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Background: what is spatially resolved transcriptomics?

@ RNA-seq of individual
cryosections

@slideseq for its ability to provide valuable insights into the biclogy of cells
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, and tissues while retaining information about spatial context.
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3 .Proximl[geosmHSH @ seqFISH+ .APEX-:ec:OX 1 i Spatially resolved transcriptomics is our Method of the Year 2020,

. Section 1. Technologies based on microdissected gene expression
@ Section 2. In situ hybridization technologies

. Section 3. In situ sequencing technologies

. Section 4. In situ capturing technologies

. Section 5. In silico reconstruction of spatial data
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About spatial transcriptomics
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Museum of spatial transcriptomics, online book (2021)

» Trend of spatial transcriptomics is increasing.

« The number is stilling going up.
» Gold era for spatial transcriptomics.
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Spatial transcriptomics example: Visium
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A coronal mouse brain section
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&E stained https://www.10xgenomics.com/spatial-transcriptomics/
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https://www.10xgenomics.com/spatial-transcriptomics/

Spatial transcriptomics technologies (before Jan 2022)

5 = Cancer tissue « _ = resolution @ =1 cell

W\ = 5000 genes

Ex-situ technologies
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Jie Liao, et al., Trends in Biotechnology (2020)
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Sabrina M. Lewis, et al., Nature Methods (2021)
Rania Bassiouni, et al., Molecular Cell (2021)

cell-multi-omics-techniques-in-molecular-biology-genetics-and-
cancer-research/




Golden age for spatial transcriptomics

Method of the Year
methods 2020: spatially resolved transcriptomics

nature

— Assess spatial heterogeneity and tissue architecture

LY Characterize cell-cell communication events in a specific region

Unique questions
to be answered

Towards spatial omics technologies
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RESEPT: REconstructing and Segmenting Expression mapped RGB images based on
sPatially resolved Transcriptomics
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1. Input gene expression and spatial location.
2. 3D embedding.
3. Embeddings convert to RGB image.
4. Pseudo-color image segmentation, using16 human brain datasets which include

14 healthy and 2 Alzheimer’s disease (AD) datasets.
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16 Datasets used in RESEPT training and testing

17 human brain samples (G1 - 151508)

Datasets for :
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* 16 Visium data were used for model training and testing (from CT1 to 151508).
* The data includes health (14) and Alzheimer’s disease sample (2).

* G1 was used for case study.

« CT2 and 151674 were selected to simulate different read depth for stability test.
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RESEPT outperformed other computational tools

0.75
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o a fix cluster number
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RESEPT can capture specific region by a given gene list
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Conclusion: RESEPT could confidently reflect layer-specific, cell-type-specific, and pathological region-
specific architecture regarding well-studied marker genes, which indicated significant potentials to localize
and present important spatial architecture contributing to AD development.

T Kristen R. Maynard, Nature Neuroscience (2021)
HE OHIO STATE UNIVERSITY . 10
WEXNER MEDICAL CENTER WeI-Tlng Chen, Cell (2020)




Glioblastoma case demonstrates RESEPT can be used on cancer tissue
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Summary of RESEPT

Conclusion:

« RESPT is a deep learning framework for tissue heterogeneity visualization and architecture identification.

« The core concept of converting three-dimensional representations to RGB images and being associated
with spatially variable genes will potentially enable explainable Al.

« RGB image can associated with certain spatially variable genes which can support main architecture of
each RGB channels.

« It can generalize to other tissues (e.g., cancer)

* We apply on Alzheimer's’ disease and glioblastoma to visualize and reveal pathological region.

Allen C, Chang Y, Neelon B, Chang W, Kim HJ, Li Z, Ma Q, Chung D. A Bayesian
multivariate mixture model for high throughput spatial transcriptomics. Biometrics. 2022 Jul
27. doi: 10.1111/biom.13727. Epub ahead of print. PMID: 35895854.

— Output:
Collaboration with » Tissue architecture identification.
Dr. Dongjun Chung . Distinct cellular sub-populations (cell uncertainty measurement)

THE OHIO STATE UNIVERSITY 12
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Characterize cell-cell communication (CCC) events in a specific region

Cell-cell communication categories

L Intracellular
CCC < Intercellular communication > C communiation >

Mediator <So|ub|e factors> <Surface protein> <So|u ble factors>
Types < Paracrine (P) > <Ce|| contact (CCD <Autocrine (A)>

Cell-cell communication within or across tissue architectures
e N : ( N
Tissue O">‘© O“>‘© @..:}@ @'%.)_@
architecture & > ; <

coc l <0 >0 )‘b_
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Hypothesis and observation

Hypothesis 1:

Ligand genes
Cofactor genes| |

Sender cell-CEM

Hypothesis 2:

= |

Receptor genes
Cofactor genes
TF genes
Target genes

Receiver cell-CEM

Ligand genes
Receptor genes
Cofactor genes
TF genes
Target genes

Autocrine-CEM

S-CEM, R-CEM, and A-CEM will form two patterns in SRT data: paired-CEM (P-CEM) and mixed-CEM (M-

CEM)- T — Ligand genes
Cofactor genes
p o
Receptor genes
Cofactor genes
TF genes
M-CEM Target genes
Purpose:

Identify a group of spots that subject to the following conditions:

1. They are M-CEM and P-CEM

2. These spots are spatially clustered

THE OHIO STATE UNIVERSITY
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Hypothesis and observation

A ONiche1 :gpots (S:CEM} C Gene expression ConCIUSion: . .
[INiche2 @ oots (-EM) Low ISR High 1. M-CEM (mixed co-expression gene modules) capture
R Lo e « TR E— CD48-CD2 ligand receptor pairs, associating T cell and
| ocze® ReEE B cell activation gene signatures.

Receptor: :
cxcra Y

2. S(sender)-CEM/R(receiver)-CEM capture motility-
related LRP coding genes (CXCL12-CXCR4), which

were reported to associate with tumor suppression in T

cells.
Bl Becell
B Tumor
Bl Macrophage 3. Niches 1 and 2 had a higher proportion of CD8+ T
M CDAT cell cells and B cells and a lower proportion of cancer cells
B CD8 T cell
compared to those of all the spots.
0 A Nehe Niohes 4. Pathway of Niche 1 and 2 were associated with T cell

and B cell activation functions.

5. The data were unpublished results generated by in-
house IRIS-FGM.

THE OHIO STATE UNIVERSITY 15
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Mathematic formulation for CCC

The mathematic formulation is to find local-low rank matrix from gene expression matrix (row is gene and

column is spot)
Solution of determining local-low rank matrix is NP-hard.

Approximate solution is to find a set of heavy subgraphs in a weighted graph G,
* nodes is gene,
« edge is connecting every pair of genes
« edge weight is determined by spatial distance and transcripts similarity.
Di,j

Where D is spot-to-spot spatial distance matrix; R is the spot-to-spot similarity matrix computed by Spearman
correlation based on gene expression value, and ¢ is a pseudo-number to improve computational stability.
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SAGE: a spatially-guided pattern recognition algorithm for simultaneous detection of CCC

and CCC-associated CEM signatures

A. Discretization B. Biclustering C. Global optimization
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Yuzhou Chang, Carter Allen, Changlin Wan, Dongjun Chung, Chi Zhang?®, Zihai Li%, Qin Ma®. IRIS-FGM: an
integrative single-cell RNA-Seq interpretation system for functional gene module analysis. Bioinformatics. 2021.
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Downstream analysis of SAGE algorithm

« Determine the potential regulator (i.e., transcriptional factors) for Pair-CEMs and M-CEM using IRIS3.

C Input ) (Optional input) ( Output )
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| Active regulons

« Decipher cell type composition using Cell2location.

« Assess CCC directionality using the linear graph neural network-based causality model.

THE OHIO STATE UNIVERSITY
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Vitalii Kleshchevnikov, et al.,

bioRxiv (2021)

Nature biotechnology (2022)
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Spatial omics is coming!

nature

Explore content v About the journal v  Publish with us v

nature > articles > article

Article | Open Access | Published: 17 August 2022

Spatial profiling of chromatin accessibility in mouse
and human tissues

Yanxiang Deng, Marek Bartosovic, Sai Ma, Di Zhang, Petra Kukanja, Yang Xiao, Graham Su, Yang Liu,

Xiaoyu Qin, Gorazd B. Rosoklija, Andrew J. Dwork, J. John Mann, Mina L. Xu, Stephanie Halene, Joseph
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CellPress

Volume 183, Issue 6, 10 Decernber 2020, Pages 1665-1681.e18
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High-Spatial-Resolution Multi-Omics Sequencing
via Deterministic Barcoding in Tissue

Yang Liu %2 Mingyu Yang * % * Yanxiang Deng % 3, Graham Su *+ 2, Archibald Enninful %, Cindy C. Guo !,
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Spatial-CUT&Tag: Spatially resolved chromatin modifi-
cation profiling at the cellular level
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Spatial proteomics (e.g., CODEX)
Spatial ATAC-seq

Spatial CITE-seq

Spatial CUT & Tag

Harold Hodgkinson Professor of
Biomedical Engineering 19



Tissue module identification (Ongoing)
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1. SVG number.

2. Fourier coefficient as unique identifier.
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3. Spatial map to show the TM distribution.
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GO Biological Process 2021

6. Cell proportion (using cell2location)

show the cell type composition in this
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Algorithms based on spatial omics

Article | Published: 28 March 2022

Integrative spatial analysis of cell morphologies and
transcriptional states with MUSE

Feng Bao, Yue Deng, Sen Wan, Susan Q. Shen, Bo Wang, Qionghai Dai , Steven J. Altschuler & & Lani F.
Wu

«

Nature Biotechnology 40, 1200-1209 (2022) | Cite this article
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Main idea: Identify new cell type by considering
morphology and transcriptional information.

Article | Published: 04 August 2022

Sprod for de-noising spatially resolved transcriptomics
databased on position and image information

Yunguan Wang, Bing Song, Shidan Wang, Mingyi Chen, Yang Xie, Guanghua Xiao, Li Wang_ & Tao Wang

«

Nature Methods 19, 950-958 (2022) | Cite this article
3889 Accesses |42 Altmetric | Metrics

CD45 (IF) PTPRC (target) PTPRC (whole)

Main idea: de-noise gene expression using protein

or histology information. g
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