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Background: what is spatially resolved transcriptomics?

Michael Asp, et al. BioEssays. (2020)

Spatially resolved transcriptomics:

Quantifying transcripts while keeping spatial 

context of samples within tissue or cell.

Nature Methods: 



About spatial transcriptomics
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• Trend of spatial transcriptomics is increasing.

• The number is stilling going up.

• Gold era for spatial transcriptomics.

Museum of spatial transcriptomics, online book (2021)



Spatial transcriptomics example: Visium
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https://www.10xgenomics.com/spatial-transcriptomics/

H&E stained

A coronal mouse brain section

Hpca expression

In hippocampus

https://www.10xgenomics.com/spatial-transcriptomics/
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Jie Liao, et al., Trends in Biotechnology (2020) Rania Bassiouni, et al., Molecular Cell (2021)
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Golden age for spatial transcriptomics

Assess spatial heterogeneity and tissue architecture

Characterize cell-cell communication events in a specific region

Towards spatial omics technologies

Unique questions 

to be answered

Method of the Year 

2020: spatially resolved transcriptomics
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RESEPT: REconstructing and Segmenting Expression mapped RGB images based on 

sPatially resolved Transcriptomics
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1. Input gene expression and spatial location.

2. 3D embedding.

3. Embeddings convert to RGB image.

4. Pseudo-color image segmentation, using16 human brain datasets which include 

14 healthy and 2 Alzheimer’s disease (AD) datasets.
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Yuzhou Chang, Computational and Structural Biotechnology Journal, (2022) 



16 Datasets used in RESEPT training and testing
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• 16 Visium data were used for model training and testing (from CT1 to 151508).

• The data includes health (14) and Alzheimer’s disease sample (2).

• G1 was used for case study.

• CT2 and 151674 were selected to simulate different read depth for stability test.

Glioblastoma 
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RESEPT outperformed other computational tools
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Performance on 16 real datasets by 

a fix cluster number

• Outperform other tools
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RESEPT can capture specific region by a given gene list
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Conclusion: RESEPT could confidently reflect layer-specific, cell-type-specific, and pathological region-

specific architecture regarding well-studied marker genes, which indicated significant potentials to localize 

and present important spatial architecture contributing to AD development.  

Kristen R. Maynard, Nature Neuroscience (2021)

Wei-Ting Chen, Cell (2020)



Glioblastoma case demonstrates RESEPT can be used on cancer tissue

Conclusion:

1. Identify tumor, non-tumor, and infiltrating tumor 

region.

2. Validate the three regions by pathological features.

3. Validate the three regions by transcriptional features.

Dr. Shaoli SunDr. Jose Otero
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Summary of RESEPT
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Conclusion:

• RESPT is a deep learning framework for tissue heterogeneity visualization and architecture identification.

• The core concept of converting three-dimensional representations to RGB images and being associated

with spatially variable genes will potentially enable explainable AI.

• RGB image can associated with certain spatially variable genes which can support main architecture of

each RGB channels.

• It can generalize to other tissues (e.g., cancer)

• We apply on Alzheimer's’ disease and glioblastoma to visualize and reveal pathological region.

Collaboration with 

Dr. Dongjun Chung

Allen C, Chang Y, Neelon B, Chang W, Kim HJ, Li Z, Ma Q, Chung D. A Bayesian 

multivariate mixture model for high throughput spatial transcriptomics. Biometrics. 2022 Jul 

27. doi: 10.1111/biom.13727. Epub ahead of print. PMID: 35895854.

Output: 

• Tissue architecture identification.

• Distinct cellular sub-populations (cell uncertainty measurement)



Characterize cell-cell communication (CCC) events in a specific region
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Hypothesis and observation

Hypothesis 1:

Hypothesis 2:

S-CEM, R-CEM, and A-CEM will form two patterns in SRT data: paired-CEM (P-CEM) and mixed-CEM (M-

CEM).

Purpose:

Identify a group of spots that subject to the following conditions:

1. They are M-CEM and P-CEM

2. These spots are spatially clustered
14



Hypothesis and observation

D

Conclusion:

1. M-CEM (mixed co-expression gene modules) capture 

CD48-CD2 ligand receptor pairs, associating T cell and 

B cell activation gene signatures.

2. S(sender)-CEM/R(receiver)-CEM capture motility-

related LRP coding genes (CXCL12-CXCR4), which 

were reported to associate with tumor suppression in T 

cells.

3. Niches 1 and 2 had a higher proportion of CD8+ T 

cells and B cells and a lower proportion of cancer cells 

compared to those of all the spots. 

4. Pathway of Niche 1 and 2 were associated with T cell 

and B cell activation functions. 

5. The data were unpublished results generated by in-

house IRIS-FGM.
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Mathematic formulation for CCC
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• The mathematic formulation is to find local-low rank matrix from gene expression matrix (row is gene and 

column is spot)

• Solution of determining local-low rank matrix is NP-hard.

• Approximate solution is to find a set of heavy subgraphs in a weighted graph G, 

• nodes is gene, 

• edge is connecting every pair of genes 

• edge weight is determined by spatial distance and transcripts similarity.

Where D is spot-to-spot spatial distance matrix; 𝑹 is the spot-to-spot similarity matrix computed by Spearman 

correlation based on gene expression value, and 𝜖 is a pseudo-number to improve computational stability.



SAGE: a spatially-guided pattern recognition algorithm for simultaneous detection of CCC 

and CCC-associated CEM signatures

Yuzhou Chang, Carter Allen, Changlin Wan, Dongjun Chung, Chi Zhang$, Zihai Li$, Qin Ma$ . IRIS-FGM: an 

integrative single-cell RNA-Seq interpretation system for functional gene module analysis. Bioinformatics. 2021.
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Downstream analysis of SAGE algorithm
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• Decipher cell type composition using Cell2location.

• Assess CCC directionality using the linear graph neural network-based causality model. 

• Determine the potential regulator (i.e., transcriptional factors) for Pair-CEMs and M-CEM using IRIS3.

Anjun Ma, et al., Nucleic Acids Research (2020)

David S. Fischer, et al., bioRxiv (2021)

Vitalii Kleshchevnikov, et al., Nature biotechnology (2022)



Spatial omics is coming!
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Spatial proteomics (e.g., CODEX)

Spatial ATAC-seq

Spatial CITE-seq

Spatial CUT & Tag

…..

Harold Hodgkinson Professor of 

Biomedical Engineering



Tissue module identification (Ongoing)
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TM ID interpretation

1. SVG number.

2. Fourier coefficient as unique identifier.

3. Spatial map to show the TM distribution.

4. SVGs and functional enrichment.

5. Overlapped TMs show the interaction 

with other TMs.

6. Cell proportion (using cell2location) 

show the cell type composition in this 

TM.

7. More spatial-omics interpretation.

Tissue Module 5 ID Card (GC)
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Yuzhou Chang, et al., Nature biotechnology (under revision)



Algorithms based on spatial omics
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Main idea: Identify new cell type by considering

morphology and transcriptional information.

Main idea: de-noise gene expression using protein

or histology information.



Acknowledgement

22Yuzhou@osumc.edu

@Yuzhou

Bioinformatics and Mathematical Biosciences Lab

Dr. Qin Ma Dr. Zihai Li Dr. Dongjun Chung Dr. Gang Xin

Construction of cell-specific gene co-regulation signatures based 

on single-cell transcriptomics analysis (R01-GM131399)

Statistical Power Calculation Framework for Spatially Resolved 

Transcriptomics Experiments (R21-HG012482-01, Dr. Dongjun

Chung, and Dr. Qin Ma)

Thrombocytes in Cancer Immunity (R01-CA188419)

Department of Neuroscience:

Hongjun Fu

Shuo Chen

Department of Pathology:

Dr. Jose Otero

Dr. Shaoli Sun

Other organizations:

Dr. Dong Xu

Dr. Fei He

Dr. Juexin Wang

Dr. Bingqiang Liu

Jixin Liu

Li Lab:

Anqi Li

Tong Xiao

Nojoon Song

Chung Lab:

Dr. Carter Allen
Ma Lab:

Dr. Anjun Ma

Dr. Yang Li

Cankun Wang

Qi Guo

Megan McNutt

Xinqi Xiong

Xin Lab:

Jianying Li



THANK YOU


