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Abstract— In this paper, a cooperative distributed optimiza-
tion method via sliding mode extremum seeking (ES) control for
a class of large-scale interconnected systems is presented. In this
approach, a consensus algorithm is exploited to communicate
the value of the global cost function to the ES controllers.
Then, each sliding mode ES controller is designed such that
a multivariable cost function is optimized in a cooperative
fashion. The stability and convergence conditions for the ES
controllers are determined and sufficient conditions for the
distributed scheme to converge to the vicinity of the optimal
points are driven. The application of the proposed scheme
to a real-world example is investigated and simulations are
provided to illustrate the theoretical results and demonstrate
their potential use.

I. INTRODUCTION

Conventional control methods address stabilization, regu-
lation, and/or fixed set-point tracking for a given dynamic
system. However, many applications demand optimal set
points unknown in advance or that must vary over time, such
as for Anti-lock Braking System control facing unpredictable
changes in road conditions. Extremum seeking (ES) control
is a form of optimal control that deals with a situation in
which the cost function to be optimized is not exactly known,
but can be measured. ES control is also a method of adaptive
control in which the objective of the controller is to steer
the system output to follow a non-predetermined optimal
operating point [1].

Prior work, to a large extent, has analyzed and applied
the sliding mode ES control in centralized fashion. Korovin
and Utkin [2] introduce the use of sliding mode in self-
optimization for static mapping. The main idea is to select
a control law such that the system output tracks a mono-
tonic decreasing (increasing) function in time towards the
minimum (maximum). Furthermore, Ozguner and his co-
worker generalized the method in the presence of dynamics
[3]–[5]. A more recent study extends the single variable
sliding mode ES to a multivariable was reported in [6]. It
was successfully applied to a variety of applications such
as: Anti-lock Braking System (ABS) [7], source seeking [8],
and Maximum Power Point Tracking (MPPT) [9].

Although centralized control architectures have proven
to be effective for some applications, decentralized control
and distributed process improve the scalability of systems.
For this reason, the literature shows increasing interest in
applying decentralized control and distributed optimization
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with a variety of gradient and sub-gradient methods [10]–
[12]. However, when the gradient of the cost function is not
available and the only measurement of the cost function is
available, extremum seeking control appears to be the most
promising approach to solve the problem. Recently, much
consideration has been given to how to apply ES control
to distributed systems. The current distributed ES control
approaches can be divided into two major categories. A non-
cooperative extremum seeking setting where the interaction
between the controllers seen as an n-person noncooperative
dynamic game and the goal is to find the Nash equilibrium
solution using the extremum seeking control. Pan and Oz-
guner extend the results from the sliding mode ES control
to non-cooperative distributed optimization by introducing
n sliding surfaces for each player [13]. Similarly, Frihauf
et al. [14] sought to solve this problem by extending the
periodic perturbation approach [1]. The other category is the
cooperative based ES control, where the objective is to opti-
mize a global cost function via local controllers and reach a
common objective. The researchers in [15], propose to utilize
the primal-dual technique to reach a saddle point. Similar
ideas are analyzed in [16]–[21], where the authors introduce
a dynamic average consensus to share an estimate of the total
cost function with each controller. Distinct from the previous
studies, the author of [19] formulates the ES setup to solve
a class of optimal resource allocation problems. To reach an
optimal assignment of limited resources, consensus dynamics
are used to provide each controller with an estimate of the
available resources.

In this paper, a decentralized and cooperative sliding mode
ES control is proposed. The main concept behind this ap-
proach is to introduce a consensus algorithm to communicate
the value of the global cost function to the controllers.
Next, the consensus algorithm is interfaced suitaby with
a sliding mode ES control in order to find the optimal
solution. Different from existing works, this paper has three
distinguishing features: First, in the context of distributed
and cooperative scheme, the existing work relies on the use
of sinusoidal perturbation signals, while this paper employs
a sliding mode ES control. Sliding mode ES control has the
potential to simplify the implementation and improve the
convergence rate. Second, ES via sliding mode was previ-
ously proposed to find Nash solution in a non-cooperative
game [13]. Since Nash solution is not the socially optimal
solution, this paper seeks to extend the result to solve the
problem in a cooperative fashion. Third, the stability and
the convergence analysis are proven under less stringent
conditions by eliminating the weak coupling assumption



between the decision variables.
The remaining work in this paper is developed as follows:

The problem statements and assumptions are outlined in sec-
tion II. Section III specifies the proposed controller design,
followed by stability and convergence analysis in section IV.
The application of the proposed schemes to optimize energy
production in wind farms is investigated in section V, where
successful application of distributed ES control is achieved.
Simulations are provided to illustrate the theoretical results
and demonstrate its potential use.

II. PRELIMINARIES AND PROBLEM FORMULATION

Throughout this paper a network of n controllers, will
be refereed to as agents, is considered. Each agent i for
i= 1,2, ..,n is able to measure its local cost function Ji(θ(t)),
which depends on its own action, denoted by θi(t), as well
as actions taken by its neighbors. Also, agents have the
capability to exchange information over undirected graph
G = (V,E), with the vertex set V = {1,2, ...,n} and edge
set E ⊂V ×V .
Then, using the measurement of Ji(θ(t)), the Multi-Agent
System (MAS) objective is to perform a real-time optimiza-
tion in a distributed and cooperative manner, and optimize
a global cost function given by the sum of individual agent
objectives

J(θ(t)) =
n

∑
i=1

Ji(θ(t)), (1)

where J(·) : Rn → R is the global cost function. In this
work, without loss of generality, the maximization case is
considered:

max
θ∈Rn

J(θ(t)). (2)

To proceed with the design of the cooperative ES control,
the following assumptions are required to facilitate the
analysis of the proposed solution.

Assumption 1: It is assumed that, the local cost functions
Ji(θ(t)) are concave functions i.e.

(θi(t)−θ
?
i )

∂J(θ(t))
∂θi

< 0, ∀θi(t) 6= θ
?
i . (3)

and the solution to the problem (2) exists, unique and finite.
Assumption 2: For each agent i, the local cost function

Ji(·), i ∈V is smooth and continuously differentiable.
Assumption 3: For each θi, i ∈V , the partial derivative of

the total cost function function is bounded, i.e.

| ∂J
∂θi
|< Mi,Mi ∈ R

Assumption 4: The graph G = (V,E) is fixed, balanced,
and strongly connected.
Assumptions 1,2 and 3, will be needed for the stability and
convergence properties of the sliding mode ES controller.
Assumption 4 is introduced for the stability of the proposed
consensus dynamic.

Fig. 1. The proposed scheme for the cooperative extremum seeking control.
A distributed consensus algorithm receives measurement from each agent
then share information about the global cost function.

III. COOPERATIVE SLIDING MODE ES CONTROL

In order to solve the problem in a cooperative manner,
each agent should have an estimate of the global cost (1). The
idea is to introduce a consensus algorithm that communicates
information about the mean of the global cost function
in a distributed manner. Then, each controller will solve
in real time a multivariable ES control problem. Fig. 1
demonstrates the proposed coordination scheme. As can be
seen in the figure, each agent receives an estimate from the
distributed consensus algorithm. Then, the ES controller uses
the estimate to update the consensus with new value as a new
decision has been taken by the local ES controller.

In the next section, the consensus dynamic used in this
paper is elaborated on, then the design of the sliding mode
extremum seeking controller is described.

A. Consensus Dynamic

In this section, we overview the consensus algorithm used
in this work. In particular, similar to that of [18], we let each
agent measure the mean of the total cost function, i.e.

1
n

n

∑
i=1

Ji(θ(t))

This can be achieved by using a dynamic consensus algo-
rithm. In this work, the dynamic average consensus algorithm
proposed by Freeman et al. [22] is considered. We use
dynamic average consensus algorithm to make sure that the
inputs continually drive the consensus algorithm in real time
and to be able to track the average of the changing inputs.
To elaborate more about the used consensus algorithm, we
state some useful definitions:

Definition 1: An adjacency matrix A of the graph G
satisfies (i, j) ∈ E =⇒ ai, j = 1. Meaning the agent i can
communicate with agent j. Since we assume un-directed
graph we have ai, j = a j,i ans A = AT .

Definition 2: Let D ∈ Rn×n be a diagonal matrix which
elements dii equals the number of agents that agent i can
commuincate with, the Laplacian matrix is given by L =
D−A.
The consensus algorithm applies a distributed dynamic av-
erage consensus which is given by:

˙̂Ji(t) =−γ Ĵi(t)−∑
j 6=i

ai j[Ĵi(t)− Ĵ j(t)]

+∑
j 6=i

bi j[wi(t)−w j(t)]+ γui(t)
(4)



ẇi(t) =−∑
j 6=i

bi j[Ĵi(t)− Ĵ j(t)], (5)

where Ĵi(t) is the estimated cost function for agent i, wi(t) is
an auxiliary state, ui(t)∈R is the dynamic input, and γ > 0 is
a global parameter. The dynamic can be rewritten in compact
form as: [ ˙̂J

ẇ

]
=

[
−γI−LI LP
−LP 0

][
Ĵ
w

]
+

[
γI
0

]
u(t), (6)

where Ĵ(t) = [Ĵ1(t) Ĵ2(t) ... Ĵn(t)]T , and LI is the integral
Laplacian, constructed form the weights ai j, and LP is the
proportional Laplacian, constructed form the weights bi j.
For this approach, Ji(θ(t)) is chosen to be the input to the
dynamic ui(t).

B. Sliding Mode ES Control

Fig. 2 shows a basic sliding mode based Extremum
Seeking control scheme for general nonlinear system. The
main idea of the sliding mode ES is to select a control law
such that the system output tracks a monotonic increasing
(decreasing) function in time towards the maximum (min-
imum). To design an ES controller with sliding mode, a
switching function for the ith agent is defined as:

si(t) = Ji(t)−gi(t), (7)

where gi(t) is a reference signal satisfies:

ġi(t) = ρ, gi(0) = 0, ρ > 0. (8)

That is, gi(t) is a increasing function of time. Next, let the
variable structure control law be

vi(t) =−k sgn
(

sin
(

πsi(t)
αi

))
, (9)

where αi and k are positive design parameters. Also, let the
decision variable θi be defined as:

θ̇i(t) = v(t). (10)

Finally, we made the following assumptions about the con-
troller.

Assumption 5: The consensus system (6) is much faster
than the one of the θi’s dynamics, that is,

| d
dt

Ĵ(t)|>> | d
dt

θ(t)|. (11)
This assumption ensures a time-scale separation between the
consensus dynamic and the ES controller. This assumption
is reasonable and can be satisfied by choosing a small k for
each ES controller.

IV. STABILITY AND CONVERGENCE ANALYSIS

This section discusses the stability and the convergence
of the proposed scheme. The stability of the consensus
algorithm is discussed first. Then, the discussion will focus
on our main result which is the stability and convergence
analysis of the sliding mode ES controller. Namely, the
analysis will be focused on the existence of sliding modes.
The main theorem for a system of n variable will be stated
and proved first. After that, we discuss an example of n = 1
for the clarity of the analysis.

Fig. 2. Block diagram for Extremum Seeking control via sliding mode for
general nonlinear system.

A. Convergence of the Consensus Algorithm

Lemma 1: Consider the consensus system (6) and let
assumption 4 be satisfied. Then for any initial conditions the
system states [Ĵ(t) w(t)]T remain bounded and each state
Ĵi(t) converges exponentially to 1

n ∑
n
i=1 ui(t) as t→+∞.

Proof: The proof can be found in [22].
Using this lemma and under assumption 5, we have

Ji(t),J j(t)→
1
n

n

∑
i=1

Ji(θ(t)) ∀i, j ∈ {1,2, ...,n}.

Therefore, throughout this section of analyzing the slow
dynamics, Ĵi(θ(t)) = 1

n ∑
n
i=1 Ji(θ(t)) is considered as the

measured cost function for each agent i.

B. Existence of Sliding Mode

The condition for a sliding mode to exists is that the
deviation from a switching surface s(t) and its derivative ṡ(t)
should have opposite sign in the vicinity of the switching
surface s(t) [23]. For this paper, that is equivalent to saying
that

lim
si(t)→nα−

ṡi(t)> 0, and lim
si(t)→nα+

ṡi(t)< 0. (12)

Theorem 1: For each agent i, with the switching function
(7) and ES control input (9), let assumption 1 to assumption
5 hold. Then, the sliding mode existence condition is ensured
and kept on manifold given by si(t) = nα,n ∈ Z if the
following conditions hold:
• For the given cost function (22), the sum of the absolute

values of the partial derivative with respect to θi is grater
than ρ

k , i.e.,

n

∑
i=1

∣∣∣∣
∂J(θ(t))

∂θi

∣∣∣∣>
ρ

k
, ∀i ∈ {1,2, ...,n}. (13)

• The ES controller parameters αi is chosen such that:

αi 6= α j and αi = 2i−1
α,α ∈ R+, ∀i, j ∈ {1,2, ...,n}

(14)
Proof: Under lemma 1 we have the switching function

for each agent i is given by:

si(t) = Ĵi(θ1(t),θ2(t), ...,θn(t))−g(t).



and the time derivative is given by:

ṡi(t) =
∂ Ĵi(θ(t))

∂θ1
θ̇1(t)+ ...+

∂ Ĵi(θ(t))
∂θn

θ̇n(t)−ρ

=
n

∑
j=1

∂ Ĵi(θ(t))
∂θ j

θ̇ j(t)−ρ

=−
n

∑
j=1

∂ Ĵi(θ(t))
∂θ j

k sgn
(

sin
(

πs j(t)
α j

))
−ρ.

(15)

Note that, by the second condition in the theorem we have
α1 = α,α2 = 2α1, ...,αn = 2αn−1. Therefore, by the period-
icity of the sinusoidal functions, it is suffices to consider the
case when si(t) ∈ (−αn,αn).
Suppose initially, si(0)∈ (0,α), that is si(0)> 0. Then, there
are two possible cases:

a) If ṡi(t) < 0, then s(t) is a decreasing. Moreover, the
sign of ṡ(t) either remains same or changes after crossing
si(t) = kα , k ∈ Z and kα ∈ (−αn,αn). In the latter case, a
sliding mode will exists at si(t) = kα . Otherwise, the sign
will change at si(t) =−αn and a sliding mode will exists at
si(t) =−αn.

b) Similarly, if ṡi(t)> 0, then s(t) is increasing function.
Moreover, the sign of ṡ(t) either remains same or changes
after crossing a point where si(t) = kα , k ∈ Z. In the latter
case, a sliding mode will exists at si(t) = kα . Otherwise, the
sign will change at si(t) = αn and a sliding mode will exists
at si(t) = αn.
Note that, unlike the classical sliding mode, the ES con-
trollers are sliding on a number of surfaces during the
optimization process.

In sliding mode, the switching surface s(t) will be constant
and consequently the cost function J(θ(t)) will follow the
monotonic increasing function towards the maximum. Note
that, after entering the region (13), it is possible that either
the system output stays inside that region or goes through it.
In the latter case, another sliding mode will happen and the
system will enter the region again on the sliding mode.

Example 1: To illustrate the idea of the existence of sliding
mode, we study the case of single variable, i.e. n = 1, as an
example.
Consider a single variable cost function. The switching
function is given by

s(t) = Ĵ(θ(t))−g(t).

The time derivative of s(t) is:

ṡ(t) =
∂ Ĵ(θ(t))

∂θ
θ̇(t)−ρ.

=−∂ Ĵ(θ(t))
∂θ

k sgn
(

sin
(

πs(t)
α

))
−ρ.

(16)

By the periodicity of the sinusoidal, it is suffices to consider
the case when s(t)∈ (−α,α). Suppose initially we have 0 <
s(0)< α and that conditions in theorem 1 are satisfied.
a) If ∂ Ĵ(θ(t))

∂θ
> 0, then

ṡ(t) =−∂ Ĵ(θ(t))
∂θ

k sgn
(

sin
(

πs(t)
α

))
−ρ < 0.

and therefore, s(t)→ 0.
When −α < s(t)< 0 we have

ṡ(t) =−∂ Ĵ(θ(t))
∂θ

ksgn
(

sin
(

πs(t)
α

))
−ρ > 0.

and therefore, s(t) → 0. Hence, the system will slide on
s(t) = 0.
b) On the other hand, If initially, ∂ Ĵ(θ(t))

∂θ
< 0. We have

ṡ(t) =−∂ Ĵ(θ(t))
∂θ

k sgn
(

sin
(

πs(t)
α

))
−ρ > 0

and s(t)→ α . When α < s(t)< 2α , we have

ṡ(t) =−∂ Ĵ(θ(t))
∂θ

k sgn
(

sin
(

πs(t)
α

))
−ρ < 0.

So s(t)→ α . Hence, the system will slide on s(t) = α . Note
that, by the symmetry of the sinusoidal function, the same
results hold if −α < s(0)< 0. Moreover, by the periodicity
of the sinusoidal, it can be easily seen that for any s(0) ∈R,
the system will slide on the nearest manifold s(t) = nα with:

• n = 2K when ∂ Ĵ(θ(t))
∂θi

> 0.

• n = 2K +1 when ∂ Ĵ(θ(t))
∂θi

< 0.

Where n,K ∈ Z. Thus, sliding mode existence has been
shown for the case when n = 1 which illustrate the idea of
existence for the general case with n dimensional function.
To show that in sliding mode Ĵ(θ(t)) is increasing, we
will prove that θ(t) converges to the optimal point θ ?

asymptotically. According to theorem 1, sliding mode will
be reached in finite time. Without loss of generality, suppose
that at the time t = tri the sliding surface s(t)=0 is reached.
In sliding mode, the equivalent control veq can be obtained
by solving the equation ṡ(t) = 0 for v(t). That is,

ṡ(t) =
∂ Ĵ

∂θ(t)
veq(t)−ρ = 0, (17)

which implies,

veq(t) =
ρ

∂ Ĵ
∂θ(t)

. (18)

Furthermore, note that under the assumption 1 we have

(θ(t)−θ
?)

∂ Ĵ
∂θ(t)

< 0. (19)

Let θ̂(t) = θ(t)−θ ?, the time derivative of the function θ̂(t)
is

˙̂
θ(t) = veq(t). (20)

From (18) and (19), it follows that

θ̂(t) ˙̂
θ(t)< 0. (21)

That is, θ(t) → θ ? and J(θ(t)) is increasing towards a
neighborhood of the maximum, which is characterized by
the region (13) as long as sliding mode exists.
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Fig. 3. Distributed Cooperative Extremum Seeking Control implementation
scheme.

V. APPLICATION EXAMPLE: WIND FARM OPTIMIZATION

In this section, we illustrate the applicability of developed
scheme to the problem of power maximization in a network
of n wind turbines using the developed sliding mode based
cooperative extremum seeking control. In wind turbines
farm, wind turbines extract the kinetic energy from the
wind flow, consequently, a wind turbine reduces the wind
speed in the wake downstream of the wind turbine router.
By considering the aerodynamic interaction among wind
turbines, up to twenty-five percent of energy gain can be
achieved under certain conditions.

We consider a wind farm consists of n = 3 wind turbines.
Let θi be the control parameter of turbine i. Here, θi is the
Axial Induction Factor (AIF) of turbine i and it takes values
in

[
0, 1

2

]
. For each wind turbine i, the power produce is given

by

Ji(θ) =
1
2

ρairAiCp(θi)Vi(θ)
3, (22)

where ρair is the density of the air, Ai is the area swept by
blades of turbine i, Cp(θi) is the power efficiency coefficient,
and Vi(θ) is the wind speed at turbine i. Note that, in a
wind farm, it is difficult to accurately model the coupling
between the wind turbines, due to the interaction between
the wind-turbine wake aerodynamics and the dynamics of
the turbines. Therefore, it is assumed that agent i can only
measure the power production of turbine i, and the problem
is to maximize the total power production which is given by

PTotal(θ1,θ2, ...,θn) =
n

∑
i=1

Ji(θ1,θ2, ...,θn) (23)

The detailed model is described in [6]. Simulations are

carried out using MATLAB. Note that, as shown in [6],
the sup-optimal solution is achieved by setting all θi =

1
3 .

However, if we consider the optimal solution for the total
power generated by all three turbines, we have:

PTotal = J1 + J2 + J3

=
1
2

ρA(Cp(θ1)V 3
∞ +Cp(θ2)V2(θ1)

3

+Cp(θ3)V3(θ1,θ2)
3).

(24)

Optimizing the above equation using numerical optimizer
yields θ ∗ = (0.232,0.208,0.333). Fig. 4 shows the conver-
gence of the consensus dynamic outputs. After reaching an
agreement between the agents, each agent starts to optimize
the global function using its own decision variable. The
consensus parameters where chosen much larger than the
controller gains ki to ensure that the steady state is reached
in a short time. The ES outputs reach the vicinity of the
optimum after sliding on different surfaces as shown in Fig.
7. Unlike the classical sliding mode, the ES controllers are
sliding on a number of surfaces during the optimization
process. Fig. 5 demonstrates that starting, initially, with
optimal setting for individual turbine (greedy policy) θ(0) =
( 1

3 ,
1
3 ,

1
3 ), the proposed control steers the farm to a vicinity

of the maximum power generation. Since this is a derivative-
free optimization, the ES controllers can only identify a
vicinity of the optimal solution. The observed chattering can
be reduced by lowering both parameters αi and ki, however,
it will result in a slow convergence [4]. Furthermore, the
convergence of the axial induction factor is demonstrated in
Fig. 6. Different frequency is utilized, by selecting different
αi, in accordance to theorem 1. It is worth mentioning that
there is also a trade-off between the convergence speed and
the speed of the consensus dynamics.

VI. CONCLUSION

In this paper, a sliding mode based ES control has been
proposed for solving a class of distributed optimization in a
cooperative fashion. The strategy of introducing a consensus
dynamic to communicate information about the global cost
function has been considered to solve this class of problems.
Stability and convergence analysis are discussed and suffi-
cient conditions under which the overall scheme converges to
the optimal solution were driven. The scheme, successfully,
implemented to solve the problem of wind farm power
maximization. The results obtained show the effectiveness of
this technique in solving such problem and fast convergence
of the algorithm to the unknown optimum was observed.
Future research will include the development of ES controller
in the presence of time delay as well as the development of
distributed ES for constrained optimization.
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Fig. 6. Convergence of the axial induction factor for each turbine.
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