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Bioinformatics and Mathematical Biosciences Lab (BMBL)
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Single-cell sequencing technology may save the day
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R01GM131399: Construction of cell-specific gene co-regulation signatures based on
single-cell transcriptomics analysis

Statistical modeling
Qualitative
representation of
regulatory signal
Improve cell clustering,
DEG, module detection

First cell-type-specific
regulon pipeline
Composable framework
scRNA-seq analyses
Heterogeneous
regulatory mechanism
Web interface
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Informatics contributes to immuno-oncology projects, for example...
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scMulti-omics analysis refines knowledge of biological systems
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\ \ Integrative Methods and Practical Challenges
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Integration strategies and corresponding tools
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Infer heterogeneous gene regulatory landscape in 1O
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DeepMAPS: Single-cell biological network inference from scMulti-omics
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DeepMAPS: Deep learning-based Multi-

omics Analysis Platform for Single-cell data.

First-of-its-kind model: Simultaneous cell
clustering and biological network inference
on a heterogeneous graph.

Adopts a multi-head graph attention
mechanism to model the overall
topological information and neighbor
message passing.

Identified distinct gene regulatory networks
among normal B cells and two diffuse small

lymphocytic lymphoma development states.

Deployed a code-free web portal to ensure
the robustness and reproducibility

Biological network inference from single-cell multi-omics data using heterogeneous graph transformer.
Under peer-review in Nature Methods.
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Develop DL methods for new IO hypothesis generation

Immune cell landscape

Microbiome host interactions Predictability — . —-\,Act-onab-hty Underlying regulatory mechanisms
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Deep learning shapes single-cell data analysis The use of single-cell multi-omics in immuno-oncology
Nature Reviews Molecular Cell Biology, 2022 Nature Communications, 2022
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