Name:

Quiz 3 - Take Home

Recitation Instructor:

SHOW ALL WORK!!! Unsupported answers might not receive full credit.

<u>Problem 1</u> [4 points] A tank is formed by revolving the graph of $y = 4x^2$ for $0 \le x \le 3$ (in *meters*) about the y-axis.

a) If the tank is filled with water to the level (height) of h meters, find the volume of the water in terms of h.

$$V = \int_{0}^{h} A(y) dy = \int_{0}^{h} \pi \frac{y}{4} dy$$
$$= \frac{\pi}{8} y^{2} \Big|_{0}^{h} = \frac{\pi h^{2}}{8}$$

b) If the tank is losing water at the rate of $2\frac{m^3}{s}$, at what rate is the level of the water falling when the level is at 1 meter? (Approximate to 2 decimal places.)

View h as a function of time t. So V is a function of t and $V(t) = \frac{\pi}{s} (h(t))^2$ Differentiating with respect to t by the chain rule, we get $V'(t) = \frac{\pi}{4} h(t) - h'(t)$ By assumption V'(t) = -2. Suppose at time to we have $h(t_0) = 1$, then $-2 = \frac{\pi}{4} h(t_0) h'(t_0) = \frac{\pi}{4} h'(t_0)$. Hence, $h'(t_0) = -\frac{8}{\pi} m/s$. So the desired rate $= \frac{8}{\pi} m/s$ c) Given that the density of water is $1000 \frac{kg}{m^3}$, find the level of the water when there is $\approx 2.55 m/s$

20,000 kg of water in the tank. (Approximate to 2 decimal places.)

$$V = \frac{20000}{1000} = 20 = \frac{\pi h^2}{8}$$
. So $h = \sqrt{\frac{20.8}{\pi}} = \sqrt{\frac{160}{\pi}} \approx 7.14$

d) If the tank contains $20,000 \, kg$ of water, how much work is done pumping all of the water to an exit pipe at the top of the tank? (Approximate to 2 decimal places.)

work =
$$\int_{-\pi}^{\sqrt{\frac{160}{\pi}}} e^{9} A(y) D(y) dy$$

= $\int_{-\pi}^{\sqrt{\frac{160}{\pi}}} |\cos 9.8 \pi \frac{y}{4}| (36-y) dy$
= 2450π $\int_{-\pi}^{\sqrt{\frac{160}{\pi}}} |36y - y|^{2} dy = 245\pi (18y^{2} - \frac{y^{3}}{3}) \int_{0}^{\sqrt{\frac{160}{\pi}}} |\cos 9.8 \pi \frac{y}{4}| (18y^{2} - \frac{y}{3}) \int_{0}^{\sqrt{\frac{160}{\pi}}} |\cos 9.8 \pi \frac{y}{4}| (18y^{2} - \frac{y}{3})| (18$