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Introduction:

Single rectangular jet screech modes

Gutmark et al. [1]

Gojon et al. [3]
Raman and Rice [2]

▪ Gutmark et al. (1990) for the first time reported the 

existence of symmetric and antisymmetric (flapping) 

screech modes in rectangular jets via microphone 

measurements.

▪ Raman and Rice (1994) investigated an underexpanded jet 

and reported that a sinuous (antisymmetric/ flapping) 

mode existed at screech frequency while a varicose 

(symmetric) mode existed simultaneously at the 

harmonic of screech frequency

▪ Gojon et al. (2019) reported the existence of only an 

antisymmetric mode in their simulations of a hot, AR = 2 jet 

issued from a Md = 1.5 nozzle
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Introduction:

Twin rectangular jet screech coupling modes

▪ Zilz and Wlezien (1990) produced the first report on 

coupling in rectangular jets. While they reported 

only in-phase or out-of-phase flapping motions 

for high-aspect-ratio rectangular jets, their results 

indicated that lateral motions in low AR jets are 

possible

▪ Raman and Taghavi (1998) later on carried out 

detailed near-field measurements to ascertain the 

phase difference between two high AR jets

▪ They reported out-of-phase and in-phase 

flapping along the vertical axis for high AR jets 

and that a frequency mismatch existed between the 

jets even though they had the same source of high-

pressure air.

Zilz and Wlezien [3]

Raman and Taghavi [4]
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▪ We are attempting to answer the following questions in this work:

▪ What are the single jet screech mode and twin jet coupling modes 

across a wide range of Mach numbers in a low AR rectangular twin jet 

setup?

▪ How does the screech amplitude vary with the mode of the jets?

Introduction:

Key questions

➢ More details on coupling and standing waves in twin rectangular jets will be included 

in our upcoming SciTech paper:

Esfahani, Ata, Webb, Nathan, and Mo Samimy. “Flow Physics and Aeroacoustics of 

Twin Rectangular Supersonic Jets.” 2021 AIAA SciTech Forum 
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▪ 6.2 m x 5.6 m x 3.4 m chamber is 

anechoic down to 160 Hz

▪ Compressed air source for continuous 

running of unheated jets with various 

nozzle sizes and capable of running 

heated jet up to TTR ~ 2.5 (800 K)

Diagnostics:

▪ Near and far-field mic. array (θ:25°-

135°)

▪ ¼ inch B&K microphones  

▪ Stereo and tomo-PIV

▪ Z-type Schlieren (high-resolution and 

high-speed imaging)

Chamber interior

Experimental Setup:

Facility: Anechoic chamber
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Experimental Setup:

Facility: Twin Jets
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▪ Two 2.41× 1.21 cm (AR = 2), bi-conical nozzles

▪ Md = 1.5

▪ Center-to-center nozzle spacing: s/De = 2.35 (De = 1.92 cm)

▪ Modular design
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Experimental Setup:

Diagnostics: Near-field Microphone Array/ Schlieren 

▪ All microphones are located at x/De = 0 and  

r/De = 4 (7.3 cm from nozzle centerline)

▪ Low signal conditioner gain: 1 mV/Pa

▪ 100 blocks of 32,768 samples at 200 kHz

were acquired for each case

▪ Mach number sweep from Mj = 1.10 

(overexpanded) to 1.85 (underexpanded) in 

increments of 0.05

1

23

4

5 6

▪ LaVision Imager sCMOS camera for time-averaged 

schlieren → 50 fps (window size: 2500 x 2150 

px), 300 images for each Mach number

▪ A Phantom v1210 camera for high-speed imaging 

→ 60,000 fps (window size: 512 x 340 px), 1000 

images for each Mach number

▪ LED light source pulse width: 500 ns

▪ Post-processing was performed in DaVis 8.4 and 

MATLAB
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Asymmetric (flapping) mode

2

6

Results:

Single jet screech modes – near-field microphone 2&6

▪ Examining the plot of phase and coherence from 

microphones located above and below the right 

jet shows that the phase difference between the 

signals is close to ±π for a wide range of Mach 

numbers.

▪ The phase difference between the signals and 

relatively high coherence values indicate that the 

jet’s screech mode is asymmetric (flapping)

▪ The screech at highly overexpanded cases is 

intermittent (leads to lower time-averaged 

coherence values) whereas in underexpanded

cases, the screech peaks are highly consistent in 

time and coherence values are high

▪ The strength of coherence is reduced as we 

approach the design Mach number (Mj = 1.5). 

Weakening of the shock system originating from 

the nozzle lip leads to a reduction in screech 

amplitude and coherence values between 

microphones 2 and 6



Results:

Single jet screech modes – time-resolved schlieren

Mj = 1.25 Mj = 1.70

Asymmetric (flapping) mode

▪ Further evidence supporting the existing of an 

asymmetric screech mode in both 

overexpanded and underexpanded regimes 

can be found in high-speed schlieren movies 

of the jets for cases representing each regime.

▪ We can see the flapping motion of the shock 

cells (indicated by red arrows) for both cases 

presented above 

Recorded at 60,000 fps

Playback speed: 12 fps
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Results:

Twin jet coupling modes – near-field microphone 2&3
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Results:

Jet coupling modes – near-field microphone 2&3

▪ The coupling mode of the jets can be inferred by 

calculating the phase difference between the 

signals from microphones located above each jet

▪ The jets are coupled intermittently out of phase 

in overexpanded cases. As we cross over to 

underexpanded regime, coupling mode 

changes to in-phase flapping 

▪ Due to a frequency mismatch and intermittent 

coupling between the jets in the overexpanded 

regime, the phase between the microphone 

signals drifts and therefore the time-averaged 

phase is not exactly π

▪ Intermittent screech observed in the 

overexpanded regime is the likely source of lower 

coherence between the jets → see Mj = 1.25 

results in previous slide 

▪ At higher Mach numbers in the underexpanded

regime, screech tones are stronger and 

consistent in time → coherence values are high 

and phase drift is absent (see Mj = 1.70 results in 

previous slide)

23

Out-of-phase flapping In-phase flapping
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Results:

Standing waves

▪ The results indicate that standing waves (SWs) 

appear whenever there is a significant jump in 

the screech amplitude and coherence of the 

jets

▪ Standing waves form due to interference

between acoustic waves (upstream propagating 

feedback for screech) and hydrodynamic waves 

(signature of downstream-convecting large-scale 

structures) → If SWs are present + acoustic 

feedback is strong → we expect coherent 

shedding of large-scale structures 

▪ Two representative cases of weak (Mj = 1.20) 

and strong (Mj = 1.70) standing waves are 

shown in the figures above. Theses figures 

present maps of log of intensity standard 

deviation. 

▪ More details on our investigation of standing 

waves will be included in our upcoming SciTech 

2021 paper [6].

Mj = 1.20 Mj = 1.70
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▪ The only screech mode observed across a wide range of Mach numbers 

is asymmetric (flapping) mode

▪ The jets are intermittently coupled out-of-phase in the overexpanded 

regime

▪ Intermittent screech and a frequency mismatch between the jets in 

the overexpanded regime lead to low coherence between the jets and 

a drift in relative phase

▪ The jets are coupled in-phase at higher Mach numbers in the 

underexpanded regime. Strong and consistent screech tones for such 

cases result in steady relative phase and high coherence values 

▪ Standing waves are present in the jet flow-field for some Mach numbers 

and are related to the screech phenomenon. More information will be 

included in our upcoming SciTech 2021 paper

Conclusions:
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