Name:			

Quiz 9 - Take Home

Recitation Instructor:

SHOW ALL WORK!!! Unsupported answers might not receive full credit.

Problem 1 [2.5 pts] (Projecting a Vector Field Onto a Curve)

In multivariable calculus, many problems require one to find the component of a vector (field) onto a given curve at each point along the curve.

Suppose $\vec{r}(t) = \langle t^2, 4t, 4\sin t \rangle$.

a) [1 pt] Calculate the *unit* tangent vector $\hat{T}(t)$ when t = 0. $\vec{T}'(t) = \langle 2t, 4, 4\cos t \rangle$ $\vec{T}'(0) = \langle 0, 4, 4\cos 0 \rangle = \langle 0, 4, 4 \rangle$

$$S_0 \widetilde{T}(0) = \frac{\widetilde{r}'(0)}{|\widetilde{r}'(0)|} = \frac{20,4,4}{\sqrt{0^2+4^2+4^2}} = \frac{20,4,4}{4\sqrt{2}} = 20,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}$$

b) [.5 pts] Show that for any vector \vec{F} and unit vector \hat{v} that $scal_{\hat{v}} \vec{F} = \vec{F} \cdot \hat{v}$

Proof. By definition, scal
$$\vec{F} = \frac{\vec{F} \cdot \hat{v}}{|\hat{v}|}$$
.
But $|\hat{v}| = 1$ since \hat{v} is a unit vector. Hence $|\hat{v}| = |\hat{F}| \cdot \hat{v}$.

c) [1 pt] Suppose $\vec{F} = \langle -1, 2, 4 \rangle$. Find $scal_{\hat{T}(0)} \vec{F}$. This is the magnitude of the component of the vector \vec{F} along the curve $\vec{r}(t)$ at t = 0.

By b),
$$S(al \hat{T}(a)) \vec{F} = \vec{F} \cdot \hat{T}(0) = \langle -1, 2, 4 \rangle \cdot \langle 0, \frac{1}{12}, \frac{1}{12} \rangle$$

= $-1.0 + 2.\frac{1}{12} + 4.\frac{1}{12} = \frac{6}{12} = 3.72$

Problem 2 [1.5 pts] Suppose $\vec{r}(t)$ is a differentiable vector-valued function and $|\vec{r}(t)| = 1$.

a) [.5 pts] (True or False) Is $\vec{r}'(t)$ a unit vector for each value of t? Think about this both conceptually and computationally!

False. Counter example: $\vec{r}(t) = \langle 1, 0, 0 \rangle$ Elearly $\vec{r}(t)$ is differentiable and $|\vec{r}(t)| = 1$, but $\vec{r}'(t) = \langle 0, 0, 0 \rangle$ with $|\vec{r}'(t)| = 0$. There are other examples, e.g. $\vec{r}(t) = \langle \cos(2t), \sin(2t) \rangle$.

b) [1 pt] Show that $\vec{r}(t)$ and $\vec{r}'(t)$ are orthogonal for each value of t.

Hint: $\vec{r}(t) \cdot \vec{r}(t) = 1$ for all t.

Proof. $\vec{r}(t) \cdot \vec{r}(t) = 1$. By the product rule for dot products,

$$\frac{d}{dt}(\vec{r}(t) \cdot \vec{r}(t)) = \vec{r}'(t) \cdot \vec{r}(t) + \vec{r}(t) \cdot \vec{r}'(t) = 2\vec{r}(t) \cdot \vec{r}(t) = 0$$
so $\vec{r}(t) \cdot \vec{r}(t) = 0$ i.e. $\vec{r}(t)$ and $\vec{r}'(t)$ are orthogonal for all t .