

Spatial omics feature representation using graph Fourier transform

COLLEGE OF MEDICINE

Yuzhou Chang^{1,2,†}, Jixin Liu^{3,†}, Anjun Ma^{1,2}, Jordan Krull^{1,2}, Yang Liu^{4,5}, Rong Fan^{4,5,6}, Dong Xu⁷, Zihai Li², Bingqiang Liu³, and Qin Ma^{1,2}

¹ Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA. ² Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA. ³ School of Mathematics, Shandong University, Jinan 250100, China. ⁴ Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA. ⁵ Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA. ⁶ Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA. ⁷ Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. † These authors contributed equally. Corresponding author: Qin Ma: qin.ma@osumc.edu

Introduction			Graph signal transform	
Background:	Challenge			Step 1: K-nearest neighbor (KNN) Graph construction
 Spatial omics (e.g., spatial transcriptome, proteome, ep are transforming our understanding of cell or tissue biolog 		mplexity of construction spatial omics platforms.	due to	(i) Define an undirected graph and adjacency matrix.
 Cell-centric analysis enables us to investigate the organ 	zation of spatial domain, • Interpret	ability of repres	sentation	G = (V, E)
relations of the cell-neighborhood, cell-cell communicatio		0		where $V = \{v_1, v_2,, v_n\}$ is the node set referring to n
 Gene-centric analysis enables the discovery of spatially as spatial variable genes (SVG). 		ty issue due to the p (e.g., Stereo-seq and COD	ixel-level	spots; <i>E</i> is the edge set defined by KNN.
 However, a quantitative and qualitative representatio 	n method of organized • Non-triv	al aggregation meth	nod of	(ii) An adjacent binary matrix $A = (a_{ij})$ with rows and
spatial pattern presented by diverse spatial omics feature	es is still a gap for further embedd	ng graph topological struc	ture and	columns as n spots is defined as:
gene-centric analysis)	$(1 \circ C F)$	

gene-centric analysis.

graph signal (e.g., gene expression).

Solution: A hypothesis-free graph Fourier transform framework, Spatial Graph Fourier Transform (SpaGFT), for spatial omics data feature representation.

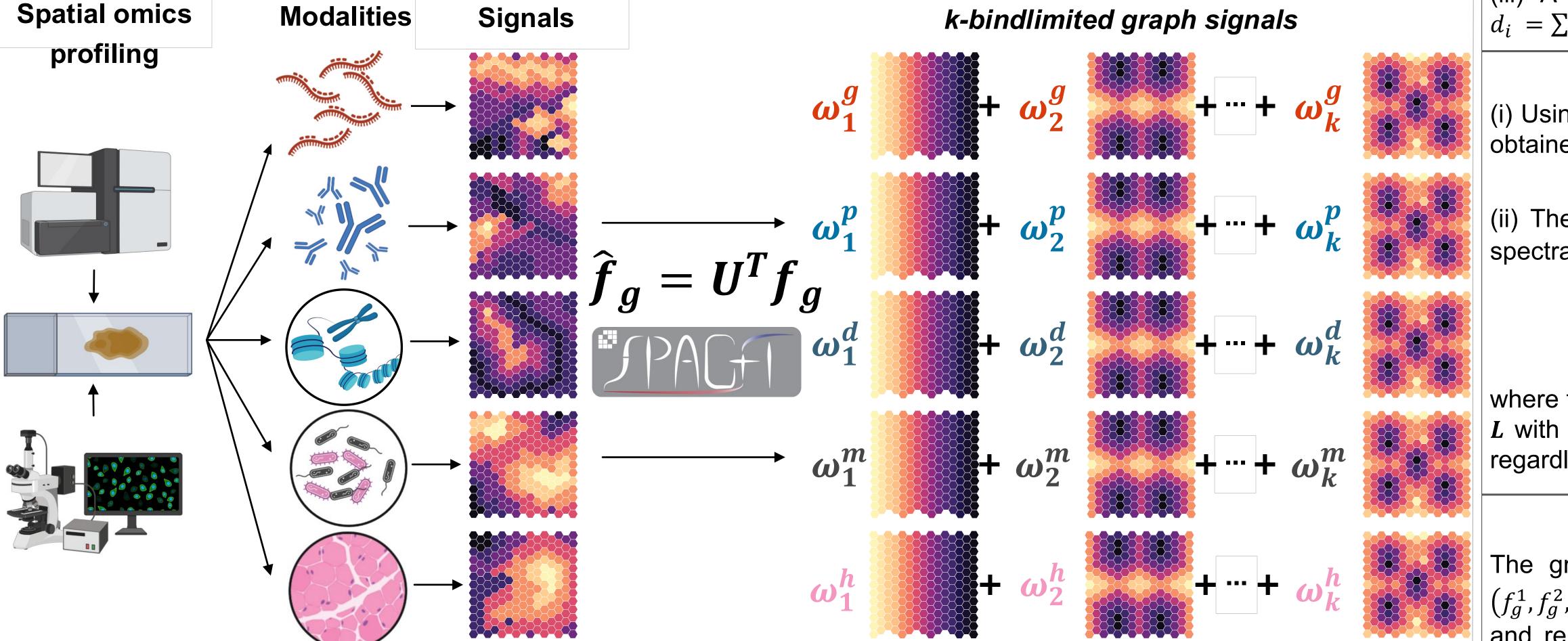


Figure. 1 The SpaGFT conceptual schema. A spatially organized molecule is a smooth signal and can be represented as the linear combination of k low-frequency Fourier mode (FMs), where a low-frequency FM contributes to a slow and smooth graph signal variation. Fourier coefficient (FC) can measure FMs contribution.

 $e_{ii} \in E$ $a_{ij} =$ else.

(iii) A diagonal matrix $D = diag(d_1, d_2, ..., d_n)$, where $d_i = \sum_{j=1}^n a_{ij}$ represents the degree of v_i

Step 2: Fourier mode calculation

(i) Using matrices A and D, a Laplacian matrix L can be obtained by

$$L = D - A$$

(ii) The Laplacian matrix *L* can be decomposed using spectral decomposition

```
L = U\Lambda U^{\mathrm{T}}
```

$$\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n),$$
$$U = (\mu_1, \mu_2, \dots, \mu_n),$$

where the diagonal elements of Λ are the eigenvalues of *L* with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, where λ_1 is always equal to 0 regardless of graph topology.

Step 3: Graph Fourier transform

The graph signal of a gene g is defined as $f_g =$ $(f_q^1, f_q^2, \dots, f_q^n) \in \mathbb{R}^n$, which is a *n*-dimensional vector and represents the gene expression values across nspots. The graph signal f_{q} is transformed into a Fourier coefficient \widehat{f}_g by

Results-SVG identification performance

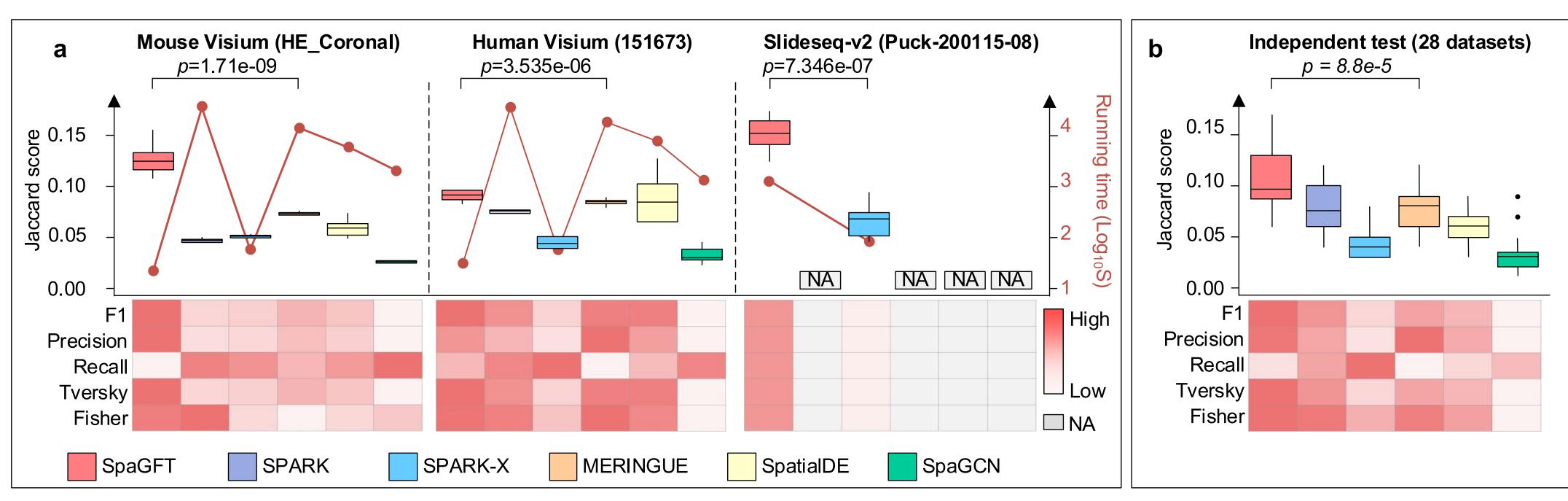


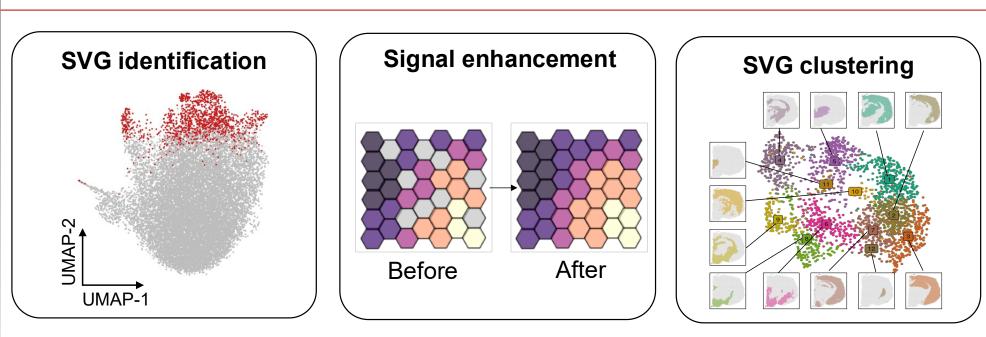
Figure. 2 a. The SVG prediction evaluation was compared to five benchmarking tools. The running time (log transformation) seconds) of each tool is represented as red lines. **b.** After parameter selection (three high-quality datasets), the SVG prediction performance of SpaGFT on additional 28 independent datasets was compared to those of the five benchmark tools. Conclusion: **SpaGFT identifies SVG more accurately and faster.**

Results – graph signal representation and process

 $\hat{\boldsymbol{f}}_{g} = \boldsymbol{U}^{T} \boldsymbol{f}_{g}, \, \hat{\boldsymbol{f}}_{g} = (\hat{f}_{g}^{1}, \hat{f}_{g}^{2}, \dots, \hat{f}_{g}^{n})$

 \hat{f}_{g}^{k} is the projection of f_{g} on FM μ_{k} , representing the contribution of FM μ_k to graph signal f_g , k is the index of f_g (e.g., k = 1, 2, ..., n). This Fourier transform harmonizes gene expression and its spatial distribution to represent gene g in the frequency domain.

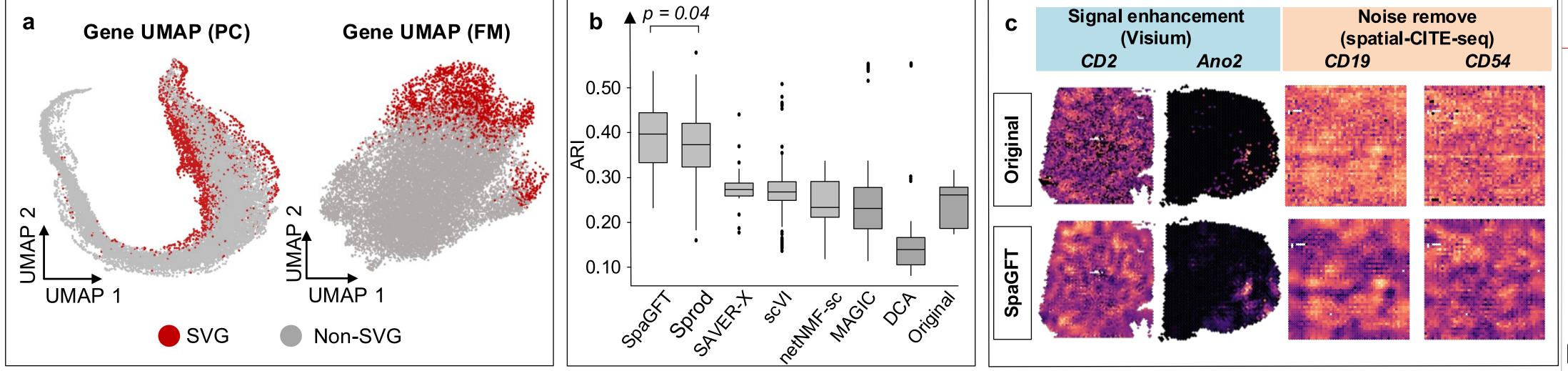
Discussion



- Transformed signals (FCs) compressed graph topology and graph signal (e.g., gene expression).
- Low-frequency FCs represent features' spatial smooth pattern, leading to a new method for SVG identification.
- A low-pass filter enhances signal and removes noise.
- FCs can be used for other downstream tasks (e.g., SVG clustering to identify functional niches).

Link and acknowledgement

Paper QR



SpaGFT GitHub QR

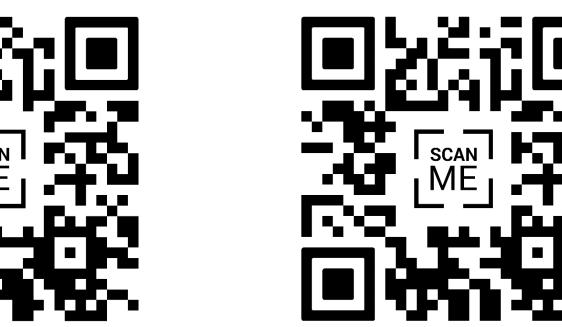


Figure. 3 a. SVGs identified by SpaGFT were distinguishably separated from non-SVGs on the FM-based UMAP with a clear boundary, whereas SVGs were irregularly distributed on the PC-based gene UMAP. b. SpaGFT can enhance and remove noise and outperformed other gene enhancement tools. c. SpaGFT enhanced signal and removed the noisy background for spatial omics platforms. Conclusion: (1) FC is a transformed simple but informative topological features for representing complex structures with irregular topologies. (2) The FCs of low-frequency FMs will be enhanced and those of highfrequency FMs will be diminished.

Funding: This work was supported by an NIH R01 award #R01GM131399 and #R35-GM126985; This work used Ohio Supercomputer Center (OSC) and the Extreme Science Engineering Discovery Environment and (XSEDE), which is supported by the National Science Foundation grant number ACI-1548562. This work was also supported by the Pelotonia Institute of Immuno-Oncology (PIIO).