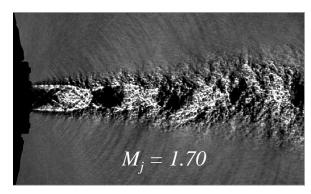

# THE OHIO STATE UNIVERSITY


# Coupling Modes in Supersonic Twin Rectangular Jets

Ata Esfahani, Nathan Webb and Mo Samimy

Gas Dynamics and Turbulence Laboratory
Aerospace Research Center
The Ohio State University

73<sup>rd</sup> Annual Meeting of the APS Division of Fluid Dynamics November 22–24, 2020







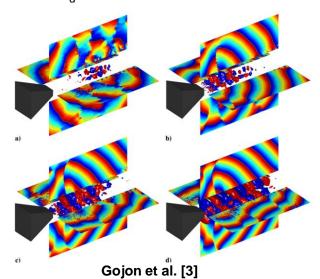


- 1. Introduction
- 2. Experimental Setup
- 3. Results
  - Screech/ Coupling Modes
  - Standing Waves
- 4. Conclusions





- ☐ 1. Introduction
- □ 2. Experimental Setup
- ☐ 3. Results
  - Screech/ Coupling Modes
  - Standing Waves
- ☐ 4. Conclusions






### Introduction:

#### Single rectangular jet screech modes

- Gutmark et al. (1990) for the first time reported the existence of symmetric and antisymmetric (flapping) screech modes in rectangular jets via microphone measurements.
- Raman and Rice (1994) investigated an underexpanded jet and reported that a sinuous (antisymmetric/ flapping) mode existed at screech frequency while a varicose (symmetric) mode existed simultaneously at the harmonic of screech frequency
- Gojon et al. (2019) reported the existence of only an antisymmetric mode in their simulations of a hot, AR = 2 jet issued from a  $M_d = 1.5$  nozzle



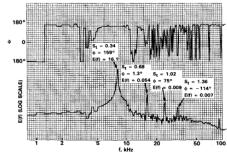
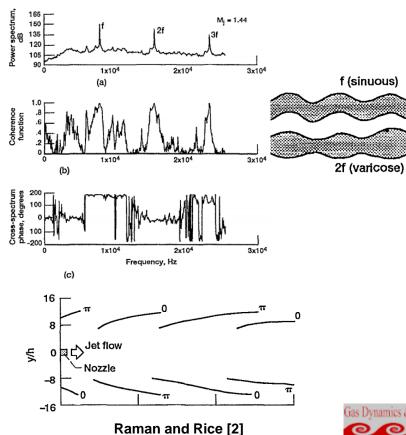




Fig. 12 Cross spectrum and relative phase of near-field pressure fluctuations at opposite jet boundaries, minor axis plane, M = 1.34 ( $x/D_e = 0.67$ ,  $r/D_e = \pm 0.94$ ).

#### Gutmark et al. [1]







#### Introduction:

#### Twin rectangular jet screech coupling modes

- Zilz and Wlezien (1990) produced the first report on coupling in rectangular jets. While they reported only in-phase or out-of-phase flapping motions for high-aspect-ratio rectangular jets, their results indicated that lateral motions in low AR jets are possible
- Raman and Taghavi (1998) later on carried out detailed near-field measurements to ascertain the phase difference between two high AR jets
- They reported out-of-phase and in-phase flapping along the vertical axis for high AR jets and that a frequency mismatch existed between the jets even though they had the same source of highpressure air.

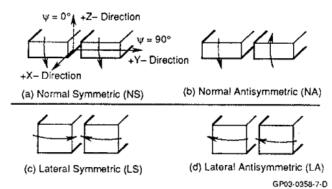
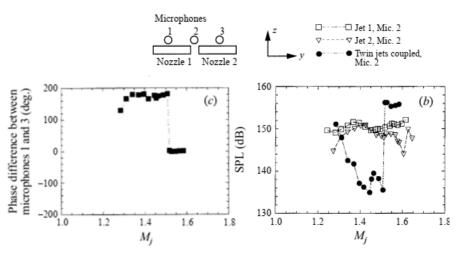




Fig. 5 Illustration Of Four Jet Interaction Modes and Nozzle Coordinate System

#### Zilz and Wlezien [3]



Raman and Taghavi [4]





#### Introduction:

#### **Key questions**

- We are attempting to answer the following questions in this work:
  - What are the single jet screech mode and twin jet coupling modes across a wide range of Mach numbers in a low AR rectangular twin jet setup?
  - How does the screech amplitude vary with the mode of the jets?
- More details on coupling and standing waves in twin rectangular jets will be included in our upcoming SciTech paper:

Esfahani, Ata, Webb, Nathan, and Mo Samimy. "Flow Physics and Aeroacoustics of Twin Rectangular Supersonic Jets." 2021 AIAA SciTech Forum



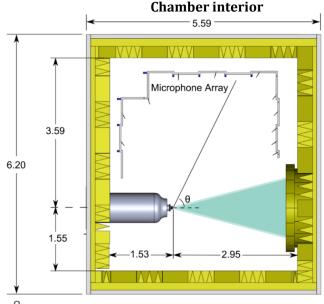


- ☐ 1. Introduction
- 2. Experimental Setup
- ☐ 3. Results
  - Screech/ Coupling Modes
  - Standing Waves
- ☐ 4. Conclusions





### **Experimental Setup:**

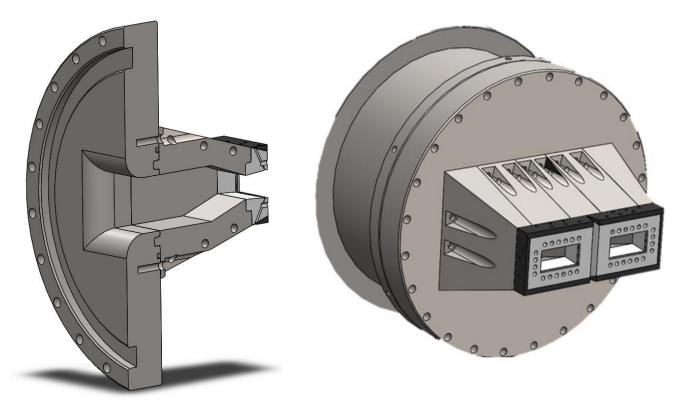

#### **Facility: Anechoic chamber**

- 6.2 m x 5.6 m x 3.4 m chamber is anechoic down to 160 Hz
- Compressed air source for continuous running of unheated jets with various nozzle sizes and capable of running heated jet up to TTR ~ 2.5 (800 K)

#### **Diagnostics:**

- Near and far-field mic. array (θ:25°-135°)
  - ¼ inch B&K microphones
- Stereo and tomo-PIV
- Z-type Schlieren (high-resolution and high-speed imaging)





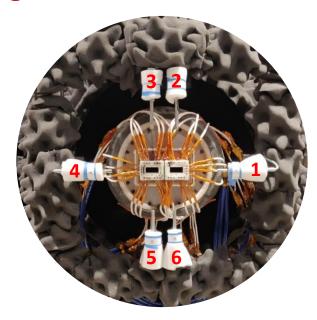


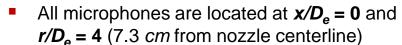



### **Experimental Setup:**

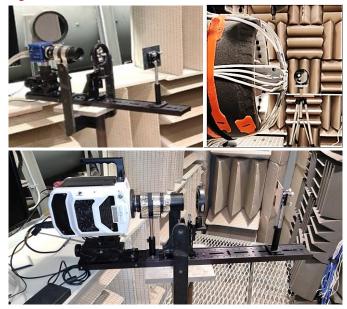
### **Facility: Twin Jets**




- Two 2.41× 1.21 *cm* (*AR* = 2), bi-conical nozzles
- $M_d = 1.5$
- Center-to-center nozzle spacing:  $s/D_e = 2.35 (D_e = 1.92 cm)$
- Modular design







### **Experimental Setup:**

#### Diagnostics: Near-field Microphone Array/ Schlieren





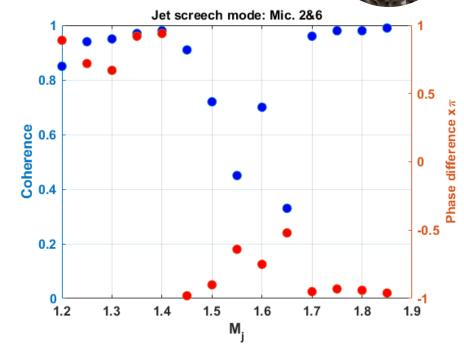
- Low signal conditioner gain: 1 mV/Pa
- 100 blocks of 32,768 samples at 200 kHz were acquired for each case
- Mach number sweep from M<sub>j</sub> = 1.10 (overexpanded) to 1.85 (underexpanded) in increments of 0.05

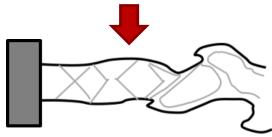


- LaVision Imager sCMOS camera for time-averaged schlieren → 50 fps (window size: 2500 x 2150 px), 300 images for each Mach number
- A Phantom v1210 camera for high-speed imaging
   → 60,000 fps (window size: 512 x 340 px), 1000 images for each Mach number
- LED light source pulse width: 500 ns
- Post-processing was performed in DaVis 8.4 and MATLAB






- ☐ 1. Introduction
- 2. Experimental Setup
- 3. Results
  - Screech/ Coupling Modes
  - Standing Waves
- ☐ 4. Conclusions



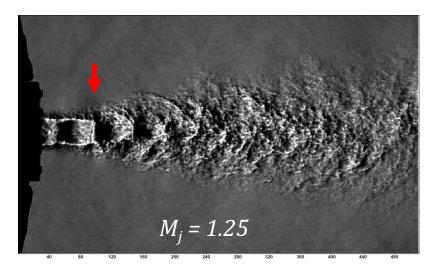


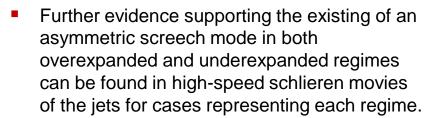

### Single jet screech modes – near-field microphone 2&6

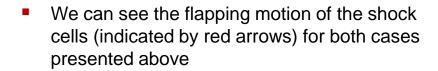
- Examining the plot of phase and coherence from microphones located above and below the right jet shows that the phase difference between the signals is close to  $\pm \pi$  for a wide range of Mach numbers.
- The phase difference between the signals and relatively high coherence values indicate that the jet's screech mode is asymmetric (flapping)
- The screech at highly overexpanded cases is intermittent (leads to lower time-averaged coherence values) whereas in underexpanded cases, the screech peaks are highly consistent in time and coherence values are high
- The strength of coherence is reduced as we approach the design Mach number  $(M_j = 1.5)$ . Weakening of the shock system originating from the nozzle lip leads to a reduction in screech amplitude and coherence values between microphones 2 and 6

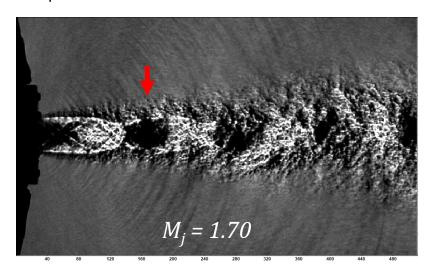


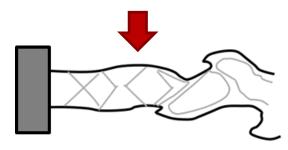



Asymmetric (flapping) mode





#### Single jet screech modes – time-resolved schlieren

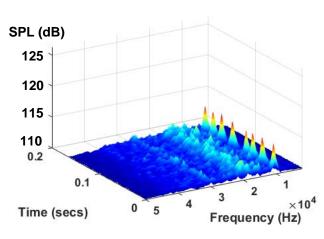

Recorded at 60,000 fps Playback speed: 12 fps

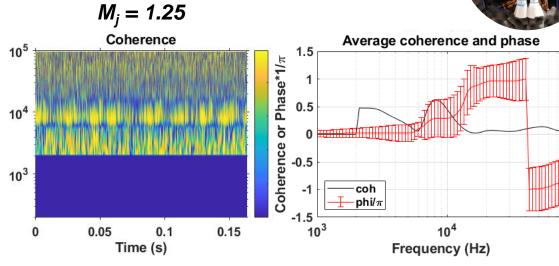




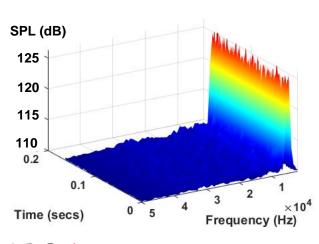


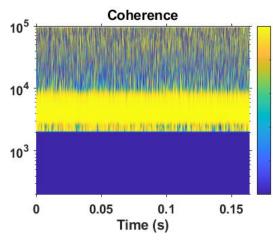


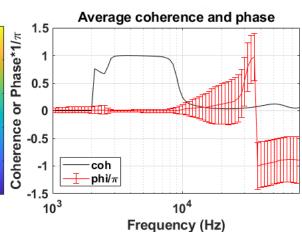




Asymmetric (flapping) mode





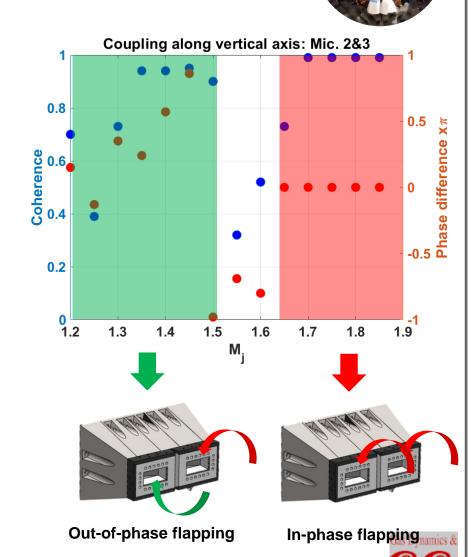


#### Twin jet coupling modes – near-field microphone 2&3






 $M_i = 1.70$ 



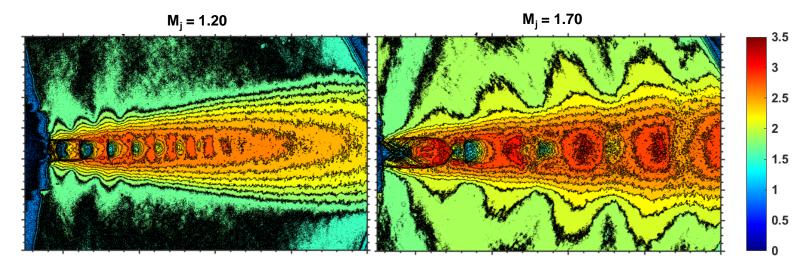







#### **Jet coupling modes – near-field microphone 2&3**

- The coupling mode of the jets can be inferred by calculating the phase difference between the signals from microphones located above each jet
- The jets are coupled intermittently out of phase in overexpanded cases. As we cross over to underexpanded regime, coupling mode changes to in-phase flapping
- Due to a frequency mismatch and intermittent coupling between the jets in the overexpanded regime, the phase between the microphone signals drifts and therefore the time-averaged phase is not exactly π
- Intermittent screech observed in the overexpanded regime is the likely source of lower coherence between the jets → see M<sub>j</sub> = 1.25 results in previous slide
- At higher Mach numbers in the underexpanded regime, screech tones are stronger and consistent in time → coherence values are high and phase drift is absent (see M<sub>i</sub> = 1.70 results in previous slide)




- ☐ 1. Introduction
- □ 2. Experimental Setup
- 3. Results
  - Screech/ Coupling Modes
  - Standing Waves
- ☐ 4. Conclusions





#### **Standing waves**



- The results indicate that standing waves (SWs) appear whenever there is a significant jump in the screech amplitude and coherence of the jets
- Standing waves form due to interference between acoustic waves (upstream propagating feedback for screech) and hydrodynamic waves (signature of downstream-convecting large-scale structures) → If SWs are present + acoustic feedback is strong → we expect coherent shedding of large-scale structures
- Two representative cases of **weak** ( $M_j$  = 1.20) and **strong** ( $M_j$  = 1.70) standing waves are shown in the figures above. Theses figures present maps of log of intensity standard deviation.
- More details on our investigation of standing waves will be included in our upcoming SciTech 2021 paper [6].





- ☐ 1. Introduction
- □ 2. Experimental Setup
- ☐ 3. Results
  - Screech/ Coupling Modes
  - Standing Waves
- 4. Conclusions





### **Conclusions:**

- The only screech mode observed across a wide range of Mach numbers is asymmetric (flapping) mode
- The jets are intermittently coupled out-of-phase in the overexpanded regime
- Intermittent screech and a frequency mismatch between the jets in the overexpanded regime lead to low coherence between the jets and a drift in relative phase
- The jets are coupled in-phase at higher Mach numbers in the underexpanded regime. Strong and consistent screech tones for such cases result in steady relative phase and high coherence values
- Standing waves are present in the jet flow-field for some Mach numbers and are related to the screech phenomenon. More information will be included in our upcoming SciTech 2021 paper





### **References:**

- [1] Gutmark, E., K. C. Schadow, and C. J. Bicker. "Near acoustic field and shock structure of rectangular supersonic jets." *AIAA journal* 28, No. 7 (1990): 1163-1170.
- [2] Raman, Ganesh, and Edward J. Rice. "Instability modes excited by natural screech tones in a supersonic rectangular jet." *Physics of fluids* 6, No. 12 (1994): 3999-4008.
- [3] Gojon, Romain, Ephraim Gutmark, and Mihai Mihaescu. "Antisymmetric oscillation modes in rectangular screeching jets." *AIAA Journal* 57, no. 8 (2019): 3422-3441.
- [4] Zilz, David, and Richard Wlezien. "The sensitivity of near-field acoustics to the orientation of twin two-dimensional supersonic nozzles." In *26<sup>th</sup> Joint Propulsion Conference*, AIAA paper 90-2149
- [5] Raman, Ganesh, and Ray Taghavi. "Coupling of twin rectangular supersonic jets." *J. Fluid Mech* 354 (1998): 123-146.
- [6] Esfahani, Ata, Webb, Nathan, and Mo Samimy. "Flow Physics and Aeroacoustics of Twin Rectangular Supersonic Jets." 2021 AIAA SciTech Forum





