Name:

Quiz 8 - Take Home

Recitation Instructor:

SHOW ALL WORK!!! Unsupported answers might not receive full credit. Use the back of this sheet for additional workspace.

<u>Problem 1</u> [4 pts] Suppose $\vec{u} = 3\hat{i} + 4\hat{j}$ and $\vec{v} = 4\hat{i} + 2\hat{j}$.

a) [1 pt] Calculate
$$\vec{u} \cdot \vec{v}$$
. $\vec{u} = \langle 3, 4 \rangle$, $\vec{v} = \langle 4, 2 \rangle$
 $\vec{u} \cdot \vec{v} = 3 \cdot 4 + 4 \cdot 2 = 12 + 8 = 20 \neq 0$

b) [1 pt] Find $\cos \theta$, where $0 \le \theta \le \pi$ is the angle between the vectors \vec{u} and \vec{v} . Are \vec{u}

and
$$\vec{v}$$
 perpendicular?

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} \qquad |\vec{u}| = \int 3^2 + 4^2 , \quad |\vec{v}| = \int 4^2 + 2^2 = \int 20 = 2\sqrt{5}$$

$$\cos \theta = \frac{20}{5 \cdot 2\sqrt{5}} = \frac{2}{\sqrt{5}} \qquad So \quad \theta = \cos^{-1}(\frac{2}{\sqrt{5}})$$

c) [2 pts] Find a vector
$$\vec{P}$$
 that is parallel to \vec{v} and a vector \vec{N} perpendicular to \vec{v} such that $\vec{u} = \vec{P} + \vec{N}$.

Hint: Draw a picture. What is $proj_{\vec{v}}\vec{u}$?

Let
$$\vec{p} = proj_{\vec{v}}\vec{u} = \left(\frac{\vec{u}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\right)\vec{v} = \left(\frac{\vec{u}\cdot\vec{v}}{|\vec{v}|^2}\right)\vec{v} = \frac{20}{20}\vec{v} = \vec{v}$$

$$= \langle 4,2 \rangle$$

Then
$$\vec{N} = \vec{u} - \vec{p} = \langle 3,4 \rangle - \langle 4,2 \rangle = \langle -1,2 \rangle$$

(clearly $\vec{N} \cdot \vec{v} = 0$ and thus $\vec{N} + \vec{v}$.)