. MaxFuse has three major steps. 

The first step is to obtain an informative prediction of 
protein abundances based on the expression levels 
of their coding genes. Direct linear prediction is not 
ideal. It's a relatively weak prediction, because there 
are other things that are regulating the translation 
process, but at least this gives us something that 
we can hinge on to start with. Then because this 
prediction is not going to pinpoint the cells directly, 
we adopt the idea of ‘shrinkage’, also known as 
‘smoothing’, to improve it. That is, you try to bring in 
a bit of extra information by looking around at those 
“who are close to you”, and see how they behave, 
and then try to average within neighbourhoods so 
that you can effectively increase the signal-to-noise 
ratio in prediction. For that purpose, having a lot 
of RNA features is helpful, because, with the entire 
transcriptome, you can define cell state at a very 
fine scale, and better distinguish “who are close to 
you”. This provides a sufficiently good prediction 
that allows a crude initial matching between two 

modalities. 

In the second step, we iteratively improve this matching 
by cycling through canonical correlation co-embedding, 
smoothing, and matching. 

In the final step, we take the output of the iterative 
refinement procedure, and produce the final matching 
and the final integration. 

FLG: And MaxFuse was used in the HuBMAP human 
intestine study44. Can you describe how it was used in 
that?

Zongming: HuBMAP is a consortium level data 
collection effort. Teams at Stanford (Snyder, Nolan, 
and Greenleaf labs), working with human intestines, 
have CODEX images for certain sections and then 
they have separate, single-nucleus ATAC-seq and 
single-nucleus RNA-seq, and some 10x Multiome 
measurements - where both ATACs and RNAs are 
collected at the same time at the single-cell level. 
However, there's no simultaneous collection of 
protein and RNA, or protein and ATAC in this data 
collection process. The natural question to ask is, can 
we create certain spatial transcriptomic maps given 
the amount of data that people have spent a lot of 
time, money, and energy collecting? 

What we showed was, yes, you can do it by mapping 
the RNA information onto these CODEX images. 
And so, in the HubMAP human intestine paper, we 
mapped RNA onto the spatial CODEX data and then 
in our MaxFuse paper, we also mapped epigenome 
information onto the CODEX data.
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Other computational tools have been specifically designed for the unique challenge of analysing proteomic and 
transcriptomic data. One example is CITEMO45, a flexible framework to comprehensively explore single-cell multi-omics 
data. This tool helps identify cell subtypes and cell states from this combined data. 

Other tools to help with clustering and cell identification have been released in the last 12-18 months. DEMOC46 is a 
deep embedded learning model that jointly clusters CITE-seq data. It outperforms existing methods, achieving a more 
stable performance. MMoCHi47 is a cell classifier reconciling gene and protein expression without reliance on atlases. 
CellCharter48 is a scalable algorithmic framework for identifying, characterising and comparing cellular niches between 
heterogenous spatial transcriptomic and proteomic data samples. 

Another interesting set of tools can use existing CITE-seq data to predict cell surface protein expression from the 
scRNA-seq data. A recent example of this tool is called CrossmodalNet49, which is an interpretable deep learning 
model that can accurately predict cell surface protein abundance based on transcriptomic data. A similar example is 
TransPro50, which can predict cell-specific chemical proteomic profiles after chemical perturbation even though the 
model is only trained on scRNA-seq data.

Finally, the need for stable reference data is becoming necessary with the influx of high-throughput multi-omics data. 
Reference data allows researchers to calibrate the accuracy and reproducibility of their omics workflows. A recent 
example of reference data has been provided for the human transcriptome and proteome51.

Examples of applications
Given the newness of technologies to profile the transcriptome and proteome, and the unique challenge with 
integrating the data, use cases are not that abundant. We are seeing increasing numbers of studies each year. 
However, most still integrate transcriptomic and proteomic data from separate experiments. 

High-profile example cases of proteotranscriptomics have included several projects from the HuBMAP consortium, 
who released two studies in July 2023 showcasing spatial transcriptomics and proteomics. Furthermore, the HuBMAP 
consortium have recently released a uniform CITE-seq processing pipeline52 in a bid for uniformly processing and 
indexing multi-omics single-cell data.

https://hubmapconsortium.org/
https://www.biorxiv.org/content/10.1101/2022.12.19.521058v1.abstract
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FIGURE 4.4. OVERVIEW OF MATERNAL-FETAL INTERFACE MULTI-OMICS STUDY53

(A), Diagram of a human embryo in utero at 6 weeks of gestation. Left, the maternal–fetal interface consisting of decidua basalis (purple) with 
maternal spiral arteries (light pink) and fetal chorionic villi in the intervillous space (bottom right corner). Middle and right, early-stage (6 weeks) 
unremodelled spiral artery and progression to late-stage (20 weeks) remodelled artery and anchoring fetal villi. (B), Cohort parity distribution. (C), 
Cohort age distribution. (D), Cohort distribution of body–mass index. (E), Cohort ethnicity distribution. (f), TMA construction and serial sections 
for multi-omics workflow. Top, antibody panel, MIBI acquisition and spatial proteomics data extraction. Bottom, morphology marker panel and 
probe diagram, NanoString DSP ROI selection and spatial transcriptomics data extraction. Image & Caption Credit: Greenbaum, et al. 53

The first of these two studies44 was the study on the human intestine mentioned by Professor Zongming Ma. Here, 
10x Multiome data and proteomics data from CODEX were profiled (54 markers) and the proteomics data and 10x 
Multiome data were used in conjunction to provide highly accurate cell type distinctions. Since this was an atlasing 
project, this multi-omics approach is there to provide others with rich cell profiles to work from in the future. 

In the other study53, researchers combined the strengths of spatial transcriptomics and proteomics to construct 
a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. 500,000 cells from 66 
individuals were profiled with a MIBI-TOF 37-plex panel providing subcellular proteomics and Nanostring DSP spatial 
transcriptomics (see Figure 4.4). We recently spoke to Dr. Shirley Greenbaum, first author of this study about what 
she gained from a multi-omics approach here.
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FLG: Can you describe the multi-omics approach that you 
deployed in your Nature maternal-fetal interface study? 

Shirley: The core approach of our study was 
measuring the expression of proteins at the maternal-
fetal interface at the single cell level. Processes in any 
tissue are driven by its cells. By better understanding 
these cells – their size, shape and the proteins they 
express – we can gain deeper insights. Cells use these 
proteins to communicate with their neighbouring 
cells, and by studying single cells in the placenta we 
can begin to understand what drives placentation and 
immune tolerance during pregnancy. 

Until very recently we were very limited in the 
number of protein targets we were able to measure 
for each cell. The novelty of using Multiplexed Ion 
Beam Imaging (MIBI) is that we can detect almost 40 
targets simultaneously for each and every cell, and 
also capture the spatial arrangement of these cells in 
the tissue in relation to tissue features (e.g., arteries, 
glands). So, for example, if before we were only able 
to say that around half of all cells in the tissue are 
immune cells, now we can determine whether each 
individual cell is a T cell, what T cell sub-population it 
belongs to, whether that specific cell is showing signs of 
“exhaustion”, whether it is inducing immune tolerance, 
and what proteins it is expressing to do so. 

In the second part of our study, we used Nanostring 
GeoMx® DSP to measure expression of genes 
by interstitial and intravascular EVTs. These two 
complementary methods enabled us to depict, with a 
very high resolution, the processes that take place in 
the tissue during this critical time of placentation. 

FLG: What were some of the major findings using this 
spatial multi-omics approach?

Shirley: One of our main findings was deciphering 
the enigmatic relationship between the remodelling 
of maternal vessels and the invasion of fetal cells into 
the uterus. We know that in normal pregnancy, these 
arteries, which are normally coiled and constricted, 
dilate extensively to become wide flaccid vessels that 
can transfer low velocity, low pressure blood flow 
to the placenta (this process, for example, does not 
occur smoothly in preeclampsia). Using the single-cell 
data generated by MIBI, we were able to establish the 
relationship between the invasion of fetal cells to these 
arteries, and to the remodelling of these arteries. 

It was surprising to discover that the maternal artery 
remodelling process was not driven by adjacent maternal 
immune cells, but rather by the invasion of fetal cells. 
This implies that perhaps it is the fetus that is driving the 
remodelling of its mother's arteries, and not the mother; 
because abnormal remodelling of arteries is a pathological 
characteristic of preeclampsia. These findings may lead to 
a better understanding of this disease.

FLG: How do you hope people will use this spatio-
temporal atlas?

Shirley: I really hope that researchers will make use of the 
huge amount of data that is included in the maternal fetal 
atlas to answer other clinical and basic science questions. 
That is why I am so happy that the data is available to the 
scientific community through the HuBMAP project. The 
HuBMAP Consortium is a joint effort of several groups 
from Stanford University and other leading research 
institutions, set out to establish a global and open portal 
of single-cell datasets. This portal contains more than 1900 
datasets from more than 30 organs that were collected 
using various single-cell technologies of the highest quality. 
It’s an amazing platform that enables researchers to query 
and visualize the data in a very intuitive and accessible way. 
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Beyond atlasing, we have seen multi-omics used more functionally, revealing clinical insights. In multiple sclerosis, 
CITE-seq revealed inhibition of specific pathway (NF-κB) in B cells when patients are treated with vitamin D54. In 
another example, in the original publication of SPOTS there was a spatial bias for immune dysfunction in spleen 
tumours17.

An example from 2023 is the proteo-transcriptomic map of non-alcoholic fatty liver disease (NAFLD) signatures55. Here, 
patient plasmas were analysed with the SomaScan, and a matched liver biopsy was sequenced for transcriptomics. 
The resulting multi-omic dataset was used to find a set of 31 proteo-transcriptomic features to define NAFLD, which 
can be used as biomarkers. Further, the single-cell RNA-seq revealed the cell types likely to contribute to the proteomic 
changes that occur with disease progression.

Another example used CITE-seq, RNA-ISH, MIBI and CODEX on Ulcerative Colitis (UC) samples56. This single-cell 
and spatial, transcriptomic and proteomics study revealed important therapeutic implications such as identify 
mononuclear phagocytes as a key target for anti-integrin therapy in UC (see Figure 4.5). 

FIGURE 4.5. OVERVIEW OF ULCERATIVE COLITIS MULTI-OMICS STUDY.
2 groups of patients and healthy controls underwent a collection of single-cell and spatial transcriptomics and proteomics assays as depicted. 
Image Credit: Mennillo, et al. 56
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CHAPTER 5

GETTING TO GRIPS WITH GENE REGULATION. 
TRANSCRIPTOMICS AND EPIGENOMICS

BY LOOKING AT GENOMIC, TRANSCRIPTOMIC AND, IMPORTANTLY, 
EPIGENOMIC DATA, WE CAN BEGIN TO SEE HOW GENE REGULATION 
IS CO-ORDINATED. THIS CHAPTER WILL INVESTIGATE MULTI-OMICS 
METHODS FOR DNA, RNA AND THE EPIGENOME, AS WELL AS THE 

VARIETY OF TOOLS AVAILABLE FOR MAPPING GENE REGULATION AND 
GENE REGULATORY NETWORKS (GRNS). 

Gene expression is tightly regulated 
by a complex interplay of regulatory 
interactions with other genes and 
signalling molecules. Specific proteins 
known as transcription factors (TFs) 
can regulate the expression of genes 
in these networks by binding to DNA 
regions and having repressive or 
negative effects on transcription rates.

The field of gene regulatory inference 
is around two decades old, and the 
technique has been performed in the 
micro-array, NGS, bulk and single-cell 
eras and, most recently, in the multi-
omics era. Bulk and single-cell RNA 
sequencing data alone does allow for 
the inference of gene regulation in 
principle, since the RNA expression 
of TFs can inform you of their 
functionality1. However, regulatory 
processes are too complex to reliably 
model with transcriptomic data alone.

Epigenomic data, specifically 
chromatin accessibility measurements 
through ATAC-seq3, ChIP-seq4 and 
CUT&Tag5, can provide information 
about the accessibility of TF binding 
sites and adds important information 
to the networks drawn from 
transcriptomics data. While ChIP-seq and CUT&Tag would be the preferred methods, profiling TF binding in this way 
is costly and limited to TFs with available antibodies. Instead, it is ATAC-seq that allows one to infer TF binding site 
availability and is most commonly used in GRN inference.

To introduce this topic, we first spoke to Professor Sushmita Roy from the Wisconsin Institute of Discovery about 
gene regulatory network analysis and her experience from the field over its 20-year transition to single-cell multi-
omics. Furthermore, Professor Roy introduces us to our first multimodal GRN inference tool of this chapter – scMTNI6.

FIGURE 5.1. GENE REGULATORY NETWORK INFERENCE METHODOLOGY.
Through single-cell RNA, DNA and epigenomic information, gene regulatory networks can be 
predicted through integrating the data and deploying various models to create the network. 
Image Credit: Hu, et al. 2
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FLG: Can you first introduce yourself and some of your 
research background and current research projects?

Sushmita: I am Sushmita Roy. I am a Professor in the 
Biostatistics and Medical Informatics Department at 
the University of Wisconsin-Madison. And I am faculty 
at the Wisconsin Institute for Discovery, which is an 
interdisciplinary institute comprised of computational 
and experimental researchers looking at a range 
of problems across different systems. My research 
interests are, and have always been, at the interface of 
computation and biology. So, we have been developing 
and applying methods coming from machine learning, 
to look at problems in gene regulation and gene 
regulatory networks. Previously, before the dawn 
of single-cell genomics, we were using a lot of bulk 
data, and we actually still do. We've also developed 
tools to look at multi-omics data, as well as just gene 
expression-based approaches to combine data to get 
insights into regulation and regulatory networks. More 
recently, we've been developing methods to look at 
different problems in integrating single-cell multi-omics 
data, to get a better understanding of cell type and cell 
fate specific gene regulatory networks. We engage in 
collaborations across different organisms e.g., plants 
and mammals and fish

FLG: Can you just explain to our readers what gene 
regulatory networks are? Why so many people are 
interested in them and why they are challenging to 
define.

Sushmita: I and many others in the field think about 
gene regulation and gene regulatory networks as the 
control machinery in cells. Our DNA is like a book, 
it has all of the information, and it works as the 
instruction manual on how to make an organism. But it 

is really the regulation of gene expression that makes 
something work, by interpreting what is in the genome 
of an individual. 

In many organisms, like human or mammalian 
genomes, a lot of what is contributing to regulation is 
coming from the noncoding DNA. Oftentimes, when 
we think about organisms, we might ask questions 
such as – ‘What are the proteins?’ ‘What are the 
genes in that organism?’ Maybe that makes them 
something more or less complex, but it's really how 
they are controlled. This combinatorial control is what 
defines cell-context-specific expression patterns. It 
determines what, when and where sets of genes get 
expressed or activated, and that helps cells to do 
different things. It allows cells to function differently 
to respond to different types of stresses, or to 
differentiate in different ways or change their fate in 
different ways to enter a disease state or not. That's 
why we are very interested in regulation, because 
its influence is everywhere. It's also important 
in evolutionary processes, and changes in gene 
regulation have been associated with morphological 
diversity.

There are many reasons why we think it is important, 
but it's a really hard problem. In particular for gene 
network inference, which is the problem of trying 
to figure out who controls a particular gene – that 
is, find the regulators for that gene. They are many 
possibilities for how that particular gene can be 
regulated and there are many levels of control. So, 
we need the combination of technology to be able to 
measure the different levels or layers of regulation. We 
also need computational methods to really try to make 
sense of these different types of measurements that 
come from these technologies. 



The Multi-omics Playbook 57

FLG: Although a lot of gene regulatory network work 
is now being done in single-cell, there's a history 
of it being done in bulk. Could you talk about the 
computational tools that were made in the bulk era 
and the directions the field has taken? Finally, how 
has single-cell has changed the game?

Sushmita: The field of gene network inference is, 
I would say, almost 20 years old, perhaps more 
than that. It basically started with microarrays and 
researchers realised – ‘Oh, now we have this high 
dimensional measurement of the level of gene 
expression, which is a readout of what is happening 
inside the cell.’ From this data, we can we reverse 
engineer what the network might be. So, methods were 
developed and many of them are still being used. They 
may be called different things, and maybe adapted 
differently, but many of them are still being used. 

I often use a slide in my talks that has this timeline 
of how the tools developed. Probabilistic graphical 
models, specifically, Bayesian networks were some 
of the early methods that were used. There were 
also other methods like Boolean networks, and 
Information theoretic methods, some modelling only 
discrete expression and some modelling only pairs of 
genes. Bayesian networks are a type of Probabilistic 
graphical model and are quite powerful in the sense 
that they work with noisy data, and they deal well with 
uncertainty. They also give you an interpretable model 
of a regulatory network, which can be learned from 
data. That's basically what we want. We want models 
that are interpretable and learnable from data. 

As the field evolved, people developed methods to 
model perturbations and to model temporal dynamics 
and context specificity. There are several tools of 
this nature out there. But it was really with single-
cell genomics that we could really get into cell type 
specificity, and really get into fine grained dynamics. 
For example, we are now able to look at new cell 
populations that we didn't even know existed. 

The other big thing that has happened with single-cell 
genomics is the sample size - every cell contributes to 

a measurement that we can use for 
inferring a GRN. Before, and we've 
done this, to get sufficient sample 
size you had to combine data from 
different experiments, for example 
from gene expression omnibus, a 
public database of gene expression 
datasets. That was a pain. Now, a 
single-cell dataset gives you 1000s 
or tens of 1000s of measurements, 

and that has really helped. However, the data are 
sparse, and we now have to worry about these issues. 
But many methods have been adapted, for example, 
GENIE3, which was developed for bulk, is applied for 
single-cell and performs well. We have also applied 
methods we developed for bulk e.g., MERLIN, and it has 
given us a lot of mileage for single-cell as well.

FLG: What popular tools would you recommend for 
doing gene regulatory network analysis in both bulk 
and single-cell?

Sushmita: Gene regulatory networking is a hard 
problem and there are lots of tools out there. We 
like to use our own tools because we know how they 
work and how they fail. If something is wrong, we go 
back and try to figure out if there is something wrong 
with the data or modelling assumptions. For our 
tools, we use MERLIN and scMTNI, these are the tools 
that we've been developing. Some other tools that 
we think are really powerful are GENIE3, or SCENIC, 
which is a random forest based method. We've also 
benchmarked some of the popular methods, such 
as Inferelator, which comes from Richard Bonneau's 
group. This is also a pretty good method that tries to 
incorporate auxiliary data. That’s another way the field 
has been progressing, asking how to go beyond gene 
expression and how to take other auxiliary data to 
inform the gene regulatory network model. So, there 
was work from their group and also from our group to 
try to incorporate these priors to get better networks 
and so on.

FLG: That leads to my next question, I know that 
integrating data beyond transcriptomics has helped 
this field a lot. Can you talk about how chromatin 
accessibility and other auxiliary information been 
brought into models of gene regulation?

Sushmita: There are two ways in which people have 
done this. One is using accessibility data to give you a 
structure of the network. But this is dependent upon 
knowing where the transcription factors bind, the 
sequence specificity. It is then used to build a skeleton 
network that people then try to remove edges from. 

"THE OTHER WAY IS WHAT WE LIKE TO DO, AND 
IT INVOLVES USING ACCESSIBILITY TO INFORM 
OUR GRAPH NETWORK. SO, WE NOT ONLY USE 

CHROMATIN FOR AN INITIAL SKELETON NETWORK, BUT WE 
ALLOW THE ADDITION OF REGULATORS THAT MAY NOT HAVE 
ACCESSIBILITY SUPPORT."



So that’s one way and it’s quite informative, but it 
is limited in the sense that you can only use those 
transcription factors that have known sequence-
specific motifs. 

The other way is what we like to do, and it involves 
using accessibility to inform our graph network. So, we 
not only use chromatin for an initial skeleton network, 
but we allow the addition of regulators that may not 
have accessibility support. This leverages the best of 
both worlds in a sense. People have also used ATAC 
and RNA to better define cell types and for better 
cell clustering and data integration, which can also 
influence the ultimate end goal of trying to infer gene 
regulatory networks.

FLG: I want to talk to you specifically about your tool 
- scMTNI. Could you describe how that one works and 
why people would opt to use the tool for single-cell 
multi-omics GRN inference?

Sushmita: We think scMTNI is quite flexible, if you have 
single-cell RNA sequencing, and single-cell ATAC-seq 
data. One of the things that we incorporated in scMTNI 
is the relationship across cell types. In single-cell data 
there are multiple cell populations, and we have to 
infer cell-type specific networks. Others have also done 
this, but one thing that we bring in is the ability to 
incorporate how the cell types are related. 

Let's consider an embryonic stem cell that is becoming 
a neuronal progenitor and then becoming a neuronal 
cell. For that progression, how do you incorporate it 
into the GRN inference task? Well, that's something 
that scMTNI gives you. It explicitly incorporates the cell 
lineage structure. 

The other thing is that, even if you don't have 
accessibility data, you can still use our tool, you can just 
use gene expression and use sequence-specific motifs 
to inform the GRN structure. That's where this idea of 
using accessibility or sequence motifs as priors in the 
model is useful. But if you have accessibility, you can 
also incorporate that into the model.

FLG: With your work on integration, are you working 
primarily on RNA and ATAC? And can you talk about 
the challenges of trying to integrate RNA and ATAC 
data?

Sushmita: Yes, we are primarily looking at RNA and 
ATAC, but also RNA datasets across different samples. 
Integration can occur over two levels - across multi-
sample data sets, but also multiome samples - and 
we are interested in incorporating relatedness across 
different samples. For example, when people have a time 
course or you have related population cohorts across 
related experiments, can we incorporate that to better do 
dimensionality reduction to define the cell clusters? 

In terms of RNA and ATAC, I would 
say one of the problems is that many 
approaches are using a gene centric 
approach, there are some approaches 
trying to relax that, but accessibility 
gives you so much more. By gene-
centric, what I mean is that you need 
some way to map cells measured for 
RNA to cells with ATAC. That mapping 
comes by looking at the accessibility of 
the gene compared to its expression. 
Some methods actually just stop there. 
Some methods try to incorporate more 
of the accessibility profile, but the vast 
majority of the methods are really just 
using the accessibility at the gene-level. 

For me, trying to use the entire spectrum 
of accessibility measures is very 
important, as well as bringing in things 
such as long-range gene regulation. We 
are actually interested in integrating 
other data beyond RNA and ATAC, but 
primarily RNA and ATAC, because that's 
the largest type of data that is available.
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As covered by Professor Roy and visualized in Figure 5.2, gene regulatory inference is a broad field expanding beyond 
the multi-omics approaches. Single-cell multi-omics has enabled GRN inference in new and exciting ways. 

Reflecting this, there are some excellent reviews on the topic of multi-omics and GRNs2,7,8. We recently spoke with Pau 
Badia i Mompel, first author of a recent Nature Reviews Genetics review, which explores how single-cell multi-omics 
has shaped modern gene regulatory network inference. 

GETTING TO GRIPS WITH GENE REGULATION. TRANSCRIPTOMICS AND EPIGENOMICS

FIGURE 5.2. THE TRANSITION OF GRN INFERENCE FROM BULK TRANSCRIPTOMICS TO SINGLE-CELL MATCHED 
MULTI-OMICS MEASUREMENT. 
Image Credit: Kim, et al. 7

https://www.nature.com/articles/s41576-023-00618-5
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FLG: Could you describe what is meant by gene regulatory 
networks and why people are interested in them?

Pau: Gene Regulatory Networks (GRNs) are 
mathematical representations of what we think gene 
regulations should be. These representations are 
done in a graph format in which the nodes, that are 
genes, are connected through edges to other genes. 
Some genes have regulatory capabilities, meaning that 
they can affect the downstream transcription of other 
genes, and they are called transcription factors. The 
rest of the genes in the network are other protein-
coding genes. People are interested in these models 
because gene regulation is a very complex process, and 
it is nice to have a systems biology definition that we 
can then model and analyse the structure of.

FLG: Gene regulation could be mapped with bulk 
technologies. What do single-cell and multi-omics 
technologies actually bring to the study of gene 
regulatory networks?

Pau: This is something that I discussed in our recent 
review. What we're doing right now with multimodal 
GRNs could have been done during the bulk era. The 
problem with doing this in bulk is it would be a more 
costly process, because you need to secure more 
samples. Also, if you want cell type specificity, you 
need to FACS sort, which also requires time, expertise 
and prior knowledge. The nice thing about single-cell 
multi-omics is that we can now profile two technologies 
in a very unbiased way. We just blend the tissue, we 
sequence it, and then we have an unbiased profile of 
what's going on in the cell. Additionally, you don't need 

that many tissue samples, because in one single-cell 
assay, you get multiple observations that you can use 
for GRN inference modelling to generate networks. 
Before, you would have needed large patient cohorts 
to do that.

FLG: What specific omics are really useful to bring in 
when you're trying to map gene regulatory networks 
in the multi-omics era? 

Pau: On top of RNA, the obvious is chromatin state. So, if 
we try to infer GRNs from only transcriptomics, we have 
many false positives in those networks. By starting with 
just classic gene co-expression networks, the problem 
is that you basically connect everything with everything. 
You can trim down this based on prior knowledge, 
for example by identifying genes that should not be 
regulatory. By distinguishing between TFS and non-
TFS, you can already prune a lot of false interactions. 
Another step, and this is what classic SCENIC did, is motif 
enrichment without chromatin accessibility. 

This reinforces the point, if you don't have other omics, 
you can use prior knowledge. But the cool thing now is 
doing multi-omics with chromatin accessibility, where 
at least we now know if genes are open or closed. 

Another layer that I would add here, but I think we're 
still quite far away, would be phosphoproteomics. 
This would profile the actual active state of all these 
transcription factors, and this is the actual link that is 
missing. The next step would be to also include cell 
receptor presence. This would be CITE-seq – basically, 
proteomics of signalling receptors. 



If we were able to profile all these different aspects in 
one single, multi-omics technology without being too 
sparse, that would be amazing, but I think it’s still far 
away.

FLG: For people interested in mapping GRNs, what 
downstream applications are possible when they've 
done this multimodal analysis and mapped the GRNs?

Pau: It really depends on the biological question at 
hand. I would say the most tangible one would be 
deciding cell fate. For example, if you're studying 
trajectory analysis and you want to know what's driving 
some cells to go into a specific cell state or another 
cell type, it's very interesting to infer GRNs. Then you 
can try to identify which regulatory programmes are 
triggering these cells to shift to another cell type/cell 
state. This is relatively easy to validate with knockout 
experiments. 

This has many different applications. For example, 
imagine you want to transform fibroblasts into healthy 
cells so that they start being functional in the specific 
tissue where they are. Or you're working in ageing, and 
you want to stop skin cells from transitioning to an old 
phenotype. This kind of analysis.

FLG: In your review paper, there is a table of 
computational tools to infer GRNs. Do you have any 
guidance for deciding which tool to use? Some tools 
were for matched, others for unmatched multimodal 
data, which is one distinction, but is there a gold 
standard?

Pau: Currently, there are no real standards, and 
this is what I'm working on right now. With other 
computational groups we’re building a benchmark 
to try to identify which methods perform better than 
others. But right now, I cannot say which method is 
better. I would say, pick your champion, because, in 

the end, it comes down to user accessibility. If you see 
a method that you can run, just use it. Personally, I 
would use SCENIC+, in my case, because they provide 
the biggest TF motif database for now. But we still don't 
know if the actual model of SCENIC+ outperforms all 
other methods. 

FLG: Your review also covered some of the remaining 
challenges for GRN inference analysis. Can you briefly 
summarise what you think is perhaps the main 
challenge?

Pau: One of the main challenges in GRN inference 
is that, although many of these methods claim they 
are built for single-cell, none of them actually model 
the sparsity of this data. Single-cell data is really cool, 
but it's very sparse. It's empty matrices mostly. One 
thing that we're exploring is how preprocessing of 
the sparsity affects GRN inference. The idea is to use 
pseudo-bulks and meta cells and other aggregation 
strategies to try to see if we can improve GRN 
inference. Which is funny, because we started with 
bulk, then we go to single-cell, and now we we’re back 
to bulk. But in the end, it makes richer profiles.

"ONE OF THE MAIN CHALLENGES 
IN GRN INFERENCE IS THAT, 
ALTHOUGH MANY OF THESE 

METHODS CLAIM THEY ARE BUILT FOR 
SINGLE-CELL, NONE OF THEM ACTUALLY 
MODEL THE SPARSITY OF THIS DATA."
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As covered by our contributors, there are challenges in working with ATAC-seq and RNA-seq data simultaneously, and 
modelling this sparsity in the data is key to successful computational inferences. We will now take a look at some of 
the current popular computational tools to leverage transcriptomic and epigenomic data.

GRN multi-omics tools
There are a large variety of GRN inference tools that utilise single-cell and bulk multi-omics data. Below, you will find a 
table of computational methods for GRN analysis using multi-omics data.

GETTING TO GRIPS WITH GENE REGULATION. TRANSCRIPTOMICS AND EPIGENOMICS

Tools Possible 
inputs

Type of 
multimodal 

data

Type of 
modelling

Type of 
interactions

Statistical 
framework Ref

ANANSE Groups, 
contrasts Unpaired Linear Weighted Frequentist 9

CellOracle Groups, 
trajectories Unpaired Linear Signed, 

weighted
Frequentist or 

Bayesian
10

DC3 Groups Unpaired Linear Binary Frequentist 11

DeepMAPS Groups Paired or 
integrated Linear Weighted Frequentist 12

Dictys Groups, 
trajectories

Unpaired/paired 
or integrated Linear Signed, 

weighted Frequentist 13

DIRECT-NET Groups Paired or 
integrated Non-linear Binary Frequentist 14

FigR Groups Paired or 
integrated Linear Signed, 

weighted Frequentist 15

GLUE Groups Paired or 
integrated Non-linear Weighted Frequentist 16

GRaNIE Groups Paired or 
integrated Linear Weighted Frequentist 17

Inferelator 3.0 Groups Unpaired Linear or non-
linear Weighted Frequentist or 

Bayesian
18

IReNA Trajectories Unpaired Linear Signed, 
weighted Frequentist 19

MAGICAL Groups, 
contrasts Unpaired Non-linear Weighted Bayesian 20

MICA Groups Unpaired Non-linear Signed, 
weighted Frequentist 21

Pando Groups Paired or 
integrated

Linear or non-
linear

Signed, 
weighted

Frequentist or 
Bayesian

22

PECA Groups Paired or 
integrated Linear Weighted Bayesian 23

Regulatory 
Motifs Groups Paired or 

integrated Linear Signed Frequentist 24

RENIN Groups Paired or 
integrated Linear Signed, 

weighted Frequentist 25

scAI Groups Paired or 
integrated Linear Weighted Frequentist 26

sc-compReg Groups, 
contrasts Unpaired Linear Binary Frequentist 27

SCENIC+
Groups, 

contrasts, 
trajectories

Paired or 
integrated Linear Signed, 

weighted Frequentist 28

scMEGA Trajectories Paired or 
integrated Linear Weighted Frequentist 29

scMTNI Groups, 
trajectories Unpaired Linear or non-

linear Weighted Bayesian 6

SOMatic Groups Unpaired Linear Binary Frequentist 30

Symphony Groups Unpaired Linear Signed, 
weighted Bayesian 31

TimeReg Groups, 
trajectories

Paired or 
integrated Linear Binary Frequentist 32

TRIPOD Groups Paired or 
integrated Non-linear Signed, 

weighted
Frequentist or 

Bayesian
33

TABLE 5.1. LIST OF MULTI-OMICS GRN INFERENCE COMPUTATIONAL METHODS. 
Methods are organised by the various differences in the methods process. Table is adapted from: 
Badia-i-Mompel, et al. 8

As you will see from Table 
5.1, there are many tools 
for the job of gene network 
inference. We have already 
covered some of these tools 
such as DeepMAPS12, GLUE16 
and scMTNI6. Here, we will 
cover three interesting and 
widely-used computational 
tools from this list, starting 
with GRaNIE17.

GRaNIE & GRaNPA 
& ENHANCER BASED 
NETWORKS
Enhancers are genomic 
locations the play an 
important role in cell-type-
specific gene regulation. These 
enhancers are regulated 
by TFs and epigenetic 
mechanisms. GRaNIE is a tool 
to specifically build enhancer-
based GRNs using multi-
omics data. Accompanied by 
GRaNPA, which can assess 
the biological relevance of 
the generated GRNs, this is 
a unique tool suite for GRN 
inference.

We recently spoke to Dr. 
Judith Zaugg, Group Leader 
at EMBL and lead developer 
of GRaNIE and GRaNPA, 
about how multi-omics 
is enhancing her work 
on enhancer-based gene 
regulatory networks and 
how her computational tools 
can help researchers in this 
space.
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FLG: Could you just begin by introducing yourself and 
introducing your lab and what the research aims of 
your lab are?

Judith: I can start with the broad vision of our group, 
which is, essentially, to understand how genetic and 
epigenetic states of a cell may determine its response 
to signals or interactions with other cells, and through 
that, give rise to complex phenotypes. So, we are 
interested in understanding complex phenotypes, but 
from a very molecular point of view. When we talk 
about complex traits in humans, when we talk about 
diseases, we want to consider the genetic variation, 
which is one part of what may predispose somebody 
to certain disease, but we also want to consider the 
epigenetic variation. And to understand disease 
mechanisms, we also need to consider the cell type in 
which a certain mis regulation or aberrant response 
is actually happening. The cell type, and also the 
developmental or differentiation trajectory. 

The system that we are particularly interested in, is 
the immune system and, specifically, in the home 
of the immune cells, which is the bone marrow. The 
hematopoietic stem cells within this tissue produce 
500 billion hematopoietic cells per day, giving rise 
to all blood and immune cells. There's this entire 
niche surrounding the stem cells, that is influencing 
the cellular decisions in differentiation trajectories. 
Importantly, differentiation is driven by gene regulation, 
by transcription factors, by specific enhancers and so on. 
That's where the enhancers, gene regulation and multi-
omics comes in into our work.

FLG: Could you describe how your lab has transitioned 
to starting to use multi-omics and how multi-omics 
has helped answer the research questions of your lab?

Judith: The reason I am very keen on multi-omics is 
because we are very interested in transcription factors. 
Transcription factors are proteins that are interacting 
with each other to gain their function, they are post-
translationally modified (phosphorylated) and they 
go in and out of the nucleus. So, looking at the RNA 
molecule of a transcription factor is often not very helpful 
for understanding their function because they really 
have to get modified. By using, for example, ATAC-seq 
(chromatin accessibility) or some kind of active histone 
mark (CHIP-seq) we are able to measure these epigenetic 
modifications genome-wide. This means we can actually 
map transcription factor binding sites based on the motif 
across the genome. The first tool from my group, diffTF 
(differential transcription factor activity), essentially takes 
accessibility as a readout of transcription factor activity. 

You may argue, since you could just take accessibility 
for that, you wouldn't need RNA, so you wouldn’t need 
multi-omics. But, one caveat with transcription factors 
is that the binding sites are very similar. If you just 
look at accessibility across binding sites, you cannot 
distinguish many transcription factors. So, it is key to 
integrate the expression level of a transcription factor. 
That's where we have been using multi-omics a lot, to 
actually understand the activity of transcription factors 
and try to gauge how cell type specific it is.

FLG: What other multi-omics would you like to see in 
this field, is there an option to bring proteomics into 
this as well?

Judith: I think proteomics will be very useful. At the 
moment, specifically for transcription factors, it's very 
challenging because transcription factors tend to be 
very lowly expressed. And it's hard to actually capture 
them in proteomics. 

JUDITH ZAUGG 
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It is well documented in the field that when you try to 
look at transcription factors, from a proteomics point 
of view, you tend to find very small fractions of them. 
A lot of the genomics assays have moved to the single-
cell basis whereas proteomics is still lagging a little bit 
behind. What is actually quite exciting are the assays 
for surface proteomics with barcode antibodies, and 
these assays also becoming available for intracellular 
proteins. So, that is very promising. Another field that 
that we're usually ignoring in genomics communities 
is metabolomics. Metabolites and metabolism are 
on a very different time scale. So, that's even more 
challenging to properly integrate.

FLG: And I would like to jump straight into your 
computational tools, GRaNIE, and GRaNPA. Could you 
give a brief overview of how they work, and how they 
build these enhancer-based gene regulation networks?

Judith: GRaNIE stands for Gene Regulatory Network 
Inference including Enhancers. Gene regulatory 
networks is a very long-standing field, but when we 
started this work most of the methods and most of 
the databases were connecting transcription factors 
directly to their target genes. Whereas, we were really 
interested in integrating the regulatory elements like 
enhancers and promoters, because that's where most 
of the genetic variants are lying that are associated 
with disease. If you're interested in disease variants, 
you need to include those enhancers. 

What I like about the GRaNIE is that it is very 
interpretable because it uses a very simple model. We 
use co-variation across individuals, using transcription 
factor expression, motifs and accessibility to make the 
transcription factor to enhancer links, and then we use 
the proximity and variation across individuals, again, to 
link enhancers to genes. So, it's a very simple network 
framework, and we've extensively validated that based 
on molecular evidence.

I think when you build gene regulatory networks, it's 
really important to know, what is your network based 
on? Is it based on variation across individuals, across cell 
types, across cell states? We have shown, in other work, 
that variation across individuals is good at predicting 
response to any type of environmental stimulus. Hence, 
I think variation across individuals is a great way of 
integrating overall variation that is relevant for disease. 

Another thing that bothers me in the gene regulatory 
network field. It's very easy to build a network, but it's 
very hard to actually functionally validate your network, 
because there's essentially no gold standard. It's really 
hard to benchmark your network, except for picking a 

couple of known interactions. You can do a couple of 
knockouts, you can look at a ChIP-seq peaks for a couple 
of transcription factors and so on, but it's never global. 
So, that’s what motivated us to develop GRaNPA which 
is the Gene Regulatory Network Performance Analysis 
or Prediction Analysis. We initially developed this as a 
performance analysis, so that, whenever we have a gene 
regulatory network connecting transcription factors to 
genes, we want this network to capture cell-type specific 
differential expression. We want our networks to be able 
to predict differential expression in a specific cell type 
and not in another cell type. And this should be better 
than a random network based on the same gene and 
transcription factor pairings. Essentially, GRaNPA is a 
predictive tool to predict differential expression based 
on a cross validation and random forest approach, 
where we can then be more confident that our network 
is really capturing some of the underlying biology that 
we are interested in. 

Now, having developed this, we realised that with the 
random forest network framework, we can also very 
easily look at the features that are important for the 
prediction. And that then gives us a tool to identify 
the transcription factors that are important for certain 
differential expression response. that's what we're using 
GRaNPA for most of the time. First of all, we want to 
check whether the network is good. And then we want 
to understand what are the transcription factors that 
are driving, for example, an infection response in an 
autoimmune disease.

FLG: So GRaNIE and GRaNPA are built for bulk data? Is 
there an option to use them for single-cell data? 

Judith: Actually, we have a vignette on our website 
showing how we can use it for single-cell data, and 
we’re currently writing a follow up manuscript. To apply 
to single-cell, we still do pseudo-bulk on single cells. 
Essentially, we split cells into different groups in silico 
and it does perform well.
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“IT IS WELL DOCUMENTED 
IN THE FIELD THAT WHEN 

YOU TRY TO LOOK AT 
TRANSCRIPTION FACTORS, 

FROM A PROTEOMICS 
POINT OF VIEW, YOU TEND 

TO FIND VERY SMALL 
FRACTIONS OF THEM."
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SCENIC+
SCENIC1 is a very popular and well-liked tool produced by Professor Stein Aerts group. This tool leverages single-cell 
RNA-seq data to model GRNs. Their new tool, SCENIC+28, expands the original SCENIC methodology into the multi-
omics space. It works with paired and unpaired single-cell multi-omics data and has the most comprehensive meta-
database of TF binding DNA motifs for humans, mice and flies. Benchmarking within the SCENIC+ study showed its 
superior performance compared to other tools for predicting TF binding sites and target genes. Figure 5.3 highlights 
the SCENIC+ workflow.

CELLORACLE & CELL LINEAGE TRACKING
SCENIC+ introduces a computational perturbation algorithm to predict cellular changes or cell fate upon TF KO. 
However, another well-known tool with in-silico perturbation methodology is CellOracle10 from the lab of Professor 
Sam Morris. CellOracle is less concerned with the gene networks than it is about predicting the shifts in GRNs and cell 
identity that occur when specific developmental regulators are altered. It is all about predicting changes using an in-
silico perturbation approach. 

Furthermore, the Morris lab has recently released CellTag-multi34, an extension of their ‘cell tagging’ method that tracks 
cell origin following differentiation35. This represents another method merging epigenomics and transcriptomics to 
learn more about cell identity and gene regulation.

We recently caught up with Professor Sam Morris to ask her about both her multi-omics lineage tracking tool and her 
popular GRN in-silico perturbation tool, CellOracle.
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FIGURE 5.3. 
SCENIC+ 
WORKFLOW
SCENIC+ infers GRNs 
using pycisTopic 
preprocessing followed by 
using the Motif collection 
database comprised of 
~35,000 unique motifs. 
Image Credit: Bravo 
González-Blas, et al. 28
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FLG: Can you describe a little bit about what your 
lab has been up to in the last few years in terms of 
the genomics of cell lineage, cell identity and cell 
reprogramming?

Sam: We got into genomics broadly about 12 years 
ago and we came into the reprogramming field. And 
with the Yamanaka factors, and reprogramming to 
pluripotency, there was all this excitement – ‘We 
can make any cell type on demand.’ We built a gene 
regulatory network-based platform that used bulk 
expression data, called CellNet, to measure the identity 
of the cells that people were engineering in vitro 
against their actual in vivo counterparts. We were able 
to see that people were not producing the cell types 
that they were claiming to have made. And there were 
two problems with that; the approach isn't scalable, but 
also, the resulting cells are developmentally immature. 

For almost 10 years now, we've been taking these 
technologies into the single-cell era, using single-
cell multi-omics to try and measure cell identity in a 
completely unbiased way. We apply these methods 
reprogramming protocols and ask – ‘What have we 
actually made here?’, ‘Have any cell types reached 
their target destination?’, ‘When do we see off target 
trajectories?’, ‘How do we block those?’ Complementing 
this approach is our CellOracle software in which we 
use simple machine learning approaches to nominate 
factors that can push cells closer to their target 
destinations.

On the experimental genomics technology side, we have 
developed lineage tracing approaches to explore – ‘What 
steps did a cell go through to get to its target destination?’ 
So, finding out what set a cell on a specific path very 
early on. If we get to those early stages, understand 
the mechanisms, then we can push more cells on 
the right trajectory. The end goal here is to improve 
reprogramming to eventually get cells into the clinic, 
to use them for disease modelling, toxicology testing. 
That's a very broad overview of how the genomics is 
intermingled with the lineage reprogramming.

FLG: I first wanted to ask you about your cell tagging 
technology and your recently released CellTag-multi, 
which is expanding the capacity to multi-omics. Can 
you explain to the readers how CellTag works, and 
how you've broadened it out into CellTag-multi?

Sam: CellTagging is a very simple lineage tracing 
method. We use lentivirus and deliver random 
barcodes into cells. 



With the original CellTagging method, 
each cell in a population receives 
a combination of barcodes. The 
barcodes are inherited, expressed, 
and recovered in parallel with the 
single-cell transcriptome. Using this 
labelling method, we map which 
cells are clonally related to each 
other, and with sequential rounds of 
labelling, we can build lineage trees. 
Using this lineage information, we 
can track which cells successfully 
reprogrammed or went into a dead 
end. We can go back and look at 
the ancestors to ask – ‘well, what 
were these cells doing early on in 
this process?’. What were the early 
changes that contributed to them 
successfully reprogramming or to 
them doing something undesirable? 
This was the original 2018 technology 
and that allowed us to define the 
reprogramming landscape.

While some cells successfully 
reprogram, others enter an ‘off-
target’ trajectory. These cells are 
reprogrammed, but they're just not 
the right identity that we're looking 
for. We were looking earlier and 
earlier in the reprogramming process 
to find the origins of these off-target 
cells, and we weren't seeing many 
transcriptional differences in early 
stages, but we knew that they had 
very different reprogramming outcomes. We thought, 
first of all, it could be technical, just because there's 
dropout in single-cell RNA sequencing, or it could be 
that we don't see transcriptional differences yet at 
those stages. This is when we started looking toward 
chromatin accessibility through single-cell ATAC-seq. 
Changes in chromatin accessibility precede changes 
in gene expression. So, just having that view, and 
identifying which areas of the genome are becoming 
accessible, we've been able to see, as early as day 
three, what sets cells on a specific trajectory.

FLG: Have you seen CellTag-multi adopted for other 
systems?

Sam: We’ve seen the adoption of CellTagging across 
different systems, particularly in the context of cancer. 
For example, groups are trying to understand why 
some cells become drug resistant. That's where I think 
the chromatin accessibility information on top of the 

RNA could be really helpful. Within the CellTag-multi 
paper, we also apply it to haematopoiesis, just because 
there's so much unknown about that system that it’s 
ideal to validate a new method. 

FLG: Within the CellTag-multi, did you merge the RNA 
and ATAC information?

Sam: Yes, we merge at the level of clones. We tried the 
10x Multiome kit, but this approach relies on capturing 
the lineage barcodes from the RNA side of the 
pipeline to link the lineage and chromatin accessibility. 
However, with the Multiome kit, it's very difficult to pick 
up the lineage barcodes and we don't yet know why. 
However, early on, we made a conscious decision to 
capture lineage across independent modalities. With 
CellTag-multi, you don't have to rely on capture of RNA, 
to readout lineage with chromatin accessibility. It's a 
complete standalone technology. Thus, it gives the user 
more flexibility in experimental design. 
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We're now expanding CellTag-multi to histone state, 
and DNA methylation capture. We do think there's only 
so much high-quality information that a single cell can 
give up, it will just deteriorate the more you try and 
get out of a cell. Obviously, the limitation there is that 
you need big enough clones to be able to power these 
analyses. But we think that higher quality information 
will be more desirable in this instance.

FLG: Alright, let's get straight over to CellOracle and 
gene regulatory networks. Could you first describe 
why GRN’s are important to map and what they mean 
for cell identity and cell lineages?

Sam: We can think of GRNs as master regulators of cell 
identity. They tell us how transcription factors control 
cell identity, which transcription factors connect to which 
genes. With CellOracle, we take this gene regulatory 
network perspective, because we're interested in how 
transcription factors control cell identity. Traditionally, 
with GRN inference, you produce these hairballs of ‘a 
transcription factor that's connected to many, many 
genes’. So, how do you start interpreting what that 
means for cell identity? This is why we built CellOracle. 

I think that people see the CellOracle paper and they 
see GRNs, and they think, ‘Oh, CellOracle is built to 
infer GRNs.’ Well, we use that approach, but really, 
the reason we're doing that is so that we can then 
perturb transcription factor expression in silico in these 
networks, to ask – ‘If we lose this transcription factor 
from a network or we gain this transcription factor, 
then how will cell identity shift?’ Hence, we've been able 
to make predictions of how cell identity changes once 
transcription factors are perturbed, and it's the GRNs 
that underlie this approach. 

FLG: So, just bringing it back to multi omics. CellOracle 
can make use of RNA and ATAC data, what value does 
a multi-omics approach bring here?

Sam: We included single-cell ATAC data, and you 
can use bulk data as well. The first step in CellOracle 
creates a ‘base gene regulatory network’ for each 
species. Really, we're using the chromatin accessibility 
data there to create a map of all biologically feasible 
connections in the network. And because you could 
start from the perspective of ‘transcription factor 
X can connect to all genes,’ and since every single 
transcription factor can connect to every gene, it's very 
chaotic and noisy. 

So, why start from that principle, when you can use the 
ATAC-seq data to know which of these connections are 
biologically feasible? It helps clean up and remove the 
noise from the GRNs. And then in the second step, we 
take that base GRN and then use the actual single-cell 
RNA-seq data for each cluster to define the connections 
that are actually active in the network for each defined 
cell type and state.

FLG: Wha are your hopes for different kinds of multi-
omics technology for your research questions?

Sam: Right now, one of the disadvantages of 
CellTagging is that we have serially transduce cells to 
build lineages. Some cell types don't transduce well, 
some cell types aren't accessible in vivo. We're working 
on methods to increase lineage tracing resolution, 
looking at methods to mutate barcodes gradually over 
time. High-resolution lineages are going to give us a lot 
more insight into the dynamics of reprogramming.
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“RIGHT NOW, ONE OF 
THE DISADVANTAGES 
OF CELLTAGGING IS 

THAT WE HAVE SERIALLY 
TRANSDUCE CELLS TO 

BUILD LINEAGES. SOME 
CELL TYPES DON'T 

TRANSDUCE WELL, SOME 
CELL TYPES AREN'T 

ACCESSIBLE IN VIVO."
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There have been several notable new tools released in 2023 that we haven’t covered here. Examples include Dictys13, a 
dynamic method taking context-specificity into account, KiMONo36 for inferring GRNs in the presence of missing data, 
MICA21, a non-linear approach with superior performance to classic methods and Normi37 for inferring GRNs with non-
redundant mutual information. 

Given this ever-increasing list of methods, there are attempts to benchmark these multi-omics methods using 
approaches such as ground truth, synthetic data or regulatory databases. Follow these references for an in-depth 
coverage of the topic8,38-40, including a recently released web-based benchmarking platform to compare your data to 
real data with various noise levels. 

Applications of Epigenomics, Transcriptomics and GRNs
These multi-omics approaches summarised above are incredibly valuable for understanding cell identity and tracking 
cell fate during periods of transition, either during development or during a cell’s transition into a disease state.

Understanding cell identity is a key 
challenge for the single-cell field 
and combining epigenomic and 
transcriptomics is a useful strategy to 
accomplish this. Organs with complex 
cellular makeups such as the brain41,42 
and eye43 have benefited from this 
approach to resolve cell identities.

We recently spoke to Professor 
Rui Chen at Baylor College of 
Medicine about his work atlasing 
the human and mouse retina using 
transcriptomics and chromatin 
accessibility measures43. 

GETTING TO GRIPS WITH GENE REGULATION. TRANSCRIPTOMICS AND EPIGENOMICS

“GIVEN THIS EVER-INCREASING LIST OF 
METHODS, THERE ARE ATTEMPTS TO 
BENCHMARK THESE MULTI-OMICS METHODS 

USING APPROACHES SUCH AS GROUND TRUTH, 
SYNTHETIC DATA OR REGULATORY DATABASES."

https://grnbenchmark.org/


RUI CHEN 
PROFESSOR OF MOLECULAR AND 

HUMAN GENETICS 
BAYLOR COLLEGE OF MEDICINE

INTERVIEW: 
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FLG: How have multi-omics methods enhanced the 
work that you're trying to do?

Rui: Of course, single-cell RNA-seq is really powerful, 
you can use the data to identify cell types and look at 
the transcriptome. But, from a genetic point of view, 
we're also interested in not only the cell type and gene 
transcription, but also in how the genes are regulated, 
and the potential impact that variants have on gene 
regulation. A lot of genetic burden is not in the coding 
region of the genome. I think the Multiome is a way for 
us to identify not only the gene transcriptome, but also 
identify potential elements in the same cell for that gene.

FLG: You’ve recently published a paper performing RNA 
and epigenome profiling of the retina. Can you describe 
this multi-omics approach for atlasing the retina?

Rui: So, that paper is actually an intermediate product - 
we have a new one to be submitted in the next couple of 
weeks. The major goal for the cell atlas is to identify all 
cell types in the tissue. The retina is a part of the central 
nervous system. It's simpler compared to the brain, of 
course. There are only three layers of neurons that are 
well organised. The neuron types in the retina include 
photoreceptors cells, bipolar cells, retinal ganglion cells 
(RGCS), horizontal cells and the Muller cells. 

From previous studies based on the morphology, the 
physiology and some limited molecular markers, we 
know the types for each cell class. For example, for 
the RGCs, in the mouse, there may be 40 different 
types and they might play different roles. From a 
neuroscience point of view, it's important to know 
which cell types are out there, how they're connected 

and how they function together to build a circuit 
board. To know the circuits, you need to know the 
components first, and then you can understand how 
they're connected and then how they function. 

So, I think the first goal is to identify all the parts. There 
are a large number of cell types that exist in the retina, 
although it is relatively simple. Coupled with the fact 
that not all the neuron types and cell types are equally 
represented in the tissue, for example, the retinal 
ganglion cells together only account for 1% of all neurons 
in the retina, but they play a critical role. They are the cell 
that relays the signal from eye to the brain and without 
them, you're not going to see anything. So, if the mouse 
has 40 different types, we need to think about 40 times 
1%, so each one is represented on average at 0.02%. 
This is only going to be worse in humans since the RGCs 
are not equally represented and they could differ by a 
hundredfold in terms of abundancy. 

"THAT'S WHY WE 
NEED A LARGE 

NUMBER OF CELL 
PROFILES IN ORDER 

TO IDENTIFY THE RARE 
ONES, OTHERWISE 
YOU WOULD JUST 

MISS THEM."



That's why we need a large number of cell profiles in 
order to identify the rare ones, otherwise you would 
just miss them. So, the atlas we have published, there 
are a quarter of a million cells. This is not a straight 
quarter million either, since we used markers to 
enrich for the rare cell types to improve their potential 
percentage. In the new one we're just about to submit, 
there are about 2 million cells in there. 

FLG: Why did you also include a population that you 
had ATAC-seq for? Why make this a multi-omics study? 
And have you done that for the new atlas that's going 
to be published?

Rui: In previous studies, people have used ATAC-seq, 
although this is mostly bulk ATAC-seq, and a very small 
amount of ATAC-seq, for example, 10-20 thousand 
cells of the atlas. I would say that 20,000 ATAC-seq cells 
will not give you high enough resolution. It will allow 
you to get the major class of a cell, but among them, 
there's so many different types and they have distinct 
chromatin profiles. To better understand how genes 
are regulated and to find the gene networks and the 
motifs, you need the chromatin profile. So, that's why 
in the paper we did 100,00 nuclei with ATAC-seq. We 
can get the resolution of class and sub-class, but this 
number will not be enough for rare cell types. In this 
new study, we increase that 100,000 nuclei to 400,000. 
This is still not enough, but we have a much better 
resolution. To see extremely rare cells, we would need 
to increase that fivefold or tenfold.

FLG: What computational tools do you tend to use 
in your lab for analysing ATAC and RNA and for 
integrating them together?

Rui: We used BindSC, single-cell bind, for integration. 
There are many tools that do integration. And we 
also use scGLUE, but at the time of the paper, we 
uses BindSC since there were fewer tools available 
at the time. And then we actually developed this new 
software, BindSC, and we found when we compare the 
performance it looks pretty good. The modality of RNA-
seq and ATAC is quite different, ATAC is much sparser.

FLG: Can you just briefly explain to our readers why 
you included a cross-species comparison for the 
retina?

Rui: There's multiple reasons, but for the atlas point 
of view, the primary reason is to help the annotation 
of cell clusters. In the human retina there are roughly 
110 cell types. Most of them, we don’t have a name for 
it, we don’t know the function and we don't know how 
it connects. In contrast, the mouse retina has been 
well studied, and there has also been some work in 
the primate - physiology, staining, morphology, etc. 
So, we try to borrow the names of these cell types for 
the human types that have no name. This means that 
the people who study it will be able to cross reference 
relatively easily.

We also know there is similarity, but there is also 
divergence between species, you cannot always find an 
ortholog cluster between human and mouse. In fact, a 
lot of the time, we cannot. This gives you a chance to 
study the differences. The third thing is, by mapping 
this out, not based on fragmented information but with 
everything on a plate for two species or three species, 
then this allows us to make the best comparison 
between that, because it's more comprehensive and 
it’s not based on one or two markers. Also, people 
use mice as a disease model and there is always the 
question of whether what you learn from mice can 
be translated to humans. If you study cell types in the 
mouse, does it even existing humans, how exactly can 
you translate it? 

FLG: Do you have any future plans for different types 
of multi-omics profiling of the retina? How about 
proteomics and metabolomics?

Rui: All of the above. The transcriptome is great, and 
chromatin is great, but it's only one angle or facet of 
the cell. Cells have protein, metabolites, also the spatial 
aspect; I think of all of them as just different angles. 
We're dealing with very high dimensional data, the 
more you have, the better holistic understanding of 
the cell function state you have. We are working on 
the metabolome, and also really watching out for the 
proteome. I know it's coming.
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There have been recent examples of disease insights gained from GRN multi-omics in type 2 diabetes44, placental-
mediated low birth weight45, heart failure46 and pancreatic disease47. These approaches will eventually allow the 
engineering of cell fate48 and ultimately disease prevention49 through this understanding of how cellular identity is 
established and maintained.8 

When it comes to development, these tools have the power to map developmental processes in unprecedented ways. 
For example, Argelaguet, et al. 50 recently profiled mouse embryos during organogenesis and used the RNA and ATAC-
seq readouts to map the TFs and gene regulatory networks that underpin the lineage commitment events for different 
organs. We spoke to Ricard Argelaguet again about this study that he was first author for.

GETTING TO GRIPS WITH GENE REGULATION. TRANSCRIPTOMICS AND EPIGENOMICS

RICARD ARGELAGUET 
Senior Research Scientist 
Altos Labs

FLG: I wanted to ask you about the single-cell multi-omics work you did in mouse embryos and gene regulation. What has 
single-cell multi-omics done for gene regulatory network inference?

Ricard: Since the early days of bioinformatics, there has been a substantial interest in learning gene regulatory networks, 
essentially trying to link transcription factors to their target genes. Initially, most of this was constrained to just RNA-seq data and 
people would do co-expression networks to find correlations between the transcription factors and potential target genes. But 
it was really hard to know, in a systematic way, which genes are targeted by which transcription factors. Now, by the inclusion 
of another data modality, it really improved this process, and this other data modality is something that tells you about where 
those transcription factors are binding where they are active. 

The ideal modality would be something like ChIP-seq, where for each transcription factors, you know exactly where it's binding, 
so you know which genes it's potentially targeting. The issue is we cannot do ChIP-seq for all transcription factors because 
this will be way too expensive and there's no way of doing this experiment. But, with the addition of ATAC-seq (chromatin 
accessibility), you can get an estimate of where transcription factors are binding. By looking at the accessibility of the chromatin, 
and then looking at motifs in the DNA, you can get a rough idea of where transcription factors are binding. People have shown 
that by combining these two data modalities, it gives you a reasonably good estimate for gene regulatory networks. This was 
good in the bulk RNA sequencing era but for this type of estimation, you really need lots of measurements. So, when the single-
cell multi-omics field kicked in, specifically RNA-seq and ATAC-seq from the same cell, it gives you the power for doing these gene 
regulatory inference models.

FLG: And what did you find in mouse embryos?

Ricard: So, as I said, what really made this new era of gene regulatory network inference possible is the chromatin accessibility 
and RNA expression measurements from the same cell. And we were quite lucky to have access very early on to the new 10x 
Multiome Kit, which essentially allows you to profile these at high throughput. Our lab had experience on working with mouse 
embryos for a few years and mapping RNA expression, methylation and chromatin dynamics. And one of the main analyses that 
we performed was this gene regulatory network inference. We were able to map the networks that essentially determine the cell 
fate transitions, going from one cell type to another cell type in the mouse embryo. And one of the beautiful things about these 
models is that they allow you to make predictions, such as, if you knock out or manipulate a specific transcription factor, what 
will actually happen to the cell state, will the state move in this direction, or will it move in that direction?
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CHAPTER 6

BACK TO BUILDING BLOCKS:  
THE RISE OF METABOLOMICS 

PROFILING DNA, RNA OR PROTEINS CAN PROVIDE VALUABLE INSIGHTS 
INTO THE ORIGIN AND NATURE OF CELLS, BUT THEY CAN’T TELL US 
WHAT IS HAPPENING IN THE CELL AT THAT MOMENT. METABOLITES 
SUCH AS SUGARS, LIPIDS, NUCLEOTIDES AND AMINO ACIDS CAN ALL 

BE MEASURED AND CAN SHOW US WHAT METABOLIC PROCESSES ARE 
CURRENTLY GOING ON INSIDE A CELL. THIS CHAPTER INTRODUCES 

AND COVERS THE MAJOR METHODS (SEE FIGURE 6.1) USED TO 
VISUALISE THE SMALL MOLECULES OFTEN LEFT OUT IN GENOMICS 

STUDIES – COLLECTIVELY KNOWN AS THE METABOLOME

What is metabolomics?
Metabolites are considered any small biomolecule within a biological system under 2,000 daltons in weight, typically 
sugars, fatty acids, steroids, drugs and amino acids. These metabolites are the precursors, the intermediates and the 
end products of cellular processes2. They are the closest omic to the cell’s phenotype. This makes them instrumental in 
signaling and modulating a cell’s phenotype, but it also means that the cell’s metabolome is dynamic, shifting rapidly in 
response to the environment. 

FIGURE 6.1. THE FOUR MAJOR IMAGING MASS SPECTROMETRY METHODS AND A GRAPHIC OVERVIEW OF THE 
PREPROCESSING AND DATA ANALYSIS PROCESS.
Image Credit: Liu, et al. 1
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BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

The goal of metabolomics is to identify and quantify 
these metabolites. 

For transcriptomics and proteomics, the technology 
progressed from bulk to single-cell to spatial 
applications. For metabolomics, it is single-cell 
that currently represents the cutting edge, while 
spatial metabolomics has a slightly longer history of 
development. 

We recently caught up with Dr. Theo Alexandrov, 
Team Leader at EMBL to introduce us to the 
field of metabolomics, and to discuss the latest 
advances in spatial and, most recently, single-cell 
metabolomics.

INGELA LANEKOFF 
Professor, Department of Chemistry-BMC 
Uppsala University

FLG: For human cells, what information does single-cell metabolomics give you that 
other omics do not?

Ingela: Single-cell metabolomics provides insights into the metabolic status of the cell. 
Compared to the individual cell’s proteome or transcriptome, the metabolome of the cell 
is highly dynamic and can be altered in milliseconds to seconds. Therefore, single-cell 
metabolomics can provide an instant view of what occurs in the cell at that time.

“FOR METABOLOMICS, 
IT IS SINGLE-CELL 
THAT CURRENTLY 
REPRESENTS THE 

CUTTING EDGE, WHILE 
SPATIAL METABOLOMICS 

HAS A SLIGHTLY 
LONGER HISTORY OF 

DEVELOPMENT."



THEODORE 
ALEXANDROV 

TEAM LEADER, STRUCTURAL AND 
COMPUTATIONAL BIOLOGY UNIT 

EUROPEAN MOLECULAR 
BIOLOGY LABORATORY

INTERVIEW: 
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FLG: Can you briefly introduce yourself to the readers, 
your current position and explain a little bit about 
how you got into metabolomics? 

Theo: Absolutely. My name is Theodore, I go by Theo, 
and I work at EMBL, the European Molecular Biology 
Laboratory, which is an amazing place to work. It is an 
inter-governmental organisation for life sciences in 
Europe. You can think of it as like CERN, but for molecular 
biology. So, we have a very vibrant place to work, and I'm 
leading a research team that mainly develops methods 
and technologies for spatial and single-cell metabolomics. 
I also work in a metabolomics core facility, which is much 
more routine, but it was very useful for me to learn 
the basics and the inside-outs of metabolomics. This is 
because it's actually not my background. On top of this, 
I'm also a scientific lead at the Bio-Innovation Institute 
in Copenhagen, Denmark, where we are incubating a 
startup in single-cell metabolomics. 

My background is computational. My PhD was in 
mathematics and statistics. I then went to Germany for 
a postdoc in a city called Bremen. You might not have 
heard of it, and not many people have, other than for 
the Town Musicians of Bremen fairy tale. Surprisingly, 
this is actually the world capital for mass spectrometry. 
Two out of five major mass-spec vendors have R&D 
departments there, which I didn't know then. My first 
postdoc was on econometrics on predicting transactions 
for MasterCard. Then someone approached me from 
the Bruker mass spec company – ‘Can you do some 
machine learning predictions for something called mass 
spectra?’ That's how I got into mass spectrometry. 

It was computational first, but then I was asking 
myself – ‘Why do we need these mass spectra?’ And 

the answer was metabolomics, because metabolomics 
uses mass spectrometry to get a read out about 
small molecules. Back then it was an up-and-coming 
technology, and I went to UCSD to learn it. I got hosted 
by Pieter Dorrestein and learned a bunch from him 
and his team. This is how I transitioned more and more 
towards metabolomics, and molecular questions and 
molecular biology. 

FLG: Could you provide an overview of how the 
field of metabolomics has developed to where we 
are now with single-cell and spatial metabolomics 
methods?

Theo: I probably can’t speak for the whole field of 
metabolomics. I see myself as a newcomer and 
there was so much amazing work done by many 
people, which I didn't see. I can talk only about my 
experiences, roughly starting from 2010. I came into 
this field through imaging mass spectrometry, which is 
a spatially resolved way of doing mass spectrometry. 
You can think of it as pixelated mass spectrometry, 
where for every pixel you have a mass spectrum. This 
is almost like a quantified barcode - which molecules 
are there and their relative intensities. 

Imaging mass spectrometry was initially developed 
for proteomics, but it was not really delivering for 
proteomics, to these molecular machines. Then 
there was the introduction of high-resolution mass 
spectrometry, and this changed things completely. 
People realised that with high mass resolution one can 
resolve small molecules, metabolites, and the whole 
field went towards spatial metabolomics. This is how 
spatial metabolomics emerged and got reinforced by 
this amazing technology. 



If we start talking about omics - so, genomics, 
transcriptomics, proteomics, metabolomics, epigenetics 
and so on - we can think about genomics as ‘what can 
happen’. Transcriptomics is ‘what might happen’; i.e., the 
part of the blueprint that will get activated and be turned 
into reality. Proteomics is about ‘what makes it happen’, 
because these molecular machines are like cogs in 
our cells that turn small molecules. Metabolomics is 
very interesting because it is about ‘what is happening 
right now.’ Metabolites have extremely rapid turnover, 
probably the most rapid out of all molecular entities. 
At the same time, there are usually a lot of them, but 
sometimes there is not a lot. It's all about stability, 
balance and very rapid reprogramming. It's about 
putting things into perspective.

Metabolomics has existed for decades. Spatial 
metabolomics has existed for about 15 years. 
Single-cell metabolomics is a completely different 
story. Single-cell metabolomics takes a molecular 
profile for an individual cell, and does it for many 
different cells. For every cell you will get a profile. 
Single-cell technologies, in particular genomics and 
transcriptomics, have paved the way over the past 
decade. But for metabolomics, it was very tricky. Only 
a couple of groups were able to do it, say 10 years ago, 
because it was almost impossible for metabolomics; 
conventional bulk metabolomics requires 1 million 
cells. Then mass spectrometry got much more 
sensitive, and now it's possible to do single-cell 
metabolomics. Now it's a rapidly moving technology 
with advancing experimental and computational 
applications. Everything's bubbling and booming and 
there is so much new stuff going on.

FLG: Is single-cell spatial metabolomics the gold 
standard that people are aiming for?

Theo: Ultimately, I'm envisioning a future where 
metabolomics will be done routinely, spatially and in 
single-cell. We just had a review in Molecular Systems 
Biology3 where we put forward a dream that saying, 
‘spatial metabolomics’ would be as awkward as 
saying ‘spatial microscopy’. You're not saying, ‘spatial 
microscopy’, because it’s natively spatial. I think the same 
will be true for other omics as well once the technology 
becomes accessible. We'll be saying – ‘I did metabolomics 
of tissue sections’, and we’ll mean single-cell/spatial.

FLG: Could you describe some of the developments 
that your lab has had in this area?

Theo: We first came into spatial metabolomics from 
a computational angle. We first started developing 
statistical methods to help others mine through this 

data. The data that’s generated is pretty big, it can reach 
up to several hundred gigabytes per tissue section. 
We developed a number of methods. Then, I was very 
fascinated to find the bottleneck – what is stopping 
the whole field from developing and growing. Critical 
back then, which was about five to ten years ago, was 
the problem of metabolite identification. How to find 
which molecules are encoded in these gigabytes of data. 
An image that we generate with spatial metabolomics 
has up to a million different channels. Some of these 
channels represent molecules, some do not. 

To help with this, we developed software called 
METASPACE4, where you can put data in and get 
molecules out, you can get images up and you can 
get additional imputation out. This is one of our key 
contributions to this field. It's now a cloud-based 
software and it is free and open source. There are 
now more than 2,000 users that upload data and we 
help them annotate that. Also, lots of people actually 
started sharing their data through this online platform, 
and this created more than 10,000 public datasets. 
Now anyone can go there and ask – ‘Is this molecule 
adaptable,’ ‘In which context,’ and so on. It’s creating a 
knowledge base with not only molecular information 
but also associated with metadata. Just recently, 
we developed the new version for this metabolite 
identification, which is still one of the key bottlenecks 
of the field. It's machine learning-based. It allows us 
to find more molecules with a high confidence, and 
it's trained on the public data that people put into 
METASPACE. It’s like a reinforcing cycle; when you 
share your datasets publicly, they can be used for 
training better methods, and thus you contribute to 
advancing the field.
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"IT'S MACHINE LEARNING-BASED. 
IT ALLOWS US TO FIND MORE 

MOLECULES WITH A HIGH 
CONFIDENCE, AND IT'S TRAINED 

ON THE PUBLIC DATA THAT 
PEOPLE PUT INTO METASPACE. 
IT’S LIKE A REINFORCING CYCLE; 

WHEN YOU SHARE YOUR 
DATASETS PUBLICLY, THEY CAN 
BE USED FOR TRAINING BETTER 

METHODS, AND THUS YOU 
CONTRIBUTE TO ADVANCING THE 

FIELD."



Then we got into the field of single-cell metabolomics, 
and this goes back to my first PhD student, Luca 
Rappez. Back then, we were not doing single-cell 
metabolomics. When Luca was searching for his PhD 
project, he asked – ‘Can we do single-cell metabolomics 
with mass spec?’ And I told him – ‘You can try.’ And 
he tried, and this completely changed how we do 
things, and it completely changed the focus of our 
team. Most of our developments now are in single-cell 
metabolomics. 

The major foundation for us is a method called 
SpaceM5. It integrates imaging mass spectrometry, 
that we also use in spatial metabolomics, and 
integrates it with microscopy and with the 
computational methods that Luca has developed. 
Of course, since then, we have refined the method 
and improved it further. Now it’s applicable to pretty 
much any cell type on a glass slide to then produce 
single-cell metabolomics profiles. This opened a lot of 
very interesting opportunities for tech development, 
for applications, and even for the commercialization 
opportunity that I mentioned. A lot of people in 
the world, and also companies, are interested in 
getting single-cell metabolomics profiles to make 
their decisions, either for developing better drugs, 
for developing better therapies or maybe even for 
diagnostics.

FLG: What is the progress in integrating metabolomics 
with other omics?

Theo: Metabolomics is very challenging to combine 
with other omics because it works on a completely 
different layer. You can’t use sequencing and you don't 
have amplification. So, you need to figure out how to 
do it. In this respect, spatial and single-cell provide 
opportunities that were not available for bulk. If you 

do homogenization, then you pretty much have a 
smoothie, and out of this smoothie you can isolate and 
analyse only a fraction. 

For spatial metabolomics, there were recently some 
very interesting developments and technologies and 
there are now even commercial products for combining 
metabolomics with antibody-based protein detection. It 
opens the possibilities for any antibody-based technology, 
e.g., multiplex immuno-fluorescence, cyclic or non-cyclic, 
any metal tagged antibodies, as well as commercially-
suggested peptide tagged antibodies. As long as you first 
do spatial metabolomics, then there is enough material 
left intact enough to do antibody analysis. So, you can 
combine beautiful spatial metabolomic images with 
protein detection using antibodies on the same tissue 
section. This is amazing because you can delineate cell 
types and tissue compartments. 

Secondly, people are asking - ‘What about 
transcriptomics?’ Because single-cell transcriptomics 
has shown us so many new cell types. How awesome 
would it be to overlay this information on top of spatial 
metabolomics? However, spatial metabolomics is 
often done with a laser, and what happens with our 
transcripts? RNA can be degraded very rapidly, and one 
would think that if we shoot it with the laser, we will 
just break it into parts and fragments. But it was very 
convincingly shown, in the context of microbiology, 
that you can detect transcripts after you've done 
metabolomics. Metabolomics needs to be done first, but 
afterwards, it was shown that one can do RNA-FISH or 
spatial transcriptomics analyses. A notable example is 
a recent paper in Nature Biotech from the Andren and 
Lundeberg groups, combining spatial metabolomics 
and Visium spatial transcriptomics6. This opens the 
door to multimodal spatial omics combining spatial 
metabolomics with detecting transcripts or proteins. 
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Single-cell and Spatial 
Metabolomics methods 
SPATIAL METABOLOMICS
Spatial metabolomics provides 
regional information on 
metabolites in cells and tissues. 
While spatial metabolomics is 
possible with several approaches, 
such as Raman spectroscopy and 
fluorescence lifetime imaging, the 
method with the most momentum 
is Mass Spectrometry Imaging 
(MSI)3. 

With MSI, to quantify metabolites, 
the sample is first ablated with 
a desorption/ionization source. 
Frequently adopted examples 
include, desorption electrospray 
droplets (DESI7), Secondary 
Ion beam Mass Spectrometry 
(SIMS8) or a matrix-assisted laser 
desorption/ionization (MALDI9). 
The sample is divided into 
regional pixels, and within each 
pixel, the molecules that have 
been desorbed by the ionization 
source are used to create a mass 
spectrum for each pixel. 

SIMS based MSI approaches have 
the highest spatial resolution at 
nanometer scale, but the high 
energy of the primary ion beam 
can cause molecular fractionation, 
complicating analysis10 (see Figure 
6.2) . By contrast, MALDI liberates 
a greater proportion of intact 
molecules but typically achieves 
a resolution of > 10 microns. 
Recent advances have shown that 
better resolution is possible11. 
One downfall of these methods 
is that they are typically operated 
in a vacuum, meaning cells are 
not analysed in their native state. 
DESI methods offer analysis under 
ambient conditions, but tend to 
not be able to get resolution much 
below 50 microns (see Figure 6.3).

BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

FIGURE 6.2. PRINCIPLES OF MAIN MSI TECHNOLOGIES AND TYPICAL 
WORKFLOW OF MALDI. 
(A) Illustration of the ionization methods of three major ion sources used in MSI 
technologies: SIMS, MALDI, and DESI. (B) The typical workflow of MALDI-based MSI 
metabolomics. Take brain tissue as an example Image Credit: Pang and Hu 10

FIGURE 6.3. REPRESENTATION OF THE TECHNIQUES AVAILABLE FOR MS-
BASED SPATIAL METABOLOMICS.
The range of sensitivities in femtomoles (y-axis) is compared against the spatial resolution range 
(x-axis) for these spatial-MS approaches. The spatial dynamic range is illustrated by the transparent 
blue boxes. Cell size dimensions and the lateral resolution of other structural imaging techniques 
are displayed along the x-axis for comparison. Image & Caption Credit: Taylor, et al. 12
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Spatial metabolomics is not without its issues. The broad diversity of molecules being measured, and the sensitivity 
of the ionization sources, mean that capturing and identifying even a small fraction of the available information is 
hugely challenging. 

Hence, a prominent issue for all metabolomics experiments (whether spatial or single-cell) is the issue of annotating 
metabolites13. Most metabolites detected in these untargeted mass spectrometry methods end up unannotated due 
to the lack of reference libraries or databases for them. Despite the advances in technology, knowing the metabolites 
you have captured is still a challenge. 

There are many recent advances in computation to address this challenge including deep learning models such as: 
CANOPUS14, DarkNPS15 and MSNovelist16 and network approaches such as: GNPS17, NetID18 and KGMN19. But this is 
still a big challenge for the field. See this 2023 review for recent advances in computational metabolomics including 
annotation, visualization and integration20. 

We spoke to Dr. Xiaotao Shen about his pseudo mass spec imaging method21, which can help address some of these 
mass spec challenges listed above.

BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

XIAOTAO SHEN  
Postdoctoral Research Fellow,, Snyder Lab 
Stanford University

FLG: I would like to ask you about metabolomics. You did some work with deep learning-based pseudo mass spec 
imaging, could you describe how it works and how it helps metabolomic analysis?

Xiaotao: Mass spectrometry is a high sensitivity instrument for small compounds, proteins, etc. The raw mass spec data 
provides chemical information, it's not biological information. We only know some information about the features; for 
example, their accurate mass. But we don't know what they are. To get this data, we need to use a component annotation 
programme. This is a challenge for the metabolomics field. Typically, we can get 100,000 features from the mass spectrometry 
raw data. But we can only identify 100 or so of the features. This is why I want to work on this method for diagnosis, because 
one of the most promising applications of metabolomics is for diagnosis. 

So, I wanted to know whether we could convert the mass spec data into an image and then use the image for diagnosis. If 
you see the raw mass spec data, it has three dimensions, an axis of time and an axis of accurate mass. So, I converted this 
into an image, and we used deep learning to process it. Deep learning is very powerful for imaging processing. This image 
contains all the information from that raw data. Using a machine learning model, we can then predict whether this mass spec 
is associated with disease. 

Another challenge for metabolomics mass spectrum data is batch effect. For example, we have 100s of 1,000s of samples and 
we cannot measure all the samples in one day. Sometimes, it can take months or even a year to measure all the samples. And 
mass spectrometry is not so robust. Between today and tomorrow, maybe the intensity or the sensitivity will shift. So, we need 
to correct the batch of data, but it's very difficult. However, if we convert the raw data to an image, the shift will just cause 
changes in the levels of dark or light for the image. But the whole profile is still there. So, this is another advantage of this 
method - we can overcome the batch effects in the metabolomics data, so it can increase the performance and accuracy of 
the predictive model.

https://www.sciencedirect.com/science/article/pii/S1367593123000261#sec7
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SELECTIVE CELL SAMPLING 
METABOLOMICS
Ways to produce single-cell level 
metabolomics have been explored 
with many reviews in the last year, 
which readers should refer to.1,2,12,22-25

Single-cell metabolomics is 
achieved using mass spec with a 
collection of sampling strategies 
and ionization techniques. 
Whereas spatial methodologies 
have to view the sample as ‘pixel’, 
single-cell methodologies capture 
metabolomics insights from the 
individual biological unit, the single 
cell and its internal biochemical 
processes2 (see Figure 6.4) 

Methods to draw single-cell 
insights from MALDI-MSI and other 
spatial metabolomics data also 
exist. SpaceM5 is an example, as already discussed in the interview above. This method can precisely estimate 
the cell parts that were ablated by the laser with subcellular precision. This method can then detect > 100 
metabolites from > 1,000 individual cells per hour, giving a spatio-molecular matrix for each cell with a normalized 
metabolomic profile.

However, by using live cell selection followed by mass spectrometry, it is possible to truly capture a single cell’s 
metabolome but only for cells in culture. These methods involve using a micropipette to sample a cell directly (or even 
a subcellular compartment of a cell) before transferring them to the mass spectrometer. This is termed live single-cell 
MS or Direct Analyte Probe Nanoextraction (DAPNe).

Since the cell sampling and ionization are now separate 
processes, this gives the opportunity of manipulating the 
extracted cellular material prior to MS analysis. Hence, 
liquid chromatography LC-MS26 or capillary electrophoresis 
and MS27 can be used to separate analytes prior to 
analysis.

Single-cell metabolomics presents its own challenges23. 
Principle among these is the low picolitre volume of the 
material available in one cell for analysis. Furthermore, 
given the metabolome’s nature to radically shift and the 
huge diversity of metabolites, accurately measuring the 
metabolome of an individual cell is challenging22. Finally, cell 
selection methods are low throughput. Finding the bridge 
between the advantages of the spatial metabolomics and 
single-cell metabolomics methods is crucial for the field to 
advance (Figure 6.5)25.

We asked two of our experts some questions about their 
work in single-cell mass spectrometry.

BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

FIGURE 6.4. REPRESENTATION OF MASS SPECTROMETRY IMAGING (MSI) 
AND SELECTIVE CELL SAMPLING (SCS) AS STRATEGIES FOR SPATIAL AND 
SINGLE-CELL METABOLOMICS RESPECTIVELY. 
Image Credit: Saunders, et al. 25

FIGURE 6.5. KEY SYNCHRONICITIES BETWEEN 
MSI AND SCS.
Image Credit: Saunders, et al. 25
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BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

HOLLY-MAY LEWIS 
Senior Laboratory Technician (LC-MS) 
University of Surrey

FLG: What practical advice might you have for someone getting into mass spec?

Holly: Working with mass spectrometers regularly comes with challenges when it comes to optimization and troubleshooting. I 
would recommend taking time in the optimization stage and incorporating quality controls to always confirm your instrumentation 
is working optimally. 

FLG: What are some of the most popular methods for profiling the metabolome of human cells and is there a current 
‘gold-standard’?

Holly: Single cell analysis is a new and exciting area of mass spectrometry. There have recently been a growing number of 
sampling approaches including mass spectrometry imaging, capillary sampling and microfluidics. I don’t think there is a ‘gold-
standard’, just lots of different exciting approaches for different studies.

FLG: Can you briefly describe the DAPNe-LC-MS method for spatial Lipidomics and how it compares to other LC-MS methods?

Holly: Many spatial sampling techniques are direct-MS methods, where there is no chromatographic separation of analytes 
prior to ionisation. This means that analytes are ionised simultaneously, which can lead to ion suppression and can limit 
sensitivity. DAPNe-LC-MS was a way of incorporating the capillary sampling approach of single cell sampling with the 
chromatographic separation of LC-MS.

INGELA LANEKOFF 
Professor, Department of Chemistry-BMC 
Uppsala University

FLG: How are metabolites and lipids analysed, and how can that information be used clinically?

Ingela: Similar to proteins, metabolites and lipids are most often analyzed with mass spectrometry that is usually coupled 
to a liquid or gas chromatography separation system for separation of the molecules prior to mass spectrometry. However, 
metabolites and lipids can also be detected with mass spectrometry alone in a direct infusion mode, where there is no prior 
separation.

FLG: Can you briefly overview the most popular methods for single-cell profiling the metabolome of human cells?

Ingela: Lipids are the most commonly analyzed metabolites of individual cells and the main techniques for this use direct 
infusion mass spectrometry with either sampling and ionization using MALDI (matrix assisted laser desorption ionization) 
or in-house built tools coupled to electrospray ionization. Profiling the metabolome of individual cells is a young field that is 
still exploring techniques to ensure a high coverage and high detection of metabolites and lipids. I expect to see a significant 
growth in the field, with creative ways to analyze the metabolome of individual cells being available in the near future!

https://pubs.acs.org/doi/10.1021/acs.analchem.2c01940
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INTEGRATION OF METABOLOMICS WITH OTHER OMICS
Spatial metabolomics offers a number of advantages over other omics analysed spatially. The data is much closer to 
cell state than gene or protein levels. It allows the incorporation of the exposome, microbiome and drug levels since 
exogenous compounds can be analysed too. There are practical advantages too, it is faster and substantially cheaper 
to operate3. This makes metabolomics a must-include omic in multi-omics studies for perturbation, clinical applications 
and drug-discovery.

As highlighted by the contributors above, vertical integration of metabolomics methodologies with other omics 
is quite challenging. There are numerous examples of diagonal integration, in which metabolomics profiling is 
performed concurrently from an adjacent section with other omics and integrated post-hoc28. What is more novel, is 
the genuine integration of spatial metabolomics methods with antibody-based proteomics workflows and commercial 
transcriptomics workflows. 

An example of this integration was published in September 20236, in which mass spectrometry-based imaging is performed 
first using the MALDI-MSI system, followed by H&E staining, and then spatial transcriptomics using the 10x Genomics Visium 
platform. This was performed in mouse brain tissue. This method presents a way to simultaneously profile small molecules 
and gene expression within a tissue section, making spatial metabolomics a true multi-omic (see Figure 6.6).

BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

FLG: What are some of the developments that your lab has been working on in this area?

Ingela: In my lab, we are focusing on using miniature liquid extraction of metabolites and lipids from individual cells that 
reside on the surface of glass slide. For this, we are developing and building probes that first extract the metabolites from the 
cell, and then transfer the liquid extract to the inlet on the mass spectrometer for electrospray ionization. This provides us 
with an on-line extraction for direct infusion mass spectrometry where we see all kinds of metabolites, including amino acids, 
energy metabolites, and a range of lipid species from each cell.

FLG: What are the efforts like to produce multi-omics technology with metabolomics alongside other omics?

Ingela: This is an important part of moving forward to understand the chemical mechanisms that occur in a cell. Due to the 
emerging field of single-cell metabolomics, where the focus still to some degree is technique development, there are not so 
many studies that employ multi-omics. However, I am confident that this will soon become more widely used. 

FIGURE 6.6. THE SMA WORKFLOW AND QUALITY CONTROL DESIGN. 
Nonembedded, snap-frozen samples were sectioned and thaw-mounted onto noncharged, barcoded Visium Gene Expression arrays. Tissue sections were 
then sprayed with MALDI matrices and MSI is performed. This was followed by H&E staining and imaging with bright field microscopy. Finally, sections were 
processed for SRT. Image Credit: Vicari, et al. 6

https://www.nature.com/articles/s41587-023-01937-y#citeas
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Applications of metabolomics
Single-cell and spatial metabolomics has a similar portfolio of utility as the other major omics (transcriptomics, 
proteomics etc.), a topic we will cover in depth in the next chapter. However, before we get there, we would like to take 
some time to cover some specific uses that metabolomics has, to further illustrate the value of this emerging omic29.

Cancer metabolism is a key area of work in metabolomics. Tumour cells have incredible flexibility in reprogramming 
their metabolism to support the various states of cancer evolution and in becoming resistant to therapies30. 
Understanding this process and identifying ways to interfere and prevent cancer metabolism is the goal within this 
field. A recent example of metabolomics in colorectal cancer31,32 identified new metabolic vulnerabilities in patients and 
hence drug targets to improve patient outcomes. 

In drug research, metabolomics presents a way to identify drug targets and elucidate the mode of action of drugs 
as well as the pharmacokinetics, pharmacodynamics33,34. This improves drug repurposing and efforts to identify 
drug-drug interactions10. Lipidomics has shown to be particularly valuable for drug discovery and development35. 
Furthermore, new methods such as Nanocapillary sampling LC-MS, which can be used to detect the uptake of a 
particular drug molecules in a single cell, provide precise data on drug uptake in individual cells26.

Clinical lipidomics is particularly useful since lipids are the most commonly analysed metabolite. Lipid are major 
components of the cell membrane and lipoproteins are distributed throughout the bodies tissues, meaning that 
the status of these lipoproteins can serve as a good indicator of an individual’s metabolic state37. A recent report 
established >800 unique lipid species, of which many were shown to have associations to conditions such as ageing, 
diabetes and inflammation38, and even a lipidomic state for heart failure39. 

Another major use of metabolomics is to investigate the role of the microbiome in human functioning and disease40. 
The microbes that live within us secrete small molecules into our systems to change our biology. Metabolomics allows 
us to track these molecular interlopers. The crosstalk between the microbiome and cancer is also being explored, a 
biological process that needs metabolomic methods to truly elucidate41,42. 

BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

HOLLY-MAY LEWIS 
Senior Laboratory Technician (LC-MS) 
University of Surrey

FLG: Can you describe the Nano-capillary sampling26 method and the value of measuring drug-uptake in single cells?

Holly: The benefit of measuring drugs in single cells being able to investigate inter-cell drug uptake/penetration heterogeneity, 
which could lead to the effective treatment of both cancer and infectious diseases. This could also be applied to radiation of 
cells and investigating bystander effects.

FLG: Can you describe some of your work with metabolomics in COVID1936, what kind of diagnostic power does 
metabolomics have for conditions such as COVID-19?

Holly: I am currently more involved in metabolomic analysis of clinical samples using mass spectrometry. A person’s 
metabolomic profile can reflect clinical disturbance when a person is infected with a virus such as COVID-19. Metabolic 
profiling therefore can identify biomarkers and could be used as both a diagnostic and prognostic tool.

https://pubs.rsc.org/en/content/articlelanding/2023/AN/D2AN01732F
https://www.nature.com/articles/s41598-022-16123-4
https://www.nature.com/articles/s41598-022-16123-4
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Hopes for Metabolomics
Finally, we asked two of our experts what they thought were some of the exciting things happening in metabolomics, 
and what their hopes were for the future of metabolomics.

BACK TO BUILDING BLOCKS: THE RISE OF METABOLOMICS 

INGELA LANEKOFF 
Professor, Department of Chemistry-BMC 
Uppsala University

FLG: What are your hopes for single-cell and spatial metabolomics?

Ingela: I hope that the sensitivity can be increased further to enable a higher coverage of the metabolome and to allow 
for detection of low abundant metabolites or metabolites with poor ionization efficiency. With the constant improvement 
of sensitivity offered by modern mass spectrometers I hope we will get there soon - as long as we can afford to pay for 
the instruments.

FLG: What are some of the latest/exciting things happening in the single-cell and spatial metabolomics?

Ingela: It is exciting times in the field of single-cell metabolomics, with the community exploring ways to detect metabolites 
from a single cell. This can be done by sucking out a small portion of the cell, analyzing the cell intact through liquid 
extraction, or even putting an individual cell into a very fine pipette. I think it is exciting that more groups are seeing more 
small metabolites in addition to lipids! 

For spatial metabolomics I think the most exciting thing right now is the drive to differentiate between isomeric 
molecules without having to homogenize your sample. There are several groups, including mine, that are working with 
new creative strategies to fragment molecules in the mass spectrometer to identify the exact position of double bonds or 
functional groups.

HOLLY-MAY LEWIS 
Senior Laboratory Technician (LC-MS) 
University of Surrey

FLG: What are your hopes for single-cell and spatial metabolomics?

Holly: I think the technology available will continue to improve and will continue gain significant attention in the mass 
spectrometry world. There are more and more single-cell mass spectrometry meetings happening, meaning that the 
community is communicating and collaborating, which will certainly further the field.
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CHAPTER 7

MALLEABLE MULTI-OMICS. THE VARIOUS 
APPLICATIONS OF MULTI-MODAL DATA

MULTI-MODAL DATA HELPS US GET A CLEARER UNDERSTANDING 
OF THE MOLECULAR PROCESSES IN CELLS. THIS IN TURN MAKES 

IT EXTREMELY USEFUL FOR SCIENTISTS. IN THIS CHAPTER WE WILL 
REVIEW THE APPLICATIONS OF MULTI-OMICS IN BOTH THE CLINIC AND 
IN DRUG DISCOVERY, AND HOW AI AND DATA ANALYTICS ARE USED TO 

IMPROVE OUTCOMES.

Multipurpose multi-omics: applications in a broad range of diseases
Multi-omics has the potential to change the role of the clinician1. The profiling of genomics, transcriptomics, 
epigenomics, proteomics and metabolomics offers the opportunity for holistic investigation and contextual molecular 
understanding of disease.

Many if not all disease research and treatment plans could benefit from a multi-omics approach, but we’ve seen recent 
advances in some key areas. Neuropsychiatry, early-life and pregnancy, cancer and COVID-19 will be considered in 
separate sections below.

NEUROPSYCHIATRY
One area in which multi-omics technologies have been consistently used is in neurodegeneration and neuropsychiatry. 
As we’ve already covered, the brain is inherently complex and to understand one of the most pressing diseases of our 
age, dementia, that complexity needs to be managed.

Studies using various combinations of genomics, transcriptomics, lipidomics, proteomics, epigenomics and 
metabolomics have been published for Alzheimer's disease over the last few years in a bid to make more sense of the 
complexity2. 

Studies from this year have unraveled things such as unique molecular signatures of disease progression and 
therapeutic targets using transcriptomics, proteomics and metabolomics3 and brain regional GRNs for Alzheimer’s and 
COVID-19 phenotypes4.

Furthermore, there was a recent review on the application of multi-omics methods for psychiatry5. It highlighted 
the limitations of mono-omic work for looking into such a complex system as the brain, and the ways to generate 
meaningful rich biological markers for diagnosis and treatment. 

EARLY-LIFE AND PREGNANCY
Early life and pregnancy related disorders are also benefiting from the use of multi-omics6. This takes the form of 
understanding more about pregnancy-associated conditions and untangling the complex web of effects that occur 
during pregnancy that can lead to offspring outcomes in later life. 

On the former, we spoke to Dr Shirley Greenbaum to shed some further light on this from her perspective of working 
in preeclampsia. 

https://www.sciencedirect.com/science/article/pii/S0924977X23000019?via%3Dihub
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On the latter, a very large-scale 
multi-omics study called the 
HELIX project recently profiled an 
impressive array of the exposome 
as well as DNA, RNA, proteins 
and metabolites7. They used this 
resource to tie pregnancy and 
childhood exposures to genomic 
features, such as changes in the 
methylation status of genes in 
childhood, which impact later-
life phenotypes. These kinds 
of resources will be pivotal for 
deconstructing the interaction 
between early-life exposures and 
later-life disease risk.

SHIRLEY GREENBAUM 
Postdoctoral fellow, Department of Pathology, Stanford University, Resident, Department of 
Obstetrics and Gynaecology, Hadassah-Hebrew University Medical Center

FLG: What are your hopes for multi-omics methods in a clinical setting? 

Shirley: In the clinical world, preeclampsia remains one of our most significant challenges. This obstetric complication, 
affecting 5-8% of pregnancies, can escalate into a catastrophic condition with severe consequences for both the mother and 
the fetus. During my work as an obstetrician, I've encountered many patients affected by preeclampsia. Diagnosed during 
pregnancy, this life-threatening disease currently lacks a definitive treatment. Often, we're left with the difficult decision to 
induce labour prematurely. 

Despite many years of research in the field, preeclampsia is not completely understood. This might be because it is not a “one 
cell-one protein disease”. In other words, we haven’t found the one cell type to blame because there just isn't one. It is probably a 
multitude of things that go wrong, and that’s where the multiomics approach becomes so essential. Now that we've been able to 
thoroughly enumerate and describe the various populations at the maternal-fetal interface, I'm optimistic about advancing our 
understanding of preeclampsia. I am really excited to see how the use of multiomics can assist us in doing that.

FIGURE 7.1. OVERVIEW OF THE HELIX PROJECT. 
Source: Maitre, et al. 7
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CANCER
We’ll begin by looking at some of the latest work using multi-omics to aid our understanding of the tumour 
microenvironment (TME) (See Figure 7.2)8. 

By profiling tumours with multi-omics, researchers open doors to effectively stratify patients by risk, to identify 
molecularly targeted personalized treatments and to effectively monitor treatment response and tumour evolution9. 
See this review9 for an in-depth look at the role of multi-omics in precision oncology.

Research progress is fast and this year we have seen clear multi-omics advances in cancer subtyping10, identifying 
metastasis11,12, liquid biopsy13 and in the identification of potential therapeutic targets14. Furthermore, spatial multi-
omics is becoming instrumental in truly deconvoluting the tumour microenvironment15, a topic reviewed in-depth 
here16. This ultimately is set to improve cancer prognosis, diagnosis and treatment17.

We spoke to some of our experts about their use of multi-omics methods for cancer research and the exploration of 
immune/cancer cell-cell communication.

FIGURE 7.2. OVERVIEW OF THE USES OF SINGLE-CELL MULTI-OMICS DATA.
(A) shows the different data types that could be integrated to investigate the tumour and the microenvironment (B-D) highlight the different uses of 
multi-omics data integration for immune-oncology research. Image Credit: Ma, et al. 8

https://www.sciencedirect.com/science/article/pii/S1535610822003750#fig5


The Multi-omics Playbook 90

MALLEABLE MULTI-OMICS. THE VARIOUS APPLICATIONS OF MULTI-MODAL DATA

MIRJANA EFREMOVA 
Group Leader 
Barts Cancer Institute

FLG: How are you using multi-omics methods in your work on cancer metastasis and therapy resistance?

Mirjana: In our research, we employ multi-omics methods to profile colorectal cancer primary and metastatic samples, 
obtaining both gene expression and chromatin accessibility from the same cell. This enables us to characterize the 
phenotypically heterogeneous cancer cell states, as well as infer gene regulatory networks and identify specific cis-regulatory 
interactions that drive these states. We are hoping that this will lead to potential therapeutic targets that could be used to 
impair metastasis.

FLG: Cell-cell communication is something you’ve worked on a lot, how will multi-omics measurements (as opposed to 
just transcriptomics) help with studying this and what are your hopes for multi-omics in this area?

Mirjana: Integration of spatial transcriptomics and scRNA-seq data helps us identify cellular neighbourhoods or niches of cells 
that colocalise together, so that we can focus our cell-cell communication analysis on those cells that are in close proximity in the 
tissue. In addition, joint gene expression and chromatin accessibility enables us to expand our prediction of enriched ligand-
receptor expression across cell types to also predicting which ligands would activate downstream signalling in the responsive 
cells, providing us with a filtered list of putative “active” ligands on which to focus our further in vitro validation analysis.

BINGJIE ZHANG 
Postdoctoral Research Fellow, Satija Lab 
New York Genome Center

FLG: Your methods have helped find biomarkers for recovery from severe diseases. Could you perhaps speak a bit more 
broadly about the promise of multi-omics for precision medicine? 

Bingjie: I do believe that single-cell multi-omics technologies represent a key advancement for personalized medicine. I can't 
think of a better way to gain a more comprehensive understanding of what is happening in vivo. Imagine a scenario where, if 
I were to get sick, clinicians could analyse a blood sample or surgical specimen to decipher the complexities of my condition. 
This would involve identifying any genetic mutations, pinpointing disrupted epigenetic regulation, and even predicting the most 
effective therapeutic interventions for my case. It is this level of tailored healthcare that I believe we are advancing towards. 

FLG: What are your hopes for single-cell multi-omics technology for exploring cell interaction networks in the immune system?

Bingjie: For the immune system, cell-cell communication is vitally important. Several computational methods, such as 
CellPhoneDB, CellChat, and iTALK, are already very popular. More recently, experimental methods like SPEAC-seq and LIPSTIC 
have been developed to directly measure cell-cell interactions. However, both require genetic engineering, which poses 
challenges for studying human primary cells. In the future, I would really like to see computational researchers utilize multi-
omics data, particularly spatial data, to make use of physical distances for inferring cell-cell communication. Also, it would be 
great if we could develop more experimental methods that can be targeted for in vivo cells that work without the necessity for 
genetic engineering.
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In this study, duet multiomics solution +modC helped to reveal:

•  the epigenetic landscape of untransformed diploid breast epithelial 
cells with wild-type, p53-/-BRCA1-/- and p53-/-BRCA2-/- genetic 
backgrounds 

•  significant activation of stem cell enhancers through reduced DNA 
methylation in p53-/-BRCA1-/- cells only

• similar activation of stem cell enhancers in a triple negative breast 
cancer (TNBC) patient xenograft sample

•  the epigenetic rewiring caused by BRCA1-/-, identifying it as a crucial 
gene for this type of cancer pathogenesis 

Challenge 
In this case study, we highlight the Aparicio group’s research on 
decoding the relationship between genomic mutational background 
and epigenomic, or nongenomic, transcriptomic contributions to 
the fitness of cancer cells. This research study measures both the 
state of the genome in cancer cells, as well as decodes the state of 
the epigenome and the transcriptome. Making it vital to capture the 
epigenetic information encoded in modified cytosine bases in DNA, as 
a component of their investigations.

Solution 
OVERCOMING CHALLENGES TO PERFORM SIMULTANEOUS 
GENOMIC AND EPIGENETIC SEQUENCING OF BREAST CANCER CELLS

To overcome previous challenges associated with the utilisation of 
low-sample volumes and multiple workflows, Dr Gurdeep Singh, 
postdoctoral fellow, at the Aparicio lab employed duet multiomics 
solution +modC to simultaneously investigate the genetic and 
epigenetic landscape of breast cancer cells known to exhibit 
homologous recombination deficiency (HRD) which drives genomic 
instability and cancer pathogenesis. This cancer cell trait or driving 
mechanism is involved in both triple-negative breast cancer (TNBC) and 
high-grade serous ovarian cancer. 

duet multiomics solution +modC enabled Dr Singh to investigate 
epigenetic rewiring - known to play a critical role in cancer 
pathogenesis, cancer advancement, and cancer drug resistance - in 
breast tumour cells. 

HRD mutational instability is known to be dependent on BRCA and 
p53 mutations. In this study, Dr Singh used untransformed diploid 
184hTERT breast epithelial cell lines deficient in genes often mutated 
in HRD cancer (p53−/−BRCA2−/− and p53−/−BRCA1−/−), with wild-type 
genomic background (WT184hTERT) cells as a control.

CASE STUDY: MULTIOMIC DATA ALLOWS READING OF MODIFIED 
CYTOSINE BASES AND SIMULTANEOUS MEASUREMENT OF 

GENOMIC MUTATIONS IN CANCER CELLS

RESEARCHERS IN DR SAM APARICIO’S GROUP AT THE BRITISH COLUMBIA CANCER RESEARCH 
CENTRE (BCCRC) AND THE UNIVERSITY OF BRITISH COLUMBIA, BC, CANADA, UTILISED

5-LETTER SEQUENCING TECHNOLOGY, DUET MULTIOMICS SOLUTION +MODC, TO 
INVESTIGATE ‘EPIGENETIC REWIRING’ IN BREAST CANCER CELLS.

About BCCRC 
The BC Cancer Research Centre’s mission is to pursue world-class research that aims to transform the lives 
of patients by exploring basic mechanisms and technology developments in all areas of cancer research 
including cancer control, clinical studies and trials, cancer surveillance, and population health and services. 
The research portfolio also supports facilities and platforms in genomics, bioinformatics, imaging, drug 
development, and tissue banking. 

The Aparicio group studies the genomic and phenotypic behaviour of breast and other cancers. They integrate leading technologies to support 
their efforts to better understand how cancer clones evolve and to identify novel strategies for cancer treatment and predictors of response.

“Having a single-workflow method that allows reading of modified cytosine bases and 
simultaneous measurement of genomic mutations is a game-changer for us.”  

Dr Sam Aparicio
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Method
DECODING EPIGENETIC REWIRING USING DUET MULTIOMICS 
SOLUTION +MODC

Firstly, DNA methylation using long-read sequencing was used to 
compare and confirm the DNA methylation landscape seen with duet 
multiomics solution +modC for WT184hTERT. The resulting data 
revealed strong Pearson correlation. 

The next step was to interrogate the genomic and epigenetic landscape 
of all the cell types using duet multiomics solution +modC. The single 
workflow approach enabled researchers to glean greater insights from 
small amounts of sample DNA (Fig1).

Interestingly, using duet multiomics solution +modC, revealed 
that only the p53-/-BRCA1-/- 184hTERT, and not the untransformed 
diploid 184hTERT breast epithelial cell lines (WT184hTERT) or the 
p53-/-BRCA2-/- 184hTERT, showed significant activation of stem cell 
enhancers through reduced DNA methylation, and hence cancer-
associated epigenetic reprogramming.

In a second step, Dr Singh used duet multiomics solution +modC 
on a reference TNBC patient-derived xenograft (PDX) sample, which 
also showed significant activation of stem cell enhancers through DNA 
methylation changes.

Insight

Additional  
techniques

Multiomics 
analysis

Example:  
allele-speciÞc 
methylation

Errors  
summed

Epigenomic data 
and analysis

Genomic data 
and analysis

Sequencing

Sequencing

BisulÞte library prep

DNA library prep10ng

10ng

20ng

Multiomics 
datasets

duet multiomics solution +modC
Figure 1. The duet multiomics 
solution +modC single workflow 
vs conventional genomic and 
epigenomic sequencing workflows. 
(Top panel) Following the pre-
sequencing workflow, and device-
agnostic sequencing, the post-
sequencing bioinformatics pipeline 
aligns epigenetic and genomic 
sequencing data for analysis, 
interrogation, and insight. 

(Bottom panel) Conventional 
epigenomic and genomic sequencing 
methods require multiple workflows, 
are more prone to errors, require 
more DNA sample (20ng), and 
multiple datasets to gain insights.

Results
EMPOWERING GAME-CHANGING RESEARCH IN A SINGLE WORKFLOW

In this study, the Aparacio lab used duet multiomics solution +modC to 
analyse in vitro breast cancer cell lines, then compared these findings 
to cells from a patient biopsy. They found strong correlation and 
alignment from the resultant comparative genomic and epigenetic data 
and were able to inform their research on cancer progression in triple-
negative breast cancer. The findings illustrate that BRCA1-/- is crucial 
for HRD-specific cancer pathogenesis, where it also drives genomic 
instability signatures, and while BRCA2-/- drives genomic instability, it 
alone may not be able to drive the necessary epigenetic rewiring for 
cancer progression.

Researcher Spotlight
Dr Sam Aparicio, BM, BCh, PhD, FRCPath, FRSC
Dr Samuel Aparicio is the Nan & Lorraine 
Robertson Chair in Breast Cancer Research, holds 
the Canada Research Chair (Tier 1) in Molecular 
Oncology, and is the recipient of the 2014 Aubrey 
J Tingle Prize. He is also Head of the Department 

of Breast and Molecular Oncology at BC Cancer Research, part of 
the Provincial Health Services Authority, and a Professor in the 
Department of Pathology and Laboratory Medicine at UBC.

Dr Gurdeep Singh, PhD
Dr Gurdeep Singh is Post-Doc in Dr Samuel 
Aparicio’s lab at BC Cancer, decoding the 
epigenetic basis of cancer pathogenesis and 
drug-resistance using CpG methylation & 

epigenomic landscape, and defining/testing the responsible 
transcriptional regulators. Dr Singh received his PhD in 2021 
from The University of Toronto where he identified the genome 
sequence code that confers enhancer activity in embryonic stem 
cells, and other tissues, using functional genomics experiments 
and computational approaches.

Coming early 
February, the 
6-base genome!

Distinguish 5mC, 5hmC, 
and the four canonical 
A-C-G-T bases on 
the same low-input 
DNA fragment, in one 
workflow, with duet 
multiomics solution. 

Learn more at 

biomodal.com

https://biomodal.com/
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COVID-19
Multi-omics experiments have recently revealed new insights into 
another complex disease: COVID-19. Understanding the immune 
system’s response to infection and the biological mechanisms for 
the different patient outcomes is paramount. 

Examples of such approaches include a study using single-cell 
transcriptomics and proteomics, which revealed important 
biomarkers such as immune subpopulations and responses 
liked to COVID-19 pathogenesis18. Cytokines, metabolomics 
and proteomics revealed biomarkers of long COVID19 and anti-
inflammatory patterns that could be used for diagnosis.

One very recent example20 used a combination of proteomics, 
transcriptomics and chromatin accessibility to identify vaccine-
induced T cell populations and defined them multi-omically as 
potential treatment targets. We spoke to first author, Dr. Bingjie 
Zhang about her multi-omics study of COVID-19 vaccine response 
on PBMC. 

JUDITH ZAUGG 
Group Leader 
European Molecular Biology Laboratory (EMBL)

FLG: Could you just talk a little bit about how your approaches can be applied to precision medicine?

Judith: Sure, I can give you some examples. We have been using these multi-omics approaches to investigate relapse versus 
remission, for example, upon allogeneic stem cell transplantation. And we have identified specific surface markers based on 
analysing loads of different angles and using gene regulatory networks, etc. There turns out to be an important marker gene 
on one of the T cell populations that is quite predictive of patient relapse. Now, this is not mechanistic, this is a biomarker, but 
of course, it's maybe useful to stratify population to assess risk, and so on. 

I see my contribution to precision medicine as identifying these types of mechanisms that we can try to translate into 
precision medicine approaches. What we like to do is integrate genetic variants that are giving you a causal link, because 
these are genetic associations where there is no doubt about the causality direction, what remains to be understood is what's 
the mechanism of the causality. We then use the more descriptive gene regulatory networks to get the disease angle; i.e., what 
actually happens in disease in terms of differential expression, or differential accessibility. So, combining these two layers 
[RNA and ATAC], is a very powerful approach in our lab to understand mechanisms.
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Finally, given the long-term nature of COVID-19 infection, longitudinal approaches are necessary to truly catch 
molecular patterns for diagnosis. A recent example of a multimodal longitudinal study21 took biological samples at 
timepoints across patients of different severities. Through GWAS, proteomics, transcriptomics and metabolomics, 
the molecular states of different patient groups were identified, along with the distinct temporal changes linked to 
different disease outcomes. 

It is this type of large-scale multi-omics effort that will really get to the heart of complex disease. We recently spoke 
with Suhas Vasaikar, PhD MBA, Principal Scientist at Seagen, about PALMO22, a platform that enables longitudinal 
multi-omics insights for just such investigations.

BINGJIE ZHANG 
Postdoctoral Research Fellow, Satija Lab 
New York Genome Center

FLG: I wanted to ask you about your recent Nature Immunology paper, looking at COVID-19 Vaccine response with multi-omics. 
Could you give a brief overview of the multi-omics work you performed on PBMCs in that paper, focus on the contributions 
that CITE-Seq and ASAP-Seq had and the benefits of using proteomics, RNA, and chromatin all in one study?

Bingjie: It's a very good example that demonstrates the application of single-cell multi-omics. The CITE-seq experiment in 
the project was used to identify antigen-specific T cells. In the vaccination study, we are particularly interested in the T cell 
response and aim to characterize the antigen-specific T cells responsive to vaccination. It's actually quite difficult to capture 
these rare cell populations in peripheral blood. Only with the assistance of cell surface protein data were we able to identify 
this small group of T cells that were induced by vaccination, and we further proved that they are specific to the SARS-CoV-2 
antigen using DNA-oligo-tagged peptide-MHC class I multimers. For the ASAP-seq, we can use bridge integration to identify the 
same antigen-specific T cell population as identified in the CITE-seq study. 

The beauty of a multimodal dataset is that we can use one modality for computational predictions and another to validate 
whether those predictions are correct. In our case, we utilized ATAC data in the bridge integration and confirmed that the 
predicted antigen-specific T cells indeed had the expected protein markers. Then, we can use the chromatin accessibility 
data to identify enhancers specific to the antigen-specific T cells, and also the potential regulators for the induction and 
maintenance of these T cells. 

https://www.nature.com/articles/s41590-023-01608-9
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FLG: Briefly introduce yourself, with some of your 
research background and a summary of your current role. 

Suhas: I am a researcher in the field of computational 
biology and bioinformatics. I completed my PhD 
in neuronal disorders at the Indian Institute of 
Technology Delhi. During my PhD, I developed a 
novel algorithm (SSG, JCN 2014) to analyse large-scale 
genomic and proteomic network Boolean data. 

Over the past few years, I have focused on cancer, 
especially in the area of multi-omics where multiple 
forms of omics data were collectively used to infer the 
mechanism of cancer growth and progression. One such 
example from our proteogenomic approach provided 
crucial insights into the pathophysiology of colon cancer 
(Cell 2019), which were not attainable solely through 
earlier genomic and RNA expression data. This approach 
has also helped to identify potential novel therapeutic 
strategies for the treatment of colon cancer. 

Recently I, along with the team from the Allen Institute 
for Immunology, have developed a tool that provides a 
way to explore longitudinal multi-omics data at single-
cell level in different disease indications. The major 
goal was to provide a comprehensive yet simple-to-use 
software tool to extract insightful information from 
longitudinal omics data, which was not sufficiently 
addressed before. 

Currently, I am a Principal Scientist at Seattle Genetics, 
with a focus on clinical biomarkers and diagnostics. 
At Seagen I am using my expertise in the multi-omics 
field to understand the cancer drug treatment data and 
provide insightful details to support ADCs, which can 
improve patient lives.

FLG: Can you describe your PALMO platform? What 
omics can it measure longitudinally and what kind 
of insights can be found using PALMO on multi-omics 
longitudinal data? 

Suhas: PALMO stands for Platform for Analysing 
Longitudinal Multi-omics data. Longitudinal multi-
omics data refers to the collection of multiple types 
of biological data over time, such as genomics, 
transcriptomics, proteomics and metabolomics. This 
data can provide a more comprehensive understanding 
of biological processes and disease progression than 
single-omics data. 

PALMO is a platform (https://github.com/aifimmunology/
PALMO) that contains five analytical modules to examine 
longitudinal bulk and single-cell multi-omics data from 
multiple perspectives. These include decomposition of 
sources of variations within the data, collection of stable 
or variable features across timepoints and participants, 
identification of up- or down-regulated markers across 
timepoints of individual participants, and investigation 
of samples from same participants for possible outlier 
events (Nat Comm 2023).
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Analysing longitudinal multi-omics data can provide 
insights into how various biological processes change 
over time, how they are affected by environmental 
factors, and how they relate to disease development 
and progression. For example, using PALMO we were 
able to show that longitudinal multi-omics analysis 
can help us to identify stable/variable features across 
PBMC immune cell types, changes in blood plasma 
over time, stable across time in cell-types (STATIC) 
genes from mouse brain tissue and heterogenous 
immune responses among COVID-19 patients. 

The ultimate goal is to identify early warning signs 
of disease, track disease progression and predict 
treatment response. By integrating multiple types 
of data, researchers can gain a more holistic 
understanding of biological processes and identify 
new targets for therapeutic intervention. The insights 
gained from longitudinal multi-omics data can have far-
reaching implications for personalized 
medicine and precision health.

FLG: Can you discuss the value of 
applying multi-omics methods to 
clinical problems in your career, such 
as COVID-19 and cancer? 

Suhas: Multi-omics methods have 
significant potential for advancing our 
understanding of complex diseases 
such as COVID-19 and cancer. In the 
context of COVID-19, multi-omics 
approaches can help to identify key 
molecular pathways and biological 
processes that are involved in the 
disease progression and severity. 

Our study used single-cell analyses 
of peripheral blood cells, serum 
proteomics, virus-specific cellular 
and humoral immune responses 
and clinical metadata to characterize 
signals associated with recovery and 
convalescence to define and validate a 
new signature of inflammatory cytokines, 
gene expression and chromatin 
accessibility that persists in individuals 
with post-acute sequelae of SARS-CoV-2 
infection (PASC). This is great example 
to depict how multi-omics data can help 
us to identify the genetic and molecular 
factors that contribute to the severity of 
COVID-19 symptoms, which can in turn 
inform the development of targeted 
therapies (Nat Comm, 2023). 

Similarly, multi-omics approaches can also be 
applied to cancer research to identify key genetic and 
molecular factors that contribute to the development 
and progression of cancer. By integrating data from 
multiple omics platforms, we were able to identify 
novel pan-cancer survival associated signatures and 
potential drug targets in 12 cancer types (http://www.
linkedomics.org, NAR 2018) that can be used for 
personalized cancer treatment. 

In short, in both COVID-19 and cancer research, multi-
omics methods can provide a more comprehensive 
understanding of the disease mechanisms and enable 
the development of more effective diagnostic and 
therapeutic strategies. Additionally, these methods 
can also help to identify key molecular signatures and 
pathways that can be used for disease prognosis and 
monitoring of treatment response.

The Multi-omics Playbook 96

https://www.nature.com/articles/s41467-023-38682-4
http://www.linkedomics.org/
http://www.linkedomics.org/


The Multi-omics Playbook 97

MALLEABLE MULTI-OMICS. THE VARIOUS APPLICATIONS OF MULTI-MODAL DATA

Ultimately, multi-omics presents an approach that 
can reveal the underlying molecular structure of the 
pathogen and molecular host response to the virus 
and vaccines, revealing the whole elephant rather 
than a trunk or a leg (see Figure 7.3)23. For deep 
reviews on this topic, please refer to the following 
references24-26.

Using multi-omics and advanced 
computation to improve diagnosis
Multi-omics presents a unique strategy for early 
diagnosis and biomarker detection. 

Bringing multi-omics to the clinic in real diagnostic 
situations is a challenge due to costs and feasibility. 
However, a very recent nation-wide implementation of multi-omics in Australia demonstrated the benefit of investing 
in such approaches27. Published in June 202327, the Acute Care Genomics program has integrated ultra-rapid whole-
genome sequencing with other omics to improve diagnosis of critically ill children with rare disease and delivered 
these benefits on a national level. While genomics alone improved diagnosis, the incorporation of functional other 
omics, such as proteomics, improved diagnostic rates and outcomes.

One avenue to improve diagnostics is to increase the spread of markers. Another avenue is to find cost-effective ways 
to scale down a multi-omics assay into the most valuable mono-omic diagnostic test. Recent studies have shown that 
conditions such as preeclampsia28 and preterm birth29, when profiled with a multi-omics approach, can be reduced to a 
diagnosis involving a simple urine metabolite assessment. This has major implications for diagnosing these conditions 
in low and middle-income countries30. 

We recently spoke to Professor Nima Aghaeepour at Stanford University about his research developing 
computational approaches for multi-omics and personalized medicine, and his work using multi-omics to find scalable 
and cost-effective diagnostic markers for the conditions highlighted above.

FIGURE 7.3. OBSERVING ONLY PART OF THE ELEPHANT 
ANALOGY FOR MULTI-OMICS. 
Image Credit: Lu, et al. 23
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FLG: Can you briefly introduce yourself, your research 
background and a summary of what your lab has been 
up to?

Nima: I'm Nima Aghaeepour, I'm an Associate 
Professor at Stanford University School of Medicine. 
My background is in machine learning and artificial 
intelligence. Our laboratory works on a broad range of 
medical problems using various technologies, anything 
from genomics, proteomics, metabolomics, single-cell 
assays, to wearable devices to electronic health records. 
Currently, the topic that I'm particularly excited about 
is the intersection of electronic health records and 
biological modalities.

FLG: Could you give a very brief overview of how multi-
omics technology has developed and been integrated 
into health monitoring and for precision medicine?

Nima: Initially, 20 years ago, we were at a place where 
we were doing epidemiology in one universe. And, in a 
different universe, we were doing very limited biological 
studies, with really limited assays that we had. Gradually, 
these assays became capable of measuring more, and at 
the same time, our computing power increased, and we 
were able to handle more. These two advances need to 
improve with each other. At the time, when we started 
sequencing the human genome, the assays started 
outgrowing the computational power, and for the first 
time we had more data than we knew what to do with. 

Then, after all those genomics projects, we quickly 
learned that biology doesn't stop at the genome, you 
need to go to higher levels. So, we started developing 
assays for proteomics, metabolomics, the microbiome 
and so on. Each of them is their own field and requires 

their own specialised computation. Then we realised 
that biology doesn't happen at one layer at a time, you 
need to study all of these layers simultaneously. So, to 
study all of these layers simultaneously, not only do 
you need a lot of computational power, but you also 
need people who are simultaneously experts in all of 
them and can use specialised computational pipelines 
for each. Then you need to build a layer on top of that, 
that can put everything together.

Now we are getting to a place where we are 
understanding that even that is not enough, because 
humans don't live in a petri dish. Humans are interacting 
with their environment on a regular basis. You can't 
capture that with self-reported questionnaires, you 
need real-time wearable devices for that. You can't put 
people into categories of cases and controls, everything 
is nuanced. Everything depends on what happened to 
you 10 years ago, what medications you're taking, how 
you interact with the healthcare system, how many 
surgeries you have had and how many times you've 
been pregnant. We need to go beyond that and connect 
all this sophisticated biology to real time environmental 
factors, wearable devices and health records and so on.

FLG: Multi-omics tends to refer to work on two omics, 
maybe RNA and epigenomics or RNA and protein. For 
some of your work it’s been an integration of RNA, 
metabolism, lipidome, microbiome plus all this patient 
data. Integration is a challenge for the field but is it a 
new problem entirely when you're trying to integrate 
all this data together to produce clinical insights?

Nima: If you are looking at RNA and proteins, it's not that 
sophisticated, because you still have your genes, and you 
can focus on the gene level and go up and down.



That's fairly straightforward. But once you start adding 
the microbiome, once you start adding metabolites to 
that, things get a lot more complicated. It's no longer 
measuring the same genes up and down at various 
layers of biology, you're in a completely different 
universe. Once you start adding an imaging modality, 
or a wearable device or an electronic health record, 
then really all bets are off, because you're not just 
looking at different universes of measurement, you're 
also looking at different times. You're looking at 
databases that have information on your subjects from 
the last 10 years. Staying in the genomics-adjacent 
modalities is fairly straightforward. After that, it gets 
pretty complex.

FLG: And is this why you're using machine learning 
based methodologies? Could you discuss how you 
have been leveraging machine learning to handle that 
issue?

Nima: Yes, so we think multi-omics integration needs 
to happen in an interdisciplinary and collaborative way, 
you can't come up with one-size fits all algorithms that 
can do multi-omics integration for all problems at all 
times. 

If you're trying to understand biological mechanisms, 
there is a way to do that across various modalities by 
looking at shared latent spaces, correlations across 
different modalities, directional correlations, some 
people call them causal relationships. And they will 
help you find biological mechanisms. 

If you're trying to predict outcomes, you need 
specialised pipelines that can leverage each omics 
dataset correctly, according to the state of the art in 
that field. And then you need higher level models that 
can pull from those lower-level models to make the 
final predictions. 

If you're trying to use multi-omics data to build a 
low-cost assay, companion diagnostics are something 
that need to be deployed at scale. Then you have a 
cost factor, because all of these omics assays have a 
different cost, and you need to teach your machine 
learning algorithm that so that it doesn't just reduce it 
to a small model that still needs your most expensive 
omics. You need it to find a surrogate model, using 
your cheaper assay so that you can scale it up and 
commercialise it. 

So, there is not going to be a magic silver bullet 
that does everything for everybody. It needs to be 
interdisciplinary; the machine learning scientists 
need to talk to the biologist and to the clinicians to 

understand the nuances of the problem and deploy a 
pipeline that makes sense for that.

FLG: Do you have examples from your work of bringing 
together multiple different omics to help produce new 
clinical diagnostics?

Nima: For example, in our article that was published 
a couple of years ago, in JAMA Network Open, we 
showed that we can build an assay for prediction 
of preterm birth in the first trimester of pregnancy. 
Preterm birth is the single largest cause of death of 
children under five years of age. In that paper, we first 
started with a multi-omics assay but then we reduced 
that to a simpler assay. We can use urine metabolites 
to build a surrogate for proteins in plasma, that 
enables us to make significantly cheaper assays that 
can be scaled up in low- and middle-income countries. 

Similarly, in a paper in Patterns last year, we showed 
that we can use a multi-omics approach to build a 
model for preeclampsia. But then, again, we were able 
to reduce it to a urine-based metabolomics assay that 
can predict preeclampsia, almost as accurate as a full 
multi-omics assay. If you first start at the multi-omics 
level, and you figure out what it is that you need to 
project a clinical outcome, then you can reduce it to a 
cheap urine-based assay that can be deployed at scale.

FLG: I also wanted to ask you about your CORALS tool 
for multi-omics data, would you mind introducing that 
for me?

Nima: As we measure more and more features 
through different biological assays and combine them 
with each other, these datasets become pretty large. 
And it becomes really difficult to build large correlation 
networks that can measure correlations within and 
across omics assays. CORALS reduces the amount 
of memory and time that is required to build these 
correlation networks. It also provides an approach 
for measuring the difference between two different 
correlation networks. If you have a large correlation 
network of multi-omics data in healthy individuals, 
and you have a similar one in sick individuals, you 
can subtract one from the other, to see what new 
correlations are showing up and what correlations are 
disappearing when somebody is sick. 

Building large correlation networks is a foundational 
task that is used in many different types of analysis, 
including now with graph neural networks and other 
modern deep learning approaches. So, the applications 
are broad. It depends on the individual users to decide 
why they need a correlation network.
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Wearables, micro sampling & health monitoring
An exciting area of multi-omics for personalized medicine is the current approach to profiling thousands of different 
analytes from individuals. Even more impressive are the efforts to profile these metabolites from micro-samples, 
combined with wearables to provide near constant health monitoring31. 

By incorporating thousands of different omics measurements with detailed health data from electronic records and 
the longitudinal physiological monitoring from wearable devices, we can create a holistic phenotypic profile of an 
individual for faster and more effective diagnosis32,33 (See Figure 7.4).

We recently spoke to Dr. Xiaotao Shen, a postdoctoral fellow in the Snyder Lab at Stanford University. Xiaotao was recently 
first author on the 2023 study34 profiling thousands of multi-omic analytes from micro-samples of blood, collected by the 
participants in the comfort of their own home (see Figure 7.5). This approach, combined with wearables, provides a future 
of dynamic health profiling which would ultimately allow diagnosis at the earliest possible instance. 

FIGURE 7.4. LONGITUDINAL MULTI-OMICS DATA AND WEARABLE DATA ENABLE DEEP PHENOTYPING FOR 
PRECISION MEDICINE
Image Credit: Babu and Snyder 31

FIGURE 7.5. MULTI-OMICS DATA ACQUIRED FROM THE MICROSAMPLE FOLLOWED BY THE OUTLINE OF THE DATA 
ANALYSIS PIPELINE. 
Image Credit: Shen, et al. 34
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FLG: Can you just start by briefly introducing yourself 
and give some of your research background and your 
current research interests and projects?

Xiaotao: Sure. Thank you so much for having me. My 
name is Xiaotao Shen and I'm a postdoc in Michael 
Snyder's lab at the Stanford School of Medicine. My 
background is in biology and mass spectrometry, 
mostly in data processing and analysis in mass 
spectrometry. A mass spectrometer is an instrument 
that can be used to measure small compounds, 
peptides and proteins from different biological 
samples. It's a very powerful instrument. 

My background has been to use this instrument to 
profile biological samples and use this data for biomarker 
discovery and diagnosis of diseases. I got my PhD from 
the Chinese Academy of Sciences in China. In my PhD 
work, I mainly focused on how to use mass spectrometry 
for biology studies, and I developed methods for mass 
spectrometry data processing and analysis. After I got 
my Ph.D., I came to Stanford in 2018 because I wanted to 
use these methods for precision medicine and biomarker 
discovery. I came here because Michael Snyder is a big 
name in the field of precision medicine. 

In the lab, we have a lot of people using different 
methods and different omics data for precision 
medicine. This means we have different multi-omics 
data e.g., transcriptomics, proteomics etc. and I have 
used the different omics data for my projects here. I’ve 
focused on two biological diseases. The first one is a 
pregnancy-related disease - pre-term birth, which is a 
very serious problem for a lot of pregnant women. The 
second disease is ageing because ageing is a risk factor 

for a lot of diseases, e.g., cancer and diabetes. I focus 
on these two diseases, and the methods I’ve used in 
the lab integrate multi-omics data. 

I have also worked on the microbiome, its integration 
and how it impacts human health. There are a lot of 
studies showing that the microbiome leads to risk 
for diabetes and risk for cancer. But how does the 
microbiome affect human health? We know that the 
gut microbiome can send chemicals to the brain. So, 
they produce some small compounds or peptides, and 
these small compounds and peptides can go to the 
brain and other body sites and affect human health. 
Ideally, we would want to profile all the metabolites 
and small compounds produced by their microbiome, 
but the data analysis for the mass spectrum is very 
challenging. So, I’ve been researching how we can 
integrate the microbiome and the metabolome. We 
need to construct a network between the microbiome, 
these compounds and how they impact health.

FLG: Could you just describe what multi-omics marker 
sampling looks like, how does it work? What do 
you capture? And just a little bit about the Nature 
Biomedical Engineering study?

Xiaotao: That paper was just published in Nature 
Biomedical engineering. This multi-omics micro-
sampling is another project I'm working on and I'm 
still working on this approach, because our paper is a 
methodology paper, so we just described the method 
and its potential use for precision medicine and for 
precision nutrition. But we didn't use this method for 
diagnostics. So, now we are working on this project, 
specifically for diagnosis.
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Early diagnosis is very important for human health. 
In the US, people go to hospital once a year, or 
maybe once every two years, so not at a very high 
frequency. Or people only go when they have the 
symptoms of the disease, and then they go to 
the hospital and have a physical exam. If they're 
already in the late stage of disease, this is not great 
for their prognosis and their health. Even though 
studies have found earlier diagnostic biomarkers for 
diseases, these are not currently used in hospitals. 
This is because you need a method for testing that 
uses an abundant sample. With this in mind, I think 
blood samples are the most important material for 
diagnosis. In the hospital, the traditional method for 
blood collection is intravenous collection. You need 
a nurse or a doctor to collect these samples and you 
need to go to the hospital, we can't collect blood 
samples by ourselves in the home.

We wanted to know if it was possible to use a 
microsample of the blood, which could be collected 
by people at home. The microsample is very easy to 
collect and it's not painful. The first issue is that the 
microsamples are tiny blood samples, so we wanted 
to know if we can actually sample a lot of molecules 
and get enough biological information from the 
tiny blood sample. So, we used a different method 
to extract the molecules from the microsamples. 
Namely, we used mass spectrometry to measure the 
molecules from the microsamples. Mass spectrometry 
is a very high sensitivity instrument to measure 
low abundance markers from samples. And we can 
use this instrument to measure more than 1000 
molecules from the microsamples, including proteins, 
metabolites and lipids. So, we built this multi-omics 
microsample platform and we wanted to know 
whether this platform could be useful for precision 
medicine or precision nutrition.

So, we performed two case studies in this paper. The 
first case study showed that we can use this method 
to measure people’s blood response to the Ensure 
diet shake. For the second study, we collected a 
microsample almost hourly over seven days. This is a 
very high sampling frequency. If you use the traditional 
methods, you can't do that, because you can only 
produce samples maybe weekly or monthly. By using 
this measure, it's very easy to sample hourly. I think, in 
the future, this method can be used for diagnosis. So, 
people can just collect samples by themselves at home 
and send the sample to the lab. We can get then get 
the results, and if you have some known biomarkers 
for diseases, we will let you know. And you can go to 
hospital and get the full physical exam, right. I think 
this is this is a future application of this method.

FLG: It's definitely an exciting method. When you're 
analysing a micro sample, do you lose some of the depth 
i.e., the number and the different types of the amounts 
of molecules you can analyse from a micro sample 
compared to a normally derived intravenous sample?

Xiaotao: So, in the paper, we compare the data from 
the microsamples and from the traditionally collected 
sample. To be honest, the microsample is so small, 
perhaps only 10 microliters, so we don't see the 
same amount of information or molecules from the 
microsamples as the traditionally collected samples. 
However, considering it is a microsample, we do see 
nearly all of the molecules that we can collect in data 
from traditional samples. 

Another thing people may be concerned about 
is whether the molecules/information from the 
microsample are robust. We also compared the data 
from microsamples and the data from traditional 
samples and we found that the correlation between 
them is very high. We measured the metabolites and the 
lipids and the correlation between them was almost 0.9 
- a very high correlation between them. So, this method 
can get highly robust data from microsamples.
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Multi-omics in drug discovery
While we can use multi-omics to better understand disease, identify biomarkers and better diagnose patients, a crucial 
application of this holistic approach is for drug and treatment discovery. 

Drug discovery is a challenging task and traditional methods often fall short. Single-target drugs that modulate the 
activity of a specific gene or protein may not be effective in the diseases discussed above due to complex molecular 
pathways and heterogenous disease presentation.

Multi-omics presents the natural alternative for drug discoverers to assess multiple molecular pathways from the 
same sample and build a compelling case to earn funding and support for promising drug targets35. 

We recently caught up with Mathew Chamberlain, Principal Scientist at Johnson & Johnson to get his take on the 
value that multi-omics has brought to drug discovery.
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Mathew: I specialise in the pharmaceutical industry in 
early drug discovery. I've worked in single-cell omics for 
about six years now, mostly for drug discovery efforts, 
often across autoimmune diseases, and sometimes 
immune-mediated diseases like oncology.

FLG: What is the value of multi-omics methods for 
drug target discovery? And for the clinical applications 
that you're working on?

Mathew: At a high level, for a lot of the diseases 
we study, some patients have the same molecular 
phenotypes, but different symptoms, or they have 
different symptoms, but the same phenotypes. This is 
very confusing. How do you understand disease if you 
don't have a strong understanding of the molecular 
basis for it? And it raises questions about whether or 
not there are multiple different diseases within one 
disease. Are we aggregating diseases into a composite 
condition? 

Since the advent of omics about 25 years ago, it really 
allowed us to start looking at patient data for the first 
time, in a high-throughput way. Multi-omics is now a 
very high throughput way of analysing samples from 
patients, and this is very valuable tissue that we're 
talking about here. You have potentially thousands 
of dollars a vial because it takes a lot to get a biopsy 
sample of some tissues, it's very hard to do. So, you 
really want to get the most you can possibly get out 
of a vial. And when it comes down to our team, we 
are asking ourselves ‘What experiments would you 
recommend for getting the most out of your clinical 
sample?’ And the answer is single-cell multi-omics. It's 
the most bang for your buck.

FLG: And with these multi-omics methods in drug 
discovery, are you hoping that they're going to lead 
to more targets or a much more refined set of drug 
targets. Or both?

Mathew: The main opportunities are positioning 
drugs into patient populations in a smarter way. 
For example, there are TNF inhibitors that are 
the number one bestselling drug for the past 20 
years in pharmaceuticals and it is special because 
it's approved across about 20 different disease 
indications. It then opens up a question; a lot of these 
other targeted therapies, could they be applied in 
other disease indications as well? Maybe you have 
a drug that's going to work in one disease area, but 
maybe it'll actually work in other ones too. You just 
don't know about it yet. And single-cell multi-omics 
lets you explore that idea. 

"HOW DO YOU UNDERSTAND 
DISEASE IF YOU DON'T HAVE 
A STRONG UNDERSTANDING 
OF THE MOLECULAR BASIS 

FOR IT? AND IT RAISES 
QUESTIONS ABOUT WHETHER 
OR NOT THERE ARE MULTIPLE 
DIFFERENT DISEASES WITHIN 

ONE DISEASE. ARE WE 
AGGREGATING DISEASES INTO 

A COMPOSITE CONDITION?"



It also lets you explore completely 
novel ideas. For example, no-one's 
really studied the interactions 
between nonimmune and 
immune cells in a specific tissue. 
Single-cell multi-omics allows 
you to completely open it up 
and there might be some new 
targets in here. It might also let 
you segment clinical trials better. 
Sometimes, you have a result in 
a clinical trial that almost worked, 
and it looks like it might help some 
patients but not others. Often, 
we don't really know why it helps 
some people and not others. So, 
it would be lovely to take a deep 
dive into the molecular status of 
disease and you might derive two 
different types of patients at the 
molecular level that you didn't 
appreciate you had before.

FLG: You recently presented some work on multi-omics 
data integration for new target discovering in Crohn's 
disease, could you just give us a brief summary of that 
work?

Mathew: So, if you're going to present new target 
discovery from single-cell data, it's really going to 
help to integrate data from multiple sources. With 
Crohn's disease, there have been recent publications 
from Aviv Regev, Ramnik Xavier and from some other 
papers on gut inflammation and some internal data 
using spatial, CITE-seq and single-cell. Across these 
there are hundreds of thousands of cells. In our 
work, I combined GWAS information (genetics) from 
published sources with bulk sequencing data from 
tissue biopsies from Crohn's from another published 
source. I combined that with single-cell data using 
ligand receptor analysis methods - CellPhoneDB from 
Sarah Teichmann’s group - and created an integrated 
view. Here, you could look at ligands and receptors, 

which are enriched in disease samples in single-cell 
data, and are associated with genetic evidence and 
then differentially expressed in tissue biopsies and bulk 
sequencing. 

This whole big data package is the kind of thing you 
have to put together in pharma companies to motivate 
people to do some validation experiments. Because, 
in general, if you have one piece of evidence, people 
will think, 'Well, I don't know if this is supported by 
genetics, I don't know if this is a single-cell sequencing 
related artefact or only observable using those assays'. 
Or in bulk sequencing, 'I don't know if it's going to 
occur, and at the single-cell level, what it really looks 
like'. So, when you combine all three different data 
types together into a single data package, that new 
target discovery method is typically convincing, even 
for seasoned drug discovery experts. It's not easy to 
convince a roomful of people who have worked on 
drugs that had been approved by the FDA to work on 
new targets, that's why it's risen to this level of interest.
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AI and machine learning presents the other part of this toolkit, which is very promising for drug discovery. Machine 
learning can be used to find patterns in these complex datasets and find interactions between omics layers, which 
create diseases states36,37. An example of this is the DeepInsight-3D approach38,39, which was released this year, and 
uses deep learning and multi-omics data to predict patient-specific anticancer drug responses.

Furthermore, these models can be used to reposition drugs for new targets40 or to predict the effect of a drug target 
and how it would effect a system in silico. This includes tools such as ChemCPA41,42, which can predict perturbation 
effects of unseen drug combinations.
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CHAPTER 8

INSIGHTS FROM THE MULTI-OMICS-VERSE
IN THIS FINAL CHAPTER, WE WANTED TO EXPLORE THE 

REMAINING CHALLENGES IN MULTI-OMICS AND IDENTIFY WAYS 
THESE CHALLENGES CAN BE ADDRESSED. SO, WE ASKED OUR 

CONTRIBUTORS THE SAME QUESTION; WHAT ARE THE GREATEST 
CHALLENGES FACING THEIR FIELD AND WHAT COULD BE DONE 

ABOUT THEM? OUR FINAL CHAPTER WILL HIGHLIGHT THESE 
CHALLENGES AND LOOK AT THE WAYS THESE CHALLENGES COULD BE 

ADDRESSED AS WE LOOK AHEAD INTO 2024. 

Across this playbook, we have highlighted many of 
the advancing areas of single-cell and spatial multi-
omics. Due to the inherent complexity of integrating 
multiple modalities, the progress of building reliable 
and standardized practices is slow but steady. 

In the list of 11 grand challenges for single-cell 
data science, published in early 20202, integrating 
single-cell data across samples and modalities 
was challenge number 10. In late 2023/early 2024, 
many new approaches to integration have been 
realized (see Chapter 2). However, data integration 
is still present in the list of top challenges facing 
multi-omics experiments. But what are the other 
challenges holding the progress of multi-omics back? 
Is integration still near the top?

We asked a range of contributors what they think is the biggest challenge still facing the multi-omics field, and 
what is being done or what should be done to tackle the issue. 

The nature of multi-omics data 
The sparseness and lack of correspondence between data was highlighted as a challenge by several contributors, 
followed by their ideas for how this is still being tackled.

Image Credit: Kim, et al. 1
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MIRJANA EFREMOVA 
Group Leader 
Barts Cancer Institute

FLG: What do you think is the biggest challenge still facing the multi-omics field? And what is being done to tackle the issue, or 
what should be done to tackle the issue? 

Mirjana: A challenge for the application of many current integration methods is still the requirement of feature 
correspondence between different modalities (for example, gene scores are often calculated from scATAC-seq data). Paired 
data (where we measure different modalities from the same cell) can be very informative in integrating different omics 
layers from unpaired data because it can provide ground truth data and inform associations between features of different 
modalities. Therefore, it should be used whenever available to improve multimodal integration of unpaired data.

PAU BADIA I MOMPEL 
PhD Candidate, Saez-Rodriguez Group 
Heidelberg University

FLG: What do you think is the biggest challenge still facing the multi-omics field? 

Pau: Sparsity. The more multimodal assays we add, the sparsity increases, it becomes harder to try to profile both 
technologies, and also the actual cost of these technologies increases. I mean, there are some alternatives that are coming up, 
that are more open source such as ISAAC-seq. But I would say the actual monetary cost is still quite restrictive, especially for a 
lot of labs without access to huge funds, but they can still contribute to the field.

FLG: Is there any way this challenge is currently being addressed or could be addressed?

Pau: Aggregation. Pseudo-bulking or performing meta cells. Pseudo-bulking is just the matter of aggregating all the counts, 
for example, in a given cell type into one single profile. But sometimes if you don't have enough true replicates, that's 
restrictive. A middle ground would be to try to identify which groups of cells are behaving more or less the same, and then pull 
them together into these meta cell profiles. So, you'd still have some kind of granularity but at least those profiles are richer 
than the original.

FLG: Would you say that you lose some of the value of doing it by single cell in the first place by pseudo-bulking?

Pau: Not necessarily. Why do we do single-cell in the first place? Theoretically, it is because we want to know what happens in 
each individual cell, but due to sparsity, that's not possible. I think right now, the value of single-cell is that you can unbiasedly 
profile 1,000s of cells without having to worry about 'I need to FACS sort these', so you can computationally separate the 
signals between cell types in an easier way than having to do it in the in the lab.
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Data Integration 
As expected, data integration was still front and centre for several of our contributors.

IAIN MACAULAY 
Technical Development Group Leader 
Earlham Institute

FLG: What do you think is the biggest challenge still facing multi omics? 

Iain: I think the biggest challenge is probably in data integration, and understanding what it means. You can generate so 
many different types of data, but the challenge is understanding how they all fit together. From the G&T-seq paper3, which 
is now a million years old, even that data is not fully analysed. We've just gotten to a certain point where we had to stop but 
we haven’t done a huge amount of single nucleotide analysis; we know we can do it, but we'll have to write new pipelines 
to get some of that data out and integrate it. It's amazing how easy it is to generate that much data. You could generate a 
PhD’s worth of data in a few weeks if you've got all the methods set up, but you will never finish analysing it, so I think data 
integration and data visualisation is the biggest challenge.

FLG: What do you think can be done for data integration? What approach could we try? Is it machine learning? Is it community-
based efforts? 

Iain: It's really hard, because you've got so many methods emerging, and each method has been analysed, and the pipeline is 
developed by that lab’s computational team or postdoc. The standardisation of methods only emerges when enough people 
are generating enough data using a specific method. So, I think some things are going to emerge out of people doing 10x 
Multiome, because lots of people are doing that. Things like G&T-seq is probably too niche. 

I think it would be good if there was more funding for computational science experts to come together and do this kind of 
work. It would be great if there was just more funding for a multi-omics facility that you can engage. For certain methods, I 
think general principles will start to emerge, such as how do you integrate epigenetic data with transcriptome data, regardless 
of method? But with these more bespoke methods, you just don't get the traction of having a bunch of people really caring 
enough to develop a nice pipeline for it. 
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SUHAS VASAIKAR 
Principal Scientist, Clinical Biomarker and Diagnostics 
Seattle Genetics (Seagen) 

FLG: What do you think is the biggest challenge still facing the multi-omics field and what is being done to tackle the issue, or 
what should be done to tackle the issue? 

Suhas: One of the biggest challenges still facing the multi-omics field is the integration of different omics data types in a 
meaningful and interpretable way. While there has been significant progress in developing computational methods for 
integrating omics data, there are still challenges in dealing with the complexity and heterogeneity of the data.

To tackle this challenge, there are several approaches that can be taken.

• One approach is to develop more advanced machine learning algorithms that can handle the complexity of multi-omics 
data and identify meaningful biological patterns. 

• Another approach is to develop more standardized protocols for collecting and processing multi-omics data, which 
can help to reduce variability and improve data quality.

• Additionally, there is a need for more collaboration and interdisciplinary research in the field of multi-omics. 
Integrating data from different omics platforms requires expertise in multiple fields, including biology, statistics, computer 
science and data visualization. By bringing together researchers from different disciplines, we can develop more 
comprehensive and effective approaches for integrating multi-omics data.

• Finally, there is a need for more open data sharing and collaboration in the multi-omics field. Sharing data and 
methods can help to accelerate research and enable more effective integration of omics data. Open data platforms, such 
as the Genomic Data Commons and the Cancer Genome Atlas, are already playing a critical role in advancing multi-omics 
research.

In summary, more advanced machine learning, collaboration and interdisciplinary research and open data sharing are some 
of the ways to tackle the issue of developing challenging computational methods for integrating omics data.

XIAOTAO SHEN  
Postdoctoral Research Fellow, Snyder Lab 
Stanford University 

FLG: What do you think is the biggest challenge still facing the multi omics field? And is there anything being done to 
tackle that challenge?

Xiaotao: For me, the most challenging issue is integration. Especially knowledge-based integration, which is very truly 
difficult. For example, now we are working on the projects of integration between microbiome and metabolites. We know that 
microbiomes can produce some compounds and small peptides, and then these small compounds and peptides can impact 
human health. But how can we connect them and measure all the metabolites from the microbiome? 

Currently, some researchers culture the bacteria and then measure the media to see what compound the bacteria can 
produce. However, this method is very difficult for all of the microbiome. As we know, there are hundreds and thousands of 
bacteria from the human microbiome, so we can't culture all of them. So, I think in the future, we could try to integrate them 
using the knowledge and data-driven network to get the whole interaction network between microbiome and metabolites
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RICARD ARGELAGUET  
Senior Research Scientist 
Altos Labs 

FLG: What do you think is the biggest challenge still facing the multi-omics field? And what is being done to tackle it?

Ricard: Since the next step for integration is on very diverse and large data sources, one of the main challenges is data 
accessibility. Machine learning scientists are not going to be reprocessing all of these datasets from scratch. They need a 
curated effort to try and get all of these different datasets together. 

Some effort was done on our SingleCellMultiModal package. But there are a lot more datasets than they were three years 
ago and there are extremely good efforts. For example, by the John Zuckerberg Foundation on trying to make those data 
accessible. And this is one of the main challenges that is being tackled by the big consortia. 

Another important challenge, which I think is important to always keep in mind is, why are we developing those models? Are 
we trying to teach a new deep learning model for the sake of teaching a new deep learning model? We need to think of what 
biological questions we are not currently able to answer. And which question would we be able to answer by developing these 
models. So, I think that's why it's very important to keep this field interdisciplinary and have machine learning scientists, 
machine learning engineers, bioinformaticians and biologists all working together. We then disconnect this knowledge 
generation process.

Data accessibility and model validation 
Linked to the previous comments, accessibility of high quality data to validate experiments, methods and AI models is 
becoming an essential challenge to address.

QIN MA 
Professor, Department of Biomedical Informatics 
The Ohio State University 

FLG: What do you think is the biggest challenge still facing the multi omics fields? And what is being done to tackle the issue, or 
what should be done to tackle the issue? 

Qin: In single-cell, I think the data noise level is very high. There's a real issue with potential false positives and inaccurate 
predictions. So, validation will be a very critical thing. Either validating one prediction using multiple datasets, so that you 
select a phenomenon to determine whether it's causality or only observation. You can then check this in a lot of other 
datasets and see whether this is a real insight. Or you can try different methodologies. We can use the different tools 
generated by various other labs that are targeting the same thing, to see whether we can identify something similar. If 
not, that will be a question mark. If yes, that will be strong evidence that this may be a real insight. The last validation is 
experimental validation. Can we really make it happen in mice, and then in humans? And then we can go to clinical trial.

The second challenge is interpretation in machine learning and deep learning. The algorithms are doing too well to be 
in a black box. Currently, we don't know what’s happening with this very rigorous and smart AI. Also, if we were not in a 
biomedical or human health field, people wouldn’t care. If AI is earning you more money by handling your investments, you 
won’t care why, and you’ll give your money to AI. In science, we are eager to know what happened, we want to know the 
mechanism so we can learn from it. Why can AI do a better job than traditional methods? Why can AI remove that noise? 
These things will help us to shape the future directions in science. 
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SAMANTHA MORRIS  
Associate Professor of Development Biology and Genetics  
Washington University School of Medicine in St. Louis 

FLG: What do you think is the biggest challenge still facing like your field? And is there any way that multi-omics could help 
tackle it?

Sam: One of the limitations of CellOracle is that we can only simulate the perturbation of one transcription factor at a time. 
So, one of the next challenges is perturbation of multiple factors at the same time, which is challenging. When multiple 
transcription factors interact together, particularly in an overexpression scenario, how do you predict the behaviour of those 
factors? We need to better understand how they impact gene expression, and then how they impact cell identity, potentially 
creating new cell types that we haven't observed before. That is a huge challenge in the field that I'm really excited to see 
people make progress on.

SUSHMITA ROY  
Professor, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison  
Faculty, Wisconsin Institute of Discovery

FLG: What do you think is the biggest challenge still facing your field – multi-omics and gene regulation? And what is being 
done to tackle the issue, or what should be done to tackle the issue? 

Sushmita: I would say that the problems we work with are fundamentally unsupervised. Most of the time we don't know 
what the truth is, and typically we have very little ‘truth’ that we can use to actually benchmark our models. One thing that we 
really need more of are these high throughput perturbation experiments like Perturb-seq. This would mean we could really 
test our model’s predictions in a high-throughput way, because our models make 1000s of predictions. 

Currently, people can do one regulator knockout and get five edges/five targets that they can test, but that's not really 
assessing things in a high-throughput way. So, incorporating perturbations into the models to infer causal gene regulatory 
networks, I would say, is really the direction that we should be heading in. Going forward, I think multi-omics will be beneficial 
because we want to learn these integrative multi-layer networks. So, we would want perturbation approaches that not only 
measure gene expression, but also, we want a ‘multimodal Perturb-seq’ or whatever you want to call it. Ultimately, we need to 
build predictive, interpretable models of gene expression.

Perturbations for GRNs 
Validating models was a challenge on the minds of several other contributors, but this time with the perspective of 
perturbation experiments to validate gene network assumptions.
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RUI CHEN  
Professor of Molecular and Human Genetics  
Baylor College of Medicine 

FLG: What do you think is the biggest challenge still facing multi omics? And what is being done to tackle the issue, or what 
should be done to tackle the issue? 

Rui: I think for the RNA/ATAC ones, if you want to profile them at the same time - true multiome from single cells - I think that 
the biggest hurdle is the difficulty in getting high quality data from both modalities at the same time. It is very sensitive to the 
time of treatment. And it's not always the same, particularly when you deal with human samples, a well-controlled mouse 
animal is probably much easier. So, I think the protocol optimization is still very finicky. 

I think getting the true multiome is critical, because otherwise you need to use computational methods to co-embed. Then 
you introduce error. However, the current methods of co-embedding are quite accurate, even for very dynamic data. If you're 
looking at extremely dynamic data, then it’s probably best to get a good single-cell multiome to avoid the misalignment. 
If your system is not extremely dynamic, e.g., adult tissue or even developmental tissue, I think you can just provide them 
separately and format and put them together.

BINGJIE ZHANG  
Postdoctoral Research Fellow, Satija Lab  
New York Genome Center 

FLG: What do you think is the biggest challenge still facing the multi-omics field, and what is being done or should be done to 
tackle that issue?

Bingjie: Setting aside multi-omics, we are still at the early stage with the single modality technologies. Currently, most 
single-cell studies are heavily focused on transcriptome and chromatin accessibility, likely because 10x Genomics provides 
commercial kits that are user-friendly. 

On one hand, I hope to see more innovative methods that explore modalities beyond RNA and ATAC. For example, we don't 
even have a good method to profile the transcriptional factor binding sites. More sensitive and easy-to-implement methods 
targeting histone modifications, intracellular proteins or DNA methylation would also be beneficial. 

On the other hand, it's important to consider how to make these novel methods easily accessible to labs that are eager to 
apply them. Our lab has made a real effort in this regard. We have initiated a technology sharing program. Anyone interested 
in the method we developed can sign up for free 'starter kits', which essentially include everything needed to implement 
the method in their own lab. We now have launched the starter kits for NTT-seq, CaRPool-seq and Phospho-seq. While it's 
currently only available to CEGS groups, we are keen to extend this to more labs in the future.

Transcriptomic and epigenomic methods 
Other contributors visualized ways to improve current transcriptomic and epigenomic methods. 
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ANDREA CORSINOTTI  
Single-cell Multi-omics Facility Manager, Centre for Regenerative Medicine, Institute for 
Regeneration and Repair  
University of Edinburgh 

FLG: What do you think is the biggest challenge still facing the kind of single-cell multi-omics community?

Andrea: I would say cost. We need to do more and more of these experiments with more cells, more samples, more 
meaningful data sets. The technologies work, there is constant development, and I am confident that the technologies will 
keep developing and technical solutions will become available in a scalable, commercial way for everyone. The limitation 
that remains is the cost. It’s not only the cost of the experiment but the cost of the single-cell reagents, the cost of sequencing, 
because single-cell experiments always require more sequencing than bulk experiments. 

This is a big limitation. By spending all this money on these aspects, the capacity to generate larger datasets will be affected. 
Hopefully costs will keep going down, and the more they do, the more we can make sense of what we are doing. All these 
questions about benchmarking, what technology works better, do we need an alternative? We will not find the answers until 
we have exhausted the technology. We need to have done so many experiments and we will know whether something works 
better than something else, but in order to do that, people need to be able to afford to do these experiments.

FLG: Is there anything that can be done? Or should be done to tackle the issue?

Andrea: What should happen is people should use these technologies and share the data. It would be useful to know: ‘Okay, 
we tried some different technologies, different reagents, different companies, and did some benchmarking, and now we 
can say that they are equivalent or even better than what was available before’. Having as much information as possible at 
this level is going to be critical in the near future, to bring down costs and to increase the ability of researchers to use these 
technologies.

Newness and costs of the technology 
Some contributors looked at the wider problem for the whole field, namely the cost, accessibility and lack of 
experience with this plethora of technology.
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MATHEW CHAMBERLAIN 
Principal Scientist  
Johnson & Johnson Innovative Medicine 

FLG: What do you think the big challenge is for your current field?

Mathew: I think that the biggest challenge now is how new single cell technology is. The quality and richness of datasets will 
get much better with time, like bulk RNA-sequencing. That's related to the newness of the technology, also to the cost and 
feasibility in adopting single-cell software and methods.

FLG: Is there anything that can be done to address the challenge?

Mathew: I think that some of the cost reducing methods definitely help. For example, some of the multiplexing methods that 
various groups have come out with recently. Those certainly help. Every time I think about these questions, I just think about 
what happened with bulk sequencing 15 years ago, and then assume it's going to happen a bit faster this time, because we've 
essentially done it once before. In bulk sequencing, it took about 10 years for the field to coalesce on a pretty set standard 
of computational workflows that most people are reasonably happy with. In single-cell, we're basically starting that process 
now. The field is starting to coalesce a bit, which, together with reduced costs, will help standardize everything from sample 
collection to results.

Some aspects of multi-omics are far behind this in single cell. I've seen a lot of spatial omics talks this year, which remind me 
of single-cell five years ago. In spatial right now, you have a few samples, and you're sort of observing something and it looks 
interesting and enticing. But, if you were any researcher in the field and had a dataset of 100 spatial samples today, before 
and after treatment, there's no computational workflow to even answer those questions right now. You’d have to design it 
yourself. That’s where I see the field going, a lot of multi-omics integration workflows, where you're putting together different 
data types, and build out larger and larger data sets and atlases. I see the field going that way in the near future. 

Then I see the field moving more into spatial and then increasingly as the sample sizes get larger, more tissue layers and more 
omics layers get added. At that point, the number of available workflows goes almost to zero pretty quick. Then you have to 
start the clock again when the fields coalesce on a standard workflow. You need a statistical analysis plan going into it but 
usually the omics data typically aren't an endpoint, they're just an observation that goes together with your trial. 

That's why I mentioned cost and throughput as two things I would work on now, because then at least you'll get observational 
data. And we're starting to get that from trials that we run, other pharmaceuticals are doing that as well. 
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SHIRLEY GREENBAUM 
Postdoctoral fellow, Department of Pathology, Stanford University  
Resident, Department of Obstetrics and Gynaecology 
Hadassah-Hebrew University Medical Center

FLG: What do you think is the biggest challenge still facing the multi-omics field? And what is being 
done to tackle the issue, or what should be done to tackle the issue? 

Shirley: The biggest challenge facing the multi-omics field, particularly in the context of the placenta, is the effective 
correlation of multi-omics data with spatial information. This challenge is especially crucial concerning the placenta, the focus 
of my work. During placentation, fetal trophoblasts invade maternal tissue, leading to regions where maternal and fetal cells 
are adjacent to one another. It becomes critically important to precisely associate multi-omics data with specific individual 
cells within this intricate spatial context.

One promising approach to tackle this issue is the utilization of techniques like Multiplexed Ion Beam Imaging (MIBI). As 
mentioned, MIBI has the distinct advantage of allowing researchers to preserve tissue integrity during processing while 
simultaneously providing high-resolution spatial data. This enables the association of multi-omics data with the precise 
location within the tissue, thereby addressing the spatial correlation challenge.

Integrating Spatial
Several contributors highlighted the need to bring spatial information into the analysis paradigm to measure spatially-
mediated second order phenomena such as cell-cell interaction.

ZONGMING MA 
Professor, Department of Statistics and Data Science  
Yale University 

FLG: What do you think is the biggest challenge still remaining in the multi-omics field? And what is being done to tackle the 
issue, or what should be done to tackle the issue? 

Zongming: I think the biggest challenge at the moment is the neglect of second-order information. A lot of the multi-
omics technologies give you a finer understanding of things on the first order. By this, I mean you can get a very precise 
differentiation of different cell states, trajectory analysis, so on and so forth. These have been enabled by multi-omics 
information. What would be more interesting is how you combine such understanding with spatial data objects and get an 
understanding of the second order. By second order, I mean cell-cell interaction, cell-cell communication and regulation of 
certain cells by neighbouring cells. You can then get a mechanistic understanding of how cells interact with each other by 
doing both spatial measurements, and also single-cell multi-omics measurements.
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Mapping metabolites
And last but not least, our metabolomics contributors highlighted some key challenges and potential solutions for 
identifying the nature and roles of metabolites as well as modelling this rapidly changing omic.

THEODORE ALEXANDROV 
Team Leader, Structural and Computational Biology Unit  
European Molecular Biology Laboratory 

FLG: If you had to pick a big challenge for single-cell and spatial metabolomics, what would you say is the big one remaining?

Theo: The next challenge for metabolomics is in data interpretation. In metabolomics, in terms of detection, we have amazing 
technologies already, in terms of hardware and instruments. We can do a lot of things, but in terms of interpretation, 
metabolism and metabolic pathways are inherently very complex. Metabolites are building blocks and energy sources, but the 
same molecules can play signalling roles. 

There are also many unknown roles of metabolites. Lately, the Rutter lab published a paper in Nature Cell Biology showing 
how metabolites have unstudied roles, in particular in controlling the activity of enzymes in their pathways and also enzymes 
throughout the whole metabolism. This kicked off the discussion of ‘metabo-verse’, a universe of all the small molecules with 
diverse functions and roles. 

However, we do not have the databases of roles and functions for metabolites, similar to how we have them for genes and for 
proteins. There is work to be done to create these catalogues of their functions and associations with cell types. I think these 
databases will eventually explain the roles and contain all the biochemical molecular functions of the molecules. That will be 
a big breakthrough, but this is our current challenge.

FLG: Can you see a way to address those problems you just highlighted with the data interpretation?

Theo: First of all, we lack robust protocols, particularly in single-cell and spatial, that are accessible for scientists who are 
not from analytical chemistry labs. We'll have impact with this technology only when it will be accessible by biologists and by 
clinical scientists. Over the last years, it started happening with spatial metabolomics when a number of biology labs installed 
their first imaging mass spectrometer. However, we're not there yet. Once this happens, they will create bigger opportunities. 

For this to work, we need to have better instrumentation, we need to have robust protocols, which are relatively easy to 
execute, we need to have user friendly software, which is not for geniuses in mass spectrometry. On top of this, we need to 
have databases that this software can tap into to enhance data interpretation. And, in particular, we need to link to other 
omics, because metabolomics is not an ultimate tool, it is orthogonal and complementary to other omics. 

Obviously, to have a biological or medical conclusion or a decision for drug development, one needs to use all the tools, and 
have metabolomics in your portfolio. There should be more to be done to link metabolomics with other omics tools that will 
help achieve much bigger impact.
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INGELA LANEKOFF 
Professor, Department of Chemistry-BMC  
Uppsala University 

FLG: What do you think is the biggest challenge still facing the metabolomics field? And what is being done to tackle the issue 
or what should be done to tackle the issue?

Ingela: I think that the biggest challenges of the metabolomics field are what also makes it so interesting, which is that the 
metabolome can rapidly alter to reveal the cellular status at that time. This is particularly challenging with sample collection 
of living biological material, where the sample will actually change if not immediately quenched by, for example, snap 
freezing in liquid nitrogen. 

The community is highly aware of importance of reproducibility in sampling and sample handling, and is continuing to 
establish protocols to reduce these types of artefacts in their metabolomics studies.
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